首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aim:  To study the adhesion capability of seven strains of Listeria monocytogenes to polystyrene and stainless steel surfaces after cultivation at various NaCl concentrations.
Methods and Results:  Determination of growth limits indicated that all seven strains were able to grow in up to 11% NaCl in rain heart infusion and 3 g l−1 yeast extract–glucose at 20°C, but no growth was detected at 15% NaCl. Adhesion of L. monocytogenes was estimated after 4-h incubation at 20°C in 96-well microtitre plates. Statistical results revealed no significant difference between adhesion to polystyrene and stainless steel although surface properties were different. Adhesion between 0% and 6% NaCl was not different, whereas adhesion at 11% NaCl was significantly lower. This discrepancy in adhesion was correlated with the down-regulation of flagella at 11% NaCl.
Conclusions:  Only high salinity levels, close to nongrowth conditions, repressed the expression of flagella, and consequently, decreased the adhesion capability of L. monocytogenes .
Significance and Impact of the Study:  Adhesion of L. monocytogenes to inert surfaces depends on environmental conditions that affect flagellum expression. High salinity concentrations would delay biofilm formation.  相似文献   

2.
Aims:  To examine the rate and the extent of spore formation in Anoxybacillus flavithermus biofilms and to test the effect of one key variable – temperature – on spore formation.
Methods and Results:  A continuous flow laboratory reactor was used to grow biofilms of the typical dairy thermophile A. flavithermus (strain CM) in skim milk. The reactor was inoculated with either a washed culture or a spore suspension of A. flavithermus CM, and was run over an 8·5 h period at three different temperatures of 48, 55 and 60°C. Change in impedance was used to determine the cell numbers in the milk and on the surface of the stainless steel reactor tubes. The biofilm developed at all three temperatures within 6–8 h. Spores formed at 55 and 60°C and amounted to approx. 10–50% of the biofilm. No spores formed at 48°C.
Conclusions:  The results suggest that both biofilm formation and spore formation of A. flavithermus can occur very rapidly and simultaneously. In addition, temperature variation has a considerable effect on the formation of spores.
Significance and Impact of the Study:  This information will provide direction for developing improved ways in which to manipulate conditions in milk powder manufacturing plants to control biofilms and spores of A. flavithermus .  相似文献   

3.
Aims:  To investigate the interactions of Salmonella enterica with abiotic and plant surfaces and their effect on the tolerance of the pathogen to various stressors.
Methods and Results:  Salmonella strains were tested for their ability to form biofilm in various growth media using a polystyrene plate model. Strong biofilm producers were found to attach better to intact Romaine lettuce leaf tissue compared to weak producers. Confocal microscopy and viable count studies revealed preferential attachment of Salmonella to cut-regions of the leaf after 2 h at 25°C, but not for 18 h at 4°C. Storage of intact lettuce pieces contaminated with Salmonella for 9 days at 4°C resulted only in small changes in population size. Exposure of lettuce-associated Salmonella cells to acidic conditions (pH 3·0) revealed increased tolerance of the attached vs planktonic bacteria.
Conclusions:  Biofilm formation on polystyrene may provide a suitable model to predict the initial interaction of Salmonella with cut Romaine lettuce leaves. Association of the pathogen with lettuce leaves facilitates its persistence during storage and enhances its acid tolerance.
Significance and Impact of the Study:  Understanding the interactions between foodborne pathogens and lettuce might be useful in developing new approaches to prevent fresh produce-associated outbreaks.  相似文献   

4.
Listeria monocytogenes has the ability to form biofilms on food-processing surfaces, potentially leading to food product contamination. The objective of this research was to standardize a polyvinyl chloride (PVC) microtiter plate assay to compare the ability of L. monocytogenes strains to form biofilms. A total of 31 coded L. monocytogenes strains were grown in defined medium (modified Welshimer's broth) at 32 degrees C for 20 and 40 h in PVC microtiter plate wells. Biofilm formation was indirectly assessed by staining with 1% crystal violet and measuring crystal violet absorbance, using destaining solution. Cellular growth rates and final cell densities did not correlate with biofilm formation, indicating that differences in biofilm formation under the same environmental conditions were not due to growth rate differences. The mean biofilm production of lineage I strains was significantly greater than that observed for lineage II and lineage III strains. The results from the standardized microtiter plate biofilm assay were also compared to biofilm formation on PVC and stainless steel as assayed by quantitative epifluorescence microscopy. Results showed similar trends for the microscopic and microtiter plate assays, indicating that the PVC microtiter plate assay can be used as a rapid, simple method to screen for differences in biofilm production between strains or growth conditions prior to performing labor-intensive microscopic analyses.  相似文献   

5.
Aims:  Study the effect of redox potential and pH of the heating media on Listeria monocytogenes heat resistance and model its action at fixed temperature.
Methods and Results:  The heat resistance of Listeria monocytogenes at 58°C was studied in Brain Heart Infusion broth as a function of pH (from 5·0 to 7·0) and redox potential ( E h7). The media redox was adjusted with nitrogen gas, potassium ferricyanide and dithiothreitol. A Weibull model was used to fit survival curves. The heat resistance parameter (δ58°C) was estimated from each inactivation curve. A major effect of pH was observed. Bigelow model was used to describe the effect of redox potential on the apparent L. monocytogenes heat resistance. The highest δ58°C values have been obtained at pH 7·0 and oxidizing conditions.
Conclusions:  The developed model indicates that the E h7 has a significant effect and varied depending on the pH of the heating media. The z redox values, calculated from δ58°C allowed quantifying the influence of heating media redox potential on L. monocytogenes thermal inactivation.
Significance and Impact of the Study:  The obtained model shows the action of redox potential on L. monocytogenes thermal destruction and might be useful to take into account in food thermal processes.  相似文献   

6.
Aims:  To determine whether isolates of Listeria monocytogenes differ in their ability to adsorb and form biofilms on a food-grade stainless steel surface.
Methods and Results:  Strains were assessed for their ability to adsorb to a test surface over a short time period. Although some differences in numbers of bound cells were found among the strains, there were no correlations between the degree of adsorption and either the serotype or source of the strain. The ability of each strain to form a biofilm when grown with the test surface was also assessed. With the exception of a single strain, all strains adhered as single cells and did not form biofilms. Significant differences in adherence levels were found among strains. Strains demonstrating enhanced attachment produced extracellular fibrils, whereas those which adhered poorly did not. A single strain formed a biofilm consisting of adhered single cells and aggregates of cells.
Conclusions:  Significant differences were found in the ability of various L. monocytogenes strains to attach to a test surface. In monoculture, the majority of strains did not form biofilms.
Significance and Impact of the Study:  Differences in attachment and biofilm formation among strains provide a basis to study these characteristics in L. monocytogenes .  相似文献   

7.
Aims:  To determine the reducing capacity of Listeria monocytogenes and to highlight the effect of redox potential on its growth parameters.
Methods and Results:  The reducing capacity of L. monocytogenes was monitored in Brain Heart Infusion Broth media at different initial redox potential (Eh) and pH at 37°C. The effect of Eh obtained by gas flushing (air, N2 and N2-H2) or by adding potassium ferricyanide and dithiotreitol in concentration from 1 to 10 mmol l−1on L. monocytogenes growth parameters at pH 6·0, 7·0 and 8·0 was investigated. A total change of 539 mV (±44 mV) from an initial redox value of +330 ± 8 mV to a more negative potential in redox curves was observed resulting from L. monocytogenes growth at pH 7·0 at 37°C. A significant influence of pH and redox potential on L. monocytogenes lag phase of growth was shown ( P  < 0·05).
Conclusions:  Listeria monocytogenes exhibited longer lag phase in reducing conditions and at pH 6·0. The method used to modify the redox potential was shown to have no effect on growth parameters at pH 7·0.
Significance and Impact of the Study:  The provided information on the extending lag time and the possible delayed growth of this major pathogen in reducing conditions might be useful for its control in foods.  相似文献   

8.
Aims:  The hypothesis that surrogate planktonic pathogens ( Bacillus cereus and polystyrene microspheres) could be integrated in biofilms and protected from decontamination was tested.
Methods and Results:  Pseudomonas fluorescens biofilms were grown on polyvinyl chloride coupons in annular reactors under low nutrient conditions. After biofilm growth, B. cereus spores and polystyrene microspheres (an abiotic control) were introduced separately. Shear stress at the biofilm surface was varied between 0·15 and 1·5 N m−2. The amount of surrogate pathogens introduced ranged from approximately 105 CFU ml−1 to 1010 spheres ml−1. The quantity of surrogate pathogens integrated in the biofilm was proportional to the amount introduced. In 14 of the 16 cases, 0·4–3·0% of the spores or spheres introduced were measured in the biofilms. The other two cases had 10% and 21% of the spores detected. Data suggested that the spores germinated in the system. The amount of surrogate pathogens detected in the biofilms was higher in the mid-shear range. Chlorine treatment reduced the quantity of both surrogate pathogens and biofilm organisms. In one experiment, the biofilms and B. cereus recovered when the chlorine treatment was terminated.
Conclusions:  Planktonic surrogate pathogens can be integrated in biofilms and protected from chlorination decontamination.
Significance and Impact of the Study:  This knowledge assists in understanding the impact of biofilms on harbouring potential pathogens in drinking-water systems and protecting the pathogens from decontamination.  相似文献   

9.
1.  Thermal acclimation is one of the basic strategies by which organisms cope with thermal heterogeneity of the environment. Under predictable variation in environmental temperatures, theory predicts that selection favours acclimation of thermal performance curves over fixed phenotypes.
2.  We examined the influence of diel fluctuations in developmental temperatures on the thermal sensitivity of the maximal swimming capacity in larvae of the alpine newt, Triturus alpestris .
3.  We incubated newt eggs under three thermal regimes with varying daily amplitudes (1, 5 and 9 °C) and similar means (17·6–17·9 °C), and accordingly we measured the swimming speed of hatched larvae at three experimental temperatures (12, 17 and 22 °C), which they would normally experience in their natural habitat.
4.  Embryonic development under low and middle temperature fluctuations produced larvae with similar swimming speeds across experimental temperatures. In contrast, the most fluctuating regime induced development of phenotypes, which at 12 °C swam faster than larvae developed under moderate diel fluctuations.
5.  Our results provide evidence that diel temperature fluctuations induce acclimation of thermal dependence of locomotor performance. In ectotherms experiencing diel cycles in environmental temperatures, this plastic response may act as an important pacemaker in the evolution of thermal sensitivity.  相似文献   

10.
AIMS: To determine the differential adherence capabilities at three different temperatures of Listeria monocytogenes Scott A, a clinical food pathogen, and L. monocytogenes FM876, a persistent strain from a milk-processing environment, to stainless steel. METHODS AND RESULTS: Differential adherence was investigated by submerging stainless steel coupons in both 48-h Listeria monocultures and mixed cultures additionally containing Staphylococcus xylosus DP5H and Pseudomonas fragi ATCC 4973. Immunofluorescent microscopy and image analysis techniques were utilized to identify and quantify the L. monocytogenes cells adhering to the steel at 4 degrees C, 18 degrees C and 30 degrees C. The monoculture biofilms consistently contained greater L. monocytogenes numbers than the multispecies biofilms, with the persistent strain FM876 showing significantly greater adherence than strain Scott A. Optimum adherence occurred at 18 degrees C in monoculture biofilms. CONCLUSION: L. monocytogenes strains exhibit differential, temperature-dependent, adherence to stainless steel. SIGNIFICANCE AND IMPACT OF THE STUDY: These results demonstrate temperature dependent biofilm adherence and support previous findings that persistent strains exhibit increased adherence capability.  相似文献   

11.
Aim:  To determine the critical component(s) of skim milk for biofilm formation of Cronobacter species.
Methods and Results:  Biofilm forming ability of 72 Cronobacter strains in skim milk preparation was assayed by crystal violet staining. The results revealed that whey protein and casein are more important determinants of skim milk for biofilm formation than lactose, although there was a wide variation in biofilm forming ability. Biofilm structure and capsular material of six strains exhibiting different biofilm forming ability was investigated via electron microscopes. Scanning electron microscopy showed visually that while the strong biofilm formers (E27B, FSM 30 and 2·82) resulted in almost complete coagulation of skim milk, the weak biofilm formers (55, FSM 290 and 2·84) caused less coagulation. No capsule was clearly delineated in transmission electron micrographs of either strong or weak biofilm formers.
Conclusion:  These results indicate that, for biofilm formation of Cronobacter species in skim milk, nitrogen source is probably a more important determinant than carbohydrate, and that strong biofilm formers are responsible for substantial coagulation of skim milk.
Significance and Impact of the Study:  This study provides information for better understanding of the underlying mechanisms by which Cronobacter species form biofilm in infant formula milk.  相似文献   

12.
In clinical staphylococci, the presence of the ica genes and biofilm formation are considered important for virulence. Biofilm formation may also be of importance for survival and virulence in food-related staphylococci. In the present work, staphylococci from the food industry were found to differ greatly in their abilities to form biofilms on polystyrene. A total of 7 and 21 of 144 food-related strains were found to be strong and weak biofilm formers, respectively. Glucose and sodium chloride stimulated biofilm formation. The biofilm-forming strains belonged to nine different coagulase-negative species of Staphylococcus. The icaA gene of the intercellular adhesion locus was detected by Southern blotting and hybridization in 38 of 67 food-related strains tested. The presence of icaA was positively correlated with strong biofilm formation. The icaA gene was partly sequenced for 22 food-related strains from nine different species of Staphylococcus, and their icaA genes were found to have DNA similarities to previously sequenced icaA genes of 69 to 100%. Northern blot analysis indicated that the expression of the ica genes was higher in strong biofilm formers than that seen with strains not forming biofilms. Biofilm formation on polystyrene was positively correlated with biofilm formation on stainless steel and with resistance to quaternary ammonium compounds, a group of disinfectants.  相似文献   

13.
Aims:  To investigate the effect of the biosurfactants surfactin and rhamnolipids on the adhesion of the food pathogens Listeria monocytogenes , Enterobacter sakazakii and Salmonella Enteritidis to stainless steel and polypropylene surfaces.
Methods and Results:  Quantification of bacterial adhesion was performed using the crystal violet staining technique. Preconditioning of surfaces with surfactin caused a reduction on the number of adhered cells of Ent. sakazakii and L. monocytogenes on stainless steel. The most significant result was obtained with L. monocytogenes where number of adhered cells was reduced by 102 CFU cm−2. On polypropylene, surfactin showed a significant decrease on the adhesion of all strains. The adsorption of surfactin on polystyrene also reduces the adhesion of L. monocytogenes and Salm. Enteritidis growing cells. For short contact periods using nongrowing cells or longer contact periods with growing cells, surfactin was able to delay bacterial adhesion.
Conclusions:  The prior adsorption of surfactin to solid surfaces contributes on reducing colonization of the pathogenic bacteria.
Significance and Impact of the Study:  This is the first work investigating the effect of surfactin on the adhesion of the food pathogens L. monocytogenes , Ent. sakazakii and Salm. Enteritidis to polypropylene and stainless steel surfaces.  相似文献   

14.
Aims:  Screening and partial characterization of a bacteriocin produced by Pediococcus pentosaceus K23-2 isolated from Kimchi, a traditional Korean fermented vegetable.
Methods and Results:  A total of 1000 lactic acid bacteria were isolated from various Kimchi samples and screened for the production of bacteriocin. Pediocin K23-2, a bacteriocin produced by the Pediococcus pentosaceus K23-2 strain, showed strong inhibitory activity against Listeria monocytogenes . The bacteriocin activity remained unchanged after 15 min of heat treatment at 121°C or exposure to organic solvents; however, it diminished after treatment with proteolytic enzymes. The bacteriocin was maximally produced at 37°C, when the pH of the culture broth was maintained at 5·0 during the fermentation, although the optimum pH for growth was 7·0. The molecular weight of the bacteriocin was about 5 kDa according to a tricine SDS-PAGE analysis.
Conclusions:  Pediococcus pentosaceus K23-2 isolated from Kimchi produces a bacteriocin, which shares similar characteristics to the Class IIa bacteriocins. The bacteriocin is heat stable and shows wide antimicrobial activity against Gram-positive bacteria, especially L. monocytogenes .
Significance and Impact of the Study:  Pediocin K23-2 and pediocin K23-2-producing P. pentosaceus K23-2 could potentially be used in the food and feed industries as natural biopreservatives, and for probiotic application to humans or livestock.  相似文献   

15.
Listeria monocytogenes has the ability to form biofilms on food-processing surfaces, potentially leading to food product contamination. The objective of this research was to standardize a polyvinyl chloride (PVC) microtiter plate assay to compare the ability of L. monocytogenes strains to form biofilms. A total of 31 coded L. monocytogenes strains were grown in defined medium (modified Welshimer's broth) at 32°C for 20 and 40 h in PVC microtiter plate wells. Biofilm formation was indirectly assessed by staining with 1% crystal violet and measuring crystal violet absorbance, using destaining solution. Cellular growth rates and final cell densities did not correlate with biofilm formation, indicating that differences in biofilm formation under the same environmental conditions were not due to growth rate differences. The mean biofilm production of lineage I strains was significantly greater than that observed for lineage II and lineage III strains. The results from the standardized microtiter plate biofilm assay were also compared to biofilm formation on PVC and stainless steel as assayed by quantitative epifluorescence microscopy. Results showed similar trends for the microscopic and microtiter plate assays, indicating that the PVC microtiter plate assay can be used as a rapid, simple method to screen for differences in biofilm production between strains or growth conditions prior to performing labor-intensive microscopic analyses.  相似文献   

16.
Aim:  To determine D - and z -values of Cronobacter species ( Enterobacter sakazakii ) in different reconstituted milk and special feeding formula and the effect of reconstitution of powdered milk and special feeding formula with hot water on the survival of the micro-organism.
Methods and Results:  Five Cronobacter species (four C. sakazakii isolates and C. muytjensii ) were heated in reconstituted milk or feeding formula pre-equilibrated at 52–58°C for various times or mixed with powdered milk or feeding formula prior to reconstitution with water at 60–100°C. The D -values of Cronobacter at 52–58°C were significantly higher in whole milk (22·10–0·68 min) than in low fat (15·87–0·62 min) or skim milk (15·30–0·51 min) and significantly higher in lactose-free formula (19·57–0·66 min) than in soy protein formula (17·22–0·63 min). The z -values of Cronobacter in reconstituted milk or feeding formula ranged from 4·01°C to 4·39°C. Water heated to ≥70°C and added to powdered milk and formula resulted in a > 4 log10 reduction of Cronobacter .
Conclusions:  The heat resistance of Cronobacter should not allow the survival of the pathogen during normal pasteurization treatment. The use of hot water (≥70°C) during reconstitution appears to be an effective means to reduce the risk of Cronobacter in these products.
Significance and Impact of the Study:  This study supports existing data available to regulatory agencies and milk producers that recommended heat treatments are sufficient to substantially reduce risk from Cronobacter which may be present in these products.  相似文献   

17.
Aims:  To evaluate the antimicrobial activities of aspirin, EDTA and an aspirin-EDTA (A-EDTA) combination against Pseudomonas aeruginosa , Escherichia coli and Candida albicans in planktonic and biofilm cultures.
Methods and Results:  Minimal inhibitory concentrations (MIC) and minimal biocidal concentrations (MBC) were determined using twofold broth microdilution and viable counting methods, respectively. Aspirin's recorded MIC values ranged from 1·2 to 2·7 mg ml−1. Checkerboard assay demonstrated a synergism in antimicrobial activity upon combination. Aspirin's minimal biofilm eradication concentration values (MBEC) against the established biofilms ranged between 1·35 and 3·83 mg ml−1. A complete eradication of bacterial biofilms was achieved after a 4-h treatment with the A-EDTA combination.
Conclusion:  Both aspirin and EDTA possess broad-spectrum antimicrobial activity for both planktonic and biofilm cultures. Aspirin used at the MBEC for 24 h was successful in eradicating P. aeruginosa , E. coli and C. albicans biofilms established on abiotic surfaces. Moreover, the exposure to the A-EDTA combination (4 h) effected complete bacterial biofilm eradication.
Significance and Impact of the Study:  There is a continuous need for the discovery of new antimicrobial agents. Aspirin and EDTA are 'nonantibiotic drugs', the combination of which can be used successfully to treat and eradicate biofilms established on abiotic surfaces.  相似文献   

18.
Survival, recoverability and sublethal injury of two strains of Listeria monocytogenes , Scott A and an environmental strain KM, on exposure to sea water at 12·8 or 20·8 °C was determined using in situ diffusion chambers. Plate counts were used to assess recoverability and injury while 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) reduction was used to determine respiratory activity. T90 values (times for 10-fold decreases in numbers of recoverable cells) on non-selective medium (trypticase soya agar with 0·6% yeast extract) at 12·8 and 20·8 °C were 61·7 and 69·2 h for L. monocytogenes Scott A, and 103·0 and 67·0 h for L. monocytogenes KM, respectively. On selective medium (Oxford agar), T90 values at 12·8 and 20·8 °C were 60·6 and 56·9 h for L. monocytogenes Scott A, and 83·0 and 65·9 h for L. monocytogenes KM, respectively. With Scott A, the percentage of sublethally injured cells at 12·8 and 20·8 °C was 1·7 and 17·7%, respectively, while for KM the values were 19·0 and 1·6%, respectively. The fraction of cells reducing CTC but which were not recoverable on plating progressively increased on exposure to sea water. Listeria monocytogenes KM challenged at 58 °C showed an apparent increase in heat resistance after exposure to sea water at 20·8 °C for 7 d ( D 58= 2·64 min) compared with before exposure ( D 58= 1·24). This increase in thermal resistance was not apparent at temperatures greater than 63 °C, and analysis of the best-fit regression lines fitted to the thermal data obtained from the two cell populations indicated that their thermal resistance was not significantly different ( P > 0·05) over the temperature range tested (58–62 °C).  相似文献   

19.
Aims:  Investigate the effect of detergent treatment on susceptibility of attached Escherichia coli and Listeria monocytogenes to subsequent disinfectant treatment.
Methods and Results:  Plate counts show that E. coli attached to stainless steel surfaces became significantly more susceptible to benzalkonium chloride (BAC) after treatment with sodium alkyl sulfate (SAS) and fatty alcohol ethoxylate (FAE). No change in susceptibility was observed with Sodium dodecyl sulfate (SDS). L. monocytogenes became significantly less susceptible to BAC after treatment with SAS and SDS yet no change in susceptibility was observed with FAE. Flow cytometry using the fluoresceine propidium iodide revealed significant increases in cell membrane permeability of both organisms by SAS and FAE, although the effect was much greater in E. coli . No change was observed with SDS. Hydrophobic interaction chromatography showed that both organisms became less hydrophobic following treatment with SAS and SDS but FAE had no effect.
Conclusions:  In E. coli, detergents that increase susceptibility to BAC increase membrane permeability. In L. monocytogenes, detergents that reduce susceptibility to BAC lower cell surface hydrophobicity.
Significance and Impact of the Study:  Detergents can influence the sensitivity of pathogenic food borne micro-organisms to BAC.  相似文献   

20.
In clinical staphylococci, the presence of the ica genes and biofilm formation are considered important for virulence. Biofilm formation may also be of importance for survival and virulence in food-related staphylococci. In the present work, staphylococci from the food industry were found to differ greatly in their abilities to form biofilms on polystyrene. A total of 7 and 21 of 144 food-related strains were found to be strong and weak biofilm formers, respectively. Glucose and sodium chloride stimulated biofilm formation. The biofilm-forming strains belonged to nine different coagulase-negative species of Staphylococcus. The icaA gene of the intercellular adhesion locus was detected by Southern blotting and hybridization in 38 of 67 food-related strains tested. The presence of icaA was positively correlated with strong biofilm formation. The icaA gene was partly sequenced for 22 food-related strains from nine different species of Staphylococcus, and their icaA genes were found to have DNA similarities to previously sequenced icaA genes of 69 to 100%. Northern blot analysis indicated that the expression of the ica genes was higher in strong biofilm formers than that seen with strains not forming biofilms. Biofilm formation on polystyrene was positively correlated with biofilm formation on stainless steel and with resistance to quaternary ammonium compounds, a group of disinfectants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号