首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To probe the effect of nucleotide on the formation of ionic contacts between actin and the 567-578 residue loop of the heavy chain of rabbit skeletal muscle myosin subfragment 1 (S1), the complexes between F-actin and proteolytic derivatives of S1 were submitted to chemical cross-linking with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide. We have shown that in the absence of nucleotide both 45 kDa and 5 kDa tryptic derivatives of the central 50 kDa heavy chain fragment of S1 can be cross-linked to actin, whereas in the presence of MgADP.AlF4, only the 5 kDa fragment is involved in cross-linking reaction. By the identification of the N-terminal sequence of the 5-kDa fragment, we have found that trypsin splits the 50 kDa heavy chain fragment between Lys-572 and Gly-573, the residues located within the 567-578 loop. Using S1 preparations cleaved with elastase, we could show that the residue of 567-578 loop that can be cross-linked to actin in the presence of MgADP.AlF4 is Lys-574. The observed nucleotide-dependent changes of the actin-subfragment 1 interface indicate that the 567-578 residue loop of skeletal muscle myosin participates in the communication between the nucleotide and actin binding sites.  相似文献   

2.
Localisation of light chain and actin binding sites on myosin   总被引:6,自引:0,他引:6  
A gel overlay technique has been used to identify a region of the myosin S-1 heavy chain that binds myosin light chains (regulatory and essential) and actin. The 125I-labelled myosin light chains and actin bound to intact vertebrate skeletal or smooth muscle myosin, S-1 prepared from these myosins and the C-terminal tryptic fragments from them (i.e. the 20-kDa or 24-kDa fragments of skeletal muscle myosin chymotryptic or Mg2+/papain S-1 respectively). MgATP abolished actin binding to myosin and to S-1 but had no effect on binding to the C-terminal tryptic fragments of S-1. The light chains and actin appeared to bind to specific and distinct regions on the S-1 heavy chain, as there was no marked competition in gel overlay experiments in the presence of 50-100 molar excess of unlabelled competing protein. The skeletal muscle C-terminal 24-kDa fragment was isolated from a tryptic digest of Mg2+/papain S-1 by CM-cellulose chromatography, in the presence of 8 M urea. This fragment was characterised by retention of the specific label (1,5-I-AEDANS) on the SH1 thiol residue, by its amino acid composition, and by N-terminal and C-terminal sequence analyses. Electron microscopical examination of this S-1 C-terminal fragment revealed that: it had a strong tendency to form aggregates with itself, appearing as small 'segment-like' structures that formed larger aggregates, and it bound actin, apparently bundling and severing actin filaments. Further digestion of this 24-kDa fragment with Staphylococcus aureus V-8 protease produced a 10-12-kDa peptide, which retained the ability to bind light chains and actin in gel overlay experiments. This 10-12-kDa peptide was derived from the region between the SH1 thiol residue and the C-terminus of S-1. It was further shown that the C-terminal portion, but not the N-terminal portion, of the DTNB regulatory light chain bound this heavy chain region. Although at present nothing can be said about the three-dimensional arrangement of the binding sites for the two kinds of light chain (regulatory and essential) and actin in S-1, it appears that these sites are all located within a length of the S-1 heavy chain of about 100 amino acid residues.  相似文献   

3.
Recently, by treating the head portion of skeletal myosin subfragment-1 (S1) with the bifunctional agent dibromobimane, we introduced an intramolecular covalent cross-link which resulted in the stabilisation of an internal loop in the heavy chain structure of the head [Mornet et al. (1984) Proc. Natl Acad. Sci. USA 82, 1658-1662]. In order to define the functional properties of this new S1 conformational state, we have first determined the experimental conditions for the optimum modification of S1 by dibromobimane. We finally settled on a 60% yield of cross-linked S1. Because the modification occurs between the 50-kDa and the 20-kDa tryptic heavy chain fragments which have been postulated to be involved in the interaction of native S1 with actin, we have investigated the association of dibromobimane-treated S1 with actin, using chemical cross-linking of their rigor complex with 1-ethyl-3-[3-(dimethylamino)propyl] carbodiimide. The cross-linked species obtained were analyzed by polyacrylamide gel electrophoresis and compared with those known for unmodified S1. The carbodiimide-catalyzed linkage between actin and dibromobimane-modified S1 led to a singlet protein band migrating with an apparent molecular mass of 155 kDa, in contrast to the usual doublet bands of 175 kDa and 185 kDa produced with native S1. This result suggests that a change has occurred at the actin interface on the dibromobimane-treated S1 heavy chain. The covalent complex generated by carbodiimide cross-linking between actin and dibromobimane-modified S1 (27-kDa + 50-kDa + 20-kDa fragments) was submitted to chemical hydrolysis with hydroxylamine. The nature of the products identified is consistent with the conclusion that the internal freezing of the heavy chain structure by dibromobimane induces the loss of the ability to cross-linkage of the actin site on the 20-kDa domain but does not affect the conformation of the second site on the 50-kDa segment, which becomes the unique actin region cross-linkable by actin.  相似文献   

4.
K Konno 《Biochemistry》1987,26(12):3582-3589
We have prepared chymotryptically split actin that retains the characteristic properties of intact actin. Chymotryptic digestion of G-actin produces an intermediate 35-kilodalton (kDa) fragment and from this a final product of 33 kDa known as the C-terminal "core". These fragments remain attached to an N-terminal 10-kDa fragment. The 35-kDa-10-kDa complex is able to polymerize upon addition of KCl and MgCl2, like intact actin, whereas the 33-kDa-10-kDa complex is not. The 35-kDa-10-kDa complex is here termed "split actin". In the rigor state, split actin binds to myosin subfragment 1 (S-1) strongly, with the same stoichiometry as intact actin. In the rigor state, split actin forms a carbodiimide-induced cross-linked product with S-1; the cross-linking sites on the split actin and on S-1 were proved to be the N-terminal 10-kDa fragment of split actin and the 20-kDa domain of S-1. There was no cross-linking between the 50-kDa domain of S-1 and the 10 kDa of actin. Therefore, the structure of the split actin-S-1 complex differs somewhat from that of the complex with intact actin. The cross-linking of split actin to S-1 causes superactivation of S-1 ATPase to approximately the same extent as does cross-linking of intact actin, whereas non-cross-linked split actin activates S-1 ATPase to a lesser extent. The N-terminus of the 35-kDa fragment was found to be residue 45 (Val-45) by amino acid sequence analysis; so there is no residue missing in split actin.  相似文献   

5.
The structure of myosin subfragment 1 (S1) in the weakly attached complex with actin was studied at three specific sites, at the 50-kDa/20-kDa and 27-kDa/50-kDa junctions, and at the N-terminal region, using tryptic digestion as a structure-exploring tool. The structure of S1 at the vicinity of the 50-kDa/20-kDa junction is pH dependent in the weakly attached state because the tryptic cleavage at this site was fully protected by actin at pH 6.2, but the protection was only partial at pH 8.0. Since the actin protection is complete in rigor at both pH values, the results indicate that the structure of S1 at the 50-kDa/20-kDa junction differs in the two states at pH 8.0, but not at pH 6.2. Actin restores the ADP-suppressed tryptic cleavage after Lys213 at the 27-kDa/50-kDa junction in the strongly attached state, but not in the weakly attached state, which indicates structural difference between the two states at this site. ATP and ADP open a new site for tryptic cleavage in the N-terminal region of the S1 heavy chain between Arg23 and Ile24. Actin was found to suppress this cleavage in both weakly and strongly attached states, which shows that, in the vicinity of this site, the structure of S1 is similar in both states. The results indicate that the binding of S1 to actin induces localized changes in the S1 structure, and the extent of these changes is different in the various actin-S1 complexes.  相似文献   

6.
Earlier 1H-NMR experiments on the myosin subfragment-1 (S1) light chain isoenzymes from rabbit fast muscle, containing either the A1 or the A2 alkali light chains [S1(A1) or S1(A2)], have shown that the 41-residue N-terminal extension of A1, rich in proline, alanine and lysine residues, is freely mobile in solution but that this mobility is constrained in the acto-S1(A1) complex [Prince et al. (1981) Eur. J. Biochem. 121, 213-219]. It is now established that this N-terminal region of the A1-light chain interacts directly with the C-terminal region of actin in the acto-S1(A1) complex. This was shown by covalently labelling the Cys-374 residue of actin with a spin-label and observing the enhanced relaxation this paramagnetic centre induced in the 1H-NMR spectrum of S1(A1). In particular, the signal arising from the -N+(CH3)3 protons of alpha-N-trimethylalanine (Me3Ala) were monitored as this residue is uniquely sited at the N-terminus of the A1 light chain [Henry et al. (1982) FEBS Lett. 144, 11-15]. Experiments using complexes of actin with either the N-terminal 37-residue peptide of A1, S1(A1) or heavy meromyosin indicate that the N-terminal region of A1 is binding in a similar manner to actin in each case, with the N-terminal Me3Ala residue within 1.5 nm of the spin label introduced to Cys-374 of actin. A similar strategy was adopted to show that the Me3Ala residue can also be found close (less than 1.5 nm) to the fast-reacting SH1 thiol group on the S1 heavy chain. These data, together with published work, have been used to suggest a possible organisation for the polypeptide chains in the myosin head.  相似文献   

7.
We have determined the primary structure of the myosin heavy chain (MHC) of the striated adductor muscle of the scallop Aequipecten irradians by cloning and sequencing its cDNA. It is the first heavy chain sequence obtained in a directly Ca(2+)-regulated myosin. The 1938-amino acid sequence has an overall structure similar to other MHCs. The subfragment-1 region of the scallop MHC has a 59-62% sequence identity with sarcomeric and a 52-53% identity with nonsarcomeric (smooth and metazoan nonmuscle) MHCs. The heavy chain component of the regulatory domain (Kwon, H., Goodwin, E. B., Nyitray, L., Berliner, E., O'Neall-Hennessey, E., Melandri, F. D., and Szent-Gy?rgyi, A. G. (1990) Proc. Natl. Acad. Sci. U.S.A. 87, 4771-4775) starts at either Leu-755 or Val-760. Ca(2+)-sensitive Trp residues (Wells, C., Warriner, K. E., and Bagshaw, C. R. (1985) Biochem. J. 231, 31-38) are located near the C-terminal end of this segment (residues 818-827). More detailed sequence comparison with other MHCs reveals that the 50-kDa domain and the N-terminal two-thirds of the 20-kDa domain differ substantially between sarcomeric and nonsarcomeric myosins. In contrast, in the light chain binding region of the regulatory domain (residues 784-844) the scallop sequence shows greater homology with regulated myosins (smooth muscle, nonmuscle, and invertebrate striated muscles) than with unregulated ones (vertebrate skeletal and heart muscles). The N-terminal 25-kDa domain also contains several residues which are preserved only in regulated myosins. These results indicate that certain heavy chain sites might be critical for regulation. The rod has features typical of sarcomeric myosins. It is 52-60% and 30-33% homologous with sarcomeric and nonsarcomeric MHCs, respectively. A Ser-rich tailpiece (residues 1918-1938) is apparently nonhelical.  相似文献   

8.
The kinetics of actin-dependent MgATPase activity of skeletal muscle myosin subfragment 1 (S1) isoform containing the A1 essential light chain differ from those of the S1 isoform containing the A2 essential light chain. The differences are due to the presence of the extra N-terminal peptide comprising 42 amino acid residues in the A1 light chain. This peptide can interact with actin; heretofore, there have no been reports of the direct interaction between this peptide and the heavy chain of S1. Here, using the zero-length cross-linker 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) and S. aureus V8 protease, we show for the first time that the N-terminal part of the A1-light chain can interact with the 22-kDa fragment of the S1 heavy chain. No such interaction has been observed for the S1(A2) isoenzyme. Localization of residues which can possibly react with the cross-linker suggests that the interaction might involve the N-terminal residues of the A1 light chain and the converter region of the heavy chain.  相似文献   

9.
We reported in the preceding paper [Muno, D., et al. (1987) J. Biochem. 101, 661-669] that the dinitrophenyl group exclusively introduced to SH1 on the 20-kDa fragment of myosin subfragment 1 was cross-linked to the 50-kDa fragment by irradiation, and that limited trypsinolysis of the cross-linked S1 generated an 83-kDa peptide, a cross-linking product between the 20- and 50-kDa fragments. This paper will deal with the location of the cross-linked residue on the 50-kDa fragment. When the 83-kDa fragment labeled at SH2 with a fluorogenic SH reagent was subjected to bromocyanolysis, a main fluorescent band, which implied a cross-linked peptide, appeared in the position with an apparent molecular mass of 18.5-kDa on SDS-PAGE. On the other hand, another cross-linked peptide was obtained from a complete tryptic digest of a 83-kDa fragment rich fraction. Amino acid sequence analysis of the two cross-linked peptides revealed that the DNP moiety attached at SH1 was cross-linked with a residue in the segment of the heavy chain spanning the 485-493 region from the N-terminus of the heavy chain.  相似文献   

10.
T Hiratsuka 《Biochemistry》1987,26(11):3168-3173
When myosin subfragment 1 (S-1) reacts with the bifunctional reagents with cross-linking spans of 3-4.5 A, p-nitrophenyl iodoacetate and p-nitrophenyl bromoacetate, the 20-kilodalton (20-kDa) segment of the heavy chain is cross-linked to the 26-kDa segment via the reactive thiol SH2. The well-defined reactive lysyl residue Lys-83 of the 26-kDa segment was not involved in the cross-linking. The cross-linking was completely abolished by nucleotides. Taking into account the recent report that SH2 is cross-linked to a thiol of the 50-kDa segment of S-1 using a reagent with a cross-linking span of 2 A [Chaussepied, P., Mornet, D., & Kassab, R. (1986) Proc. Natl. Acad. Sci. U.S.A. 83, 2037-2041], present results suggest that SH2 of S-1 lies close to both the 26- and 50-kDa segments of the heavy chain. The data also encourage us to confirm our previous suggestion that the ATPase site of S-1 residues at or near the region where all three segments of 26, 50, and 20 kDa are contiguous [Hiratsuka, T. (1984) J. Biochem. (Tokyo) 96, 269-272; Hiratsuka, T. (1985) J. Biochem. (Tokyo) 97, 71-78].  相似文献   

11.
The actin-dependent ATPase activity of myosin is retained in the separated heads (S1) which contain the NH2-terminal 95-kDa heavy chain fragment and one or two light chains. The S1 heavy chain can be degraded further by limited trypsin treatment into characteristic 25-, 50-, and 20-kDa peptides, in this order from the NH2-terminal end. The 20-kDa peptide contains an actin-binding site and SH1 and SH2, two thiols whose modification dramatically affects ATPase activity. By treating myosin filaments with trypsin at 4 degrees C in the presence of 2 mM MgCl2, we have now obtained preferential cleavage at the 50-20-kDa heavy chain site without any cleavage at the head-rod junction and hinge region in the rod. Incubation of these trypsinized filaments at 37 degrees C in the presence of MgATP released a new S1 fraction which lacked the COOH-terminal 20-kDa heavy chain peptide region. This fraction, termed S1'(75K), has more than 50% of the actin-activated Mg2+-ATPase activity of S1 and the characteristic Ca2+-ATPase and K+-EDTA ATPase activities of myosin. These results show that SH1 and SH2 are not essential for ATPase activity and that binding of actin to the 20-kDa region is not essential for the enhancement of the Mg2+-ATPase activity.  相似文献   

12.
The function of the src-homology 3 (SH3) domain in class II myosins, a distinct beta-barrel structure, remains unknown. Here, we provide evidence, using electron cryomicroscopy, in conjunction with light-scattering, fluorescence and kinetic analyses, that the SH3 domain facilitates the binding of the N-terminal extension of the essential light chain isoform (ELC-1) to actin. The 41 residue extension contains four conserved lysine residues followed by a repeating sequence of seven Pro/Ala residues. It is widely believed that the highly charged region interacts with actin, while the Pro/Ala-rich sequence forms a rigid tether that bridges the approximately 9 nm distance between the myosin lever arm and the thin filament. In order to localize the N terminus of ELC in the actomyosin complex, an engineered Cys was reacted with undecagold-maleimide, and the labeled ELC was exchanged into myosin subfragment-1 (S1). Electron cryomicroscopy of S1-bound actin filaments, together with computer-based docking of the skeletal S1 crystal structure into 3D reconstructions, showed a well-defined peak for the gold cluster near the SH3 domain. Given that SH3 domains are known to bind proline-rich ligands, we suggest that the N-terminal extension of ELC interacts with actin and modulates myosin kinetics by binding to the SH3 domain during the ATPase cycle.  相似文献   

13.
Force generation in muscle results from binding of myosin to F-actin. ATP binding to myosin provides energy to dissociate actomyosin complex while the hydrolysis of ATP is needed for re-binding of myosin to F-actin. At the end of each cycle myosin and actin form a tight complex with a substantial interface area. We investigated the dynamics of formation of actomyosin interface in presence and absence of nucleotides by quenched flow cross-linking technique. We showed previously that myosin head (subfragment 1, S1) directly interacts with at least two monomers in the actin filament. The quenched flow cross-linking experiments revealed that the initial contact (in presence or absence of nucleotides) occurs between loop 635-647 of S1 and 1-12 N-terminal residues of one actin and, then, the second contact forms between loop 567-574 of S1 and the N terminus of the second actin. The distance between these two loops in S1 corresponds to the distance between N termini of two actins in the same strand (53 A) but is smaller than that between two actins from the different strands (102 A). The formation of the actomyosin complex proceeds in ordered sequence: S1 initially binds to one actin then binds with the second actin located in the same strand but probably closer to the barbed end of F-actin. The presence of nucleotides slows down the interaction of S1 with the second actin, which correlates with recently proposed cleft movement in a 50 kDa domain of S1. The sequential mechanism of formation of actomyosin interface starting from one end and developing towards the barbed end might be involved in force generation and directional movement in actin-myosin system.  相似文献   

14.
Acanthamoeba myosin IC has a single 129-kDa heavy chain and a single 17-kDa light chain. The heavy chain comprises a 75-kDa catalytic head domain with an ATP-sensitive F-actin-binding site, a 3-kDa neck domain, which binds a single 17-kDa light chain, and a 50-kDa tail domain, which binds F-actin in the presence or absence of ATP. The actin-activated MgATPase activity of myosin IC exhibits triphasic actin dependence, apparently as a consequence of the two actin-binding sites, and is regulated by phosphorylation of Ser-329 in the head. The 50-kDa tail consists of a basic domain, a glycine/proline/alanine-rich (GPA) domain, and a Src homology 3 (SH3) domain, often referred to as tail homology (TH)-1, -2, and -3 domains, respectively. The SH3 domain divides the TH-3 domain into GPA-1 and GPA-2. To define the functions of the tail domains more precisely, we determined the properties of expressed wild type and six mutant myosins, an SH3 deletion mutant and five mutants truncated at the C terminus of the SH3, GPA-2, TH-1, neck and head domains, respectively. We found that both the TH-1 and GPA-2 domains bind F-actin in the presence of ATP. Only the mutants that retained an actin-binding site in the tail exhibited triphasic actin-dependent MgATPase activity, in agreement with the F-actin-cross-linking model, but truncation reduced the MgATPase activity at both low and high actin concentrations. Deletion of the SH3 domain had no effect. Also, none of the tail domains, including the SH3 domain, affected either the K(m) or V(max) for the phosphorylation of Ser-329 by myosin I heavy chain kinase.  相似文献   

15.
The amino acid sequence of the 50-kDa fragment that is released by limited tryptic digestion of the head portion of rabbit skeletal muscle myosin was determined by analysis and alignment of sets of peptides generated by digestion of the fragment at arginine or methionine residues. This fragment contains residues 205-636 of the myosin heavy chain; among the residues of particular interest in this fragment are N epsilon-trimethyllysine, one of four methyl-amino acids in myosin, and Ser-324, which is photoaffinity labeled by an ATP analogue (Mahmood, R., Elzinga, M., and Yount, R. G. (1989) Biochemistry 28, 3989-3995). Combination of this sequence with those of the 23- and 20-kDa fragments yields an 809-residue sequence that constitutes most of the heavy chain of chymotryptic S-1 of this myosin.  相似文献   

16.
Tryptic digestion patterns reveal a close similarity of the substructure of frog subfragment-1 (S1) to that established for rabbit S1. The 97-kDa heavy chain of chymotryptic S1 of frog myosin is preferentially cleaved into three fragments with apparent molecular masses of 29 kDa, 49 kDa and 20 kDa. These fragments correspond to the 27-kDa, 50-kDa and 20-kDa fragments of rabbit S1, respectively; this is indicated by the sequence of their appearance during digestion, by the suppression by actin of the generation of the 49-kDa and 20-kDa peptides, and by a nucleotide-promoted cleavage of the 29-kDa peptide to a 24-kDa fragment and the 49-kDa peptide to a 44-kDa fragment, analogous to the nucleotide-promoted cleavage of the 27-kDa and 50-kDa fragments of rabbit S1 to the 22-kDa and 45-kDa peptides. The same changes in the digestion patterns as those produced by the presence of nucleotide (ATP or its beta,gamma-imido analog AdoP P[NH]P) at 25 degrees C were observed when the digestion was carried out at 0 degrees C in the absence of nucleotide. The low-temperature-induced changes were particularly well seen in the preparations from frog myosin. The presence of ATP or AdoP P[NH]P at 0 degrees C enhanced, whereas the complex formation with actin prevented, the low-temperature-induced changes. The results are consistent with there being two fundamental conformational states of the myosin head in an equilibrium that is dependent on the temperature, the nucleotide bound at the active site, and the presence or absence of actin.  相似文献   

17.
B R DasGupta  J Foley 《Biochimie》1989,71(11-12):1193-1200
The flaccid paralysis in the neuromuscular disease botulism appears to depend on the coordinated roles of the approximately 50 kDa light and approximately 100 kDa heavy chain subunits of the approximately 150 kDa neurotoxic protein produced by Clostridium botulinum (J. Biol. Chem. (1987) 262, 2660 and Eur. J. Biochem. (1988) 177, 683). We observed that the light chain after separation from its conjugate heavy chain, in the presence of dithiothreitol and 2 M urea, begins to split into approximately 28 and approximately 18 kDa fragments. The other subunit-the approximately 100 kDa heavy chain following its isolation-and the parent approximately 150 kDa dichain neurotoxin do not break down under comparable conditions. This cleavage was examined in the neurotoxin serotypes A and E. The cleavage does not appear to be due to a protease. Partial amino acid sequences established that: i) the approximately 28-kDa and approximately 18-kDa fragments comprise the N- and C-terminal regions of the light chain, respectively; ii) the light chain of the neurotoxin serotypes A and E break down at precise peptide bonds; iii) the peptide bonds cleaved in serotypes A and E are five residues apart; and iv) the portions of the approximately 18 kDa fragments of serotype A and E neurotoxin sequenced so far are highly homologous to the corresponding region of tetanus neurotoxin produced by Clostridium tetani. The partial N-terminal sequence of the approximately 28 kDa fragment matches with the N-terminal sequence of the intact L chain. The 47 residues of the approximately 18-kDa fragment of type A sequenced from its N-terminal are: -Y.E.M.S.G.L.E.V.S.F.E.E.L.R.T.F.G.G.H.D.A.K.F.I.D.S.L.Q.E.N.E.F.R.L.Y.Y .Y. N.K.F.K. D.I.A.S.T.L.-. These align with those of tetanus neurotoxin beginning at its residue #259 (Tyr); the 18 underlined residues of the above 47 residues (i.e. 38%) are identical in positions between the two proteins. The 41 residues sequenced from the approximately 18 kDa fragment of type E botulinum neurotoxin are: -K.G.I.N.I.E.E.F.L. T.F.G.N.N.D.L.N.I.I.T.V.A.Q.Y.N.D.I.Y.T.N.L.L.N.D.Y.R. K.I.A.X.K. L.-.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The heavy chain fragments generated by restricted proteolysis of the smooth chicken gizzard myosin subfragment-1 (S-1) with trypsin, Staphylococcus aureus V8 protease, and chymotrypsin were isolated and submitted to partial amino acid sequencing. The comparison between the smooth and striated muscle myosin sequences permitted the unambiguous structural characterization of the two protease-vulnerable segments joining the three putative domain-like regions of the smooth head heavy chain. The smooth carboxyl-terminal connector is a serine-rich region located around positions 632-640 of the rabbit skeletal sequence and would represent the "A" site that is conformationally sensitive to the myosin 10 S-6 transition and to its interaction with actin (Ikebe, M., and Hartshorne, D. J. (1986) Biochemistry 25, 6177-6185). A third site which undergoes a nucleotide-dependent chymotryptic cleavage which inactivates the Mg2+-ATPase (Okamoto, Y., and Sekine, T. (1981) J. Biochem. (Tokyo) 90, 833-842, 843-849) was identified at Trp-31/Ser-32. It is vicinal to Lys-34 that is monomethylated in the skeletal heavy chain but not at all in the smooth sequence. However, the two trimethyl lysine residues present in the skeletal sequence are conserved in the same regions of the smooth S-1 and may play a general functional role in myosin. The smooth central 50-kDa segment could be selectively destroyed by a mild tryptic digestion in the absence of any unfolding agent, with a concomitant inhibition of the ATPase activities. This feature is in line with the proposed domain structure of the S-1 heavy chain and also suggests a relationship between the specific biochemical properties of the smooth S-1 and the particular conformation of its 50-kDa region.  相似文献   

19.
K Sutoh  R C Lu 《Biochemistry》1987,26(14):4511-4516
The thiol-specific photoactivatable reagent 4-(2-iodoacetamido)benzophenone (BPIA) can be selectively incorporated into the SH-1 of myosin subfragment 1 (S1), and upon photolysis an intramolecular cross-link is formed between SH-1 and the N-terminal 25-kDa region of S1. If a Mg2+-nucleotide is present during photolysis, cross-links can be formed either with the 25-kDa or with the central 50-kDa region [Lu, R. C., Moo, L., & Wong, A. G. (1986) Proc. Natl. Acad. Sci. U.S.A. 83, 6392-6396]. Heavy chains with these two types of intramolecular cross-links and un-cross-linked heavy chain have different mobility on sodium dodecyl sulfate (NaDodSO4)-polyacrylamide gels and therefore can be purified electrophoretically. Each type of heavy chain was cleaved with Staphylococcus aureus protease, chymotrypsin, or lysyl endopeptidase. The cleavage points were determined on the basis of the molecular weights of weights of peptides containing the N-terminus, which was identified with the use of an antibody. Locations of the cross-links were deduced by comparing the peptide maps of cross-linked and un-cross-linked heavy chains. The results indicate that the segment located about 12-16 kDa from the N-terminus of the heavy chain can be cross-linked to SH-1 via BPIA independently of the presence of a nucleotide, whereas the segment located 57-60 kDa from the N-terminus can be cross-linked to SH-1 only in the presence of a Mg2+-nucleotide. With use of the avidin-biotin system, it has been shown that SH-1 is located 13 nm from the head/rod junction [Sutoh, K., Yamamoto, K., & Wakabayashi, T. (1984) J. Mol. Biol. 178, 323-339]. Since BPIA spans less than 1 nm, our results show that two regions, separated by approximately 400 amino acid residues and located in the 25- and 50-kDa domains of S1, respectively, are also part of the head structure about 12-14 nm from the head/rod junction.  相似文献   

20.
M Dan-Goor  A Muhlrad 《Biochemistry》1991,30(2):400-405
It has been reported recently that the isolated and renatured 23-kDa N-terminal fragment of rabbit skeletal muscle myosin binds tightly to F-actin in an ATP-dependent manner [Muhlrad, A. (1989) Biochemistry 28, 4002-4010]. The binding to actin is of electrostatic nature and may involve a positively charged cluster of residues on the 23-kDa fragment stretching from Arg-143 to Arg-147. An octapeptide containing this positive cluster was synthesized and coupled to BSA through a cysteine residue added to the N-terminus of the peptide. Polyclonal antibody was raised against the BSA-coupled peptide in rabbits which recognized the N-terminal 23-kDa fragment of rabbit skeletal myosin subfragment 1, and a peptide comprised of residues 122-204 of the 23K fragment in Western blots. The purified antibody [IgG and F(ab)] inhibited the actin-activated ATPase activity of S1 without affecting its Mg2(+)- and K+(EDTA)-modulated ATPase activity. Both IgG and F(ab) decreased the binding of S1 to F-actin in a sedimentation assay, and actin inhibited the binding of both IgG and F(ab) to S1 in a competitive binding assay. The cysteine thiol of the synthetic octapeptide was labeled by the fluorescent thiol reagent monobromobimane, and the labeled peptide was found to bind to actin in a sedimentation assay. The results support the possibility that the positively charged Arg-143 to Arg-147 stretch of residues on the 23-kDa fragment participates in actin binding of myosin and may represent an essential constituent of the actin-S1 interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号