首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
A rapid procedure to study the interaction of carcinogens with DNA in cultured cells has been developed. The cells, which are labeled with 7,12-[3H]dimethylbenz[a] anthracene ([3H]DMBA), are lysed with 0.24 M phosphate buffer (pH 6.8), 1% sodium dodecyl sulfate (SDS), 8 M urea and 0.01 M ethylenediamine-tetraacetate (EDTA) and sonicated. The cell lysates are fractionated on columns of hydroxylapatite. Proteins and RNA are removed with 8 M urea in 0.24 M phosphate buffer (pH 6.8). DMBA-bound DNA is eluted with 0.4 M phosphate buffer (pH 6.8). DMBA-DNA isolated by this procedure is virtually free from proteins and RNA. Thermal stability, ultraviolet spectra and the density of DNA is not altered by DMBA binding. The uptake of DMBA by mouse epidermal cells is rapid and the binding of DMBA to DNA is linear for the first 8 h of exposure. DMBA binds to DNA in all phases of the cell cycle. However, the highest binding occurs immediately following maximum DNA synthesis.  相似文献   

2.
One of the systems that regulate tissue homeostasis is gap junction intercellular communication (GJIC). It is accepted that the down-regulation of GJIC is linked to the tumor-promoting properties of carcinogens. In this study, the effect of some carcinogenic and non-carcinogenic polycyclic aromatic hydrocarbons (PAH) on GJIC was investigated. It was found that in hepatoma cell culture (Hep G2) carcinogenic PAH inhibited GJIC after 24 h exposure by 75-100% depending on the PAH structure. The inhibition effect on GJIC is reversible because removing the PAH by changing of culture medium restores the GJIC. The non-carcinogenic PAH do not significantly influence GJIC. alpha-Naphthoflavone, an inhibitor of PAH metabolism, has no effect on inhibition of GJIC by carcinogenic PAH. 2,3,7,8-Tetrachloro-p-dibenzodioxin, an aryl hydrocarbon (Ah) receptor ligand, inhibits GJIC by about 50% only after 48 h exposure. To clarify the role of formation of PAH metabolites and interaction with Ah receptor on inhibition of GJIC, we determined the effect of benzo/a/pyrene on hepatoma G27 cells in which neither mRNA of CYP1A1 nor Ah receptor was determined. As in Hep G2 cells, benzo/a/pyrene, unlike non-carcinogenic benzo/e/pyrene, inhibits GJIC. We conclude that in the studied hepatoma cells carcinogenic PAH inhibit GJIC directly (that is, not via their metabolites) and this effect is not associated with Ah receptor interaction.  相似文献   

3.
The effects of various inhibitors of aryl hydrocarbon hydroxylase (AHH), antioxidants, inhibitors of DNA, RNA, and protein synthesis, and protease inhibitors on the binding of [7,12-3H]dimethylbenz[a]anthracene ([3H] DMBA) to DNA of murine epidermal cells in culture have been investigated. 7,8-Benzoflavone, 5,6-benzoflavone and methyrapone (inhibitors of AAH) and antioxidants, butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT), efficiently reduced the binding of [3H] DMBA to cellular DNA. Inhibitors of DNA and RNA synthesis did not affect this process whereas inhibitors of protein synthesis suppressed the binding of [3H] DMBA to cellular DNA. Protease inhibitors p-tosylamide-2-phenylchloromethyl ketone (TPCK) and p-tosyl-L-lysine chloromethyl ketone (TLCK) also reduced the interaction between DMBA and DNA. Thus, it appears that binding of DMBA to cellular DNA is regulated at the level of translation or/and post translation.  相似文献   

4.
An agonist-activated phospholipase D/phosphatidic acid phosphohydrolase (PAH) pathway was recently demonstrated in human neutrophils, and evidence suggests that phosphatidic acid (PA) and/or diradylglycerol (DG) generated from this pathway participates in activation of the O2(-)-generating respiratory burst. We have used a series of cationic amphiphilic compounds (sphingosine, propranolol, chlorpromazine, and desipramine) and antibiotics (clindamycin, trimethoprim, and roxithromycin) all of which inhibit the respiratory burst, to investigate the role of the phospholipase D/PAH pathway in neutrophil activation. The phosphatidylcholine (PC) pool in intact cells was first labeled using [3H]-1-O-alkyl-lysoPC; released [3H]-PA and [3H]-DG were then quantified after the addition of either chemo-attractant or PMA. Using either agonist, all compounds showed a dose-dependent inhibition of [3H]-DG generation which correlated with inhibition of O2- generation, but compounds failed to inhibit directly the NADPH oxidase in a cell-free system. For either activator, a plot of the ID50 values for O2- generation vs those for DG generation was linear over four orders of magnitude. In many cases, inhibition of [3H]-DG generation corresponded to an increase in [3H]-PA, implicating PAH as the locus of inhibition. Superoxide generation was inhibited under conditions where PA was either elevated or minimally affected. Neither O2- release nor DG generation showed any selectivity for stereoisomers of propranolol, suggesting that this inhibition does not act via a specific binding site on PAH. No evidence was obtained for an effect of the inhibitors on PA mobility as monitored by electron spin resonance studies of spin-labeled PA in a model membrane system. Data are consistent with an effect of the inhibitors at the level of the interaction of PAH with the membrane and/or its substrate. These data imply that DG produced via the phospholipase D/PAH pathway functions in the activation or maintenance of the respiratory burst.  相似文献   

5.
Benzo[a]pyrene (BaP) and N-nitrosodimethylamine (NDMA) are carcinogens and indirect acting mutagens. A naturally occurring dietary indole, indole-3-carbinol (I-3-C), has been shown to decrease the incidence of aryl hydrocarbon induced neoplasia in experimental animals. We examined the relationship between the ability of I-3-C to alter the rate of carcinogen oxidation and its ability to decrease the rate of covalent binding of carcinogen metabolites to DNA and protein. We found that I-3-C inhibited the covalent binding of NDMA oxidation products to DNA in vitro in proportion to its ability to inhibit carcinogen metabolism. Pretreatment of mice by gavage with I-3-C resulted in no change in the rate of aryl hydrocarbon hydroxylase or NDMA demethylase in hepatic post-mitochondrial supernatant. However, this pretreatment resulted in a 60-90% decrease in the ability of carcinogen oxidative metabolites to bind covalently to DNA or protein in vitro. Similarly, in in vivo experiments, gavage with I-3-C, followed by gavage with BaP or NDMA, resulted in a 63-85% decrease in covalent binding to macromolecules, with no concomitant change in carcinogen metabolism. The results suggest that the in vivo administration of I-3-C may confer protection for hepatic macromolecules against covalent binding of the metabolites of these two indirect acting mutagens.  相似文献   

6.
The covalent binding of 7,12-[3H]dimethylbenz[a]anthracene ([3H--DMBA) to mammary gland macromolecules was studied in hamsters fed a contraceptive mixture, Enovid, those exposed transplacentally to diethylstilboestrol (DES), and controls. Compared with rats, hamsters are relatively resistant to DMBA mammary carcinogenesis, but susceptibility is increased by either of the above treatments with Enovid or DES. The amount of DMBA bound to DNA and protein ws 4-5 times greater than to RNA, but only DNA binding was persistent. Fifty-three percent of the DNA-bound DMBA was still present after 8 days. The amount of DMBA bound to hamster mammary DNA and its persistence was similar to that found in rats. Neither Enovid nor DES treatment altered the levels of binding to mammary macromolecules, nor their persistence. These results indicate that the species differences in the susceptibility to DMBA-induced mammary carcinogenesis in hamsters and rats, and modification of the former by hormones, is not due to differences in the activation of carcinogens. The role of hormones such as prolactin in the promotion phase of mammary gland carcinogenesis may explain these differences.  相似文献   

7.
Changes in the rate of DNA synthesis in spermatogenic cells after treatment of segments of rat seminiferous tubule at defined stages of epithelial cycle with benzo[a]pyrene (BP) or 7,12-methylbenz[a]anthracene (DMBA) were studied. The incorporation of labeled thymidine into DNA was used as a measure of the rate of DNA synthesis. Very little or no inhibition of DNA synthesis at stages V and VIII of the cycle was observed at BP and DMBA concentrations lower than 100 microM. In contrast, in the presence of added mitochondria and/or microsomes from whole rat testis, 20 microM BP or DMBA inhibited DNA synthesis 5% and 80%, respectively. This inhibition of DNA synthesis was prevented by inhibitors of the cytochrome P-450 system and by free radical scavengers. These results suggest that polycyclic aromatic hydrocarbons (PAH) require metabolic activation in order to inhibit DNA replication in seminiferous tubules. The first step of this biotransformation is cytochrome P-450-dependent and occurs in Leydig cells. However, the metabolites produced in this step may be further metabolized to reactive metabolites by peroxidative pathways in the seminiferous tubules; these latter products may affect DNA replication.  相似文献   

8.
Han EH  Hwang YP  Jeong TC  Lee SS  Shin JG  Jeong HG 《FEBS letters》2007,581(4):749-756
Typically, chemopreventive agents either inhibit the cytochrome P450s (CYPs) that are essential for the metabolism of carcinogens or induce phase II detoxifying enzymes. This study examined the chemopreventive effect of eugenol on 7,12-dimethylbenz[a]anthracene (DMBA)-induced DNA damage in MCF-7 cells. Eugenol inhibited the formation of the DMBA-DNA adduct in a dose dependent manner. CYP1A1 and CYP1B1 activity, which catalyze the biotransformation of DMBA, were strongly inhibited by eugenol. Eugenol also suppressed the CYP1A induction by DMBA through decreased aryl hydrocarbon receptor activation and subsequent DNA binding. Furthermore, eugenol increased the expression and activity of NAD(P)H:quinone oxidoreductase (QR), a major detoxifying enzyme for DMBA, through NF-E2 related factor2 binding to antioxidant response element in QR gene. Therefore, eugenol has a potent protective effect against DMBA-induced genotoxicity, presumably through the suppression of the DMBA activation and the induction of its detoxification. These results suggest that eugenol has potential as a chemopreventive.  相似文献   

9.
Addition of the tumor promoter phorbol myristate acetate to polymorphonuclear leukocytes results in the oxidation of the arylamine carcinogens; [14C]benzidine, N-[14C]methylaminoazobenzene and [14C]aminofluorene to reactive intermediate(s) that bind irreversibly to the leukocyte DNA. The binding was dependent on oxygen and was decreased by sulfhydryl inhibitors and phenolic antioxidants that inhibit the respiratory burst triggered by the phorbol myristate. Both the binding and the respiratory burst were increased by azide, presumably as a result of intracellular catalase inhibition. However higher concentrations of azide and cyanide prevented binding without affecting the respiratory burst indicating that myeloperoxidase is a catalyst for the binding. Granules isolated from the activated leukocytes and H2O2 catalyzed a cyanide sensitive benzidine binding to calf thymus DNA. Myeloperoxidase and H2O2 also catalysed extensive binding of these arylamines to calf thymus DNA. The leukocytes appear to be a useful model cell for studying one electron oxidation-catalyzed carcinogen activation.  相似文献   

10.
The metabolism of carcinogens in fish was examined by measuring the activation of different polycyclic aromatic hydrocarbons (PAH) by carp (Cyprinus carpio L.) liver post-mitochondrial fractions (S9) using the Salmonella typhimurium TA100 reverse mutation assay. For this study, 1 non-carcinogen, anthracene (AN), and 4 carcinogens, chrysene (CHR), benzo[a]pyrene (BaP), 3-methylcholanthrene (3MC) and 7,12-dimethylbenzanthracene (DMBA), were chosen. The bioactivating potency of the metabolic systems of carp pretreated with phenobarbital (PB), 3MC or Aroclor 1254 (ARO) were compared to uninduced carp liver. The results show that carp liver has the ability to metabolize carcinogenic PAH into mutagenic metabolites, which is enhanced when carp are pretreated with 3MC or ARO, but not with PB. A positive correlation between the induction of aryl hydrocarbon hydroxylase (AHH) activity in carp liver and the mutagenic potencies of CHR, BaP, DMBA and 3MC, has been observed. The bioactivating ability of carp liver S9 was compared with the ability of the same fractions from female Wistar rats (this study) as well as from Sprague-Dawley rats (literature data). When the mutagenic potencies of selected PAH had been normalized on the activity of BaP, the following order of mutagenic activities with S9 fractions from ARO-treated animals was obtained: (1) BaP (1) greater than DMBA (0.26) greater than 3MC (0.22) greater than CHR (0.05) greater than AN (0) for carp; (2) BaP (1) greater than 3MC (0.48) greater than CHR (0.31) greater than DMBA (0.16) greater than AN (0) for Sprague-Dawley rats; and (3) BaP (1) greater than 3MC (0.17) greater than DMBA (0.11) greater than CHR (0) = AN (0) for female Wistar rats. We conclude that carp and rats are very similar in their ability to activate carcinogenic PAH into mutagenic metabolites, which suggests that carp may be very susceptible to the carcinogenic activity of these compounds. According to our results from the mutagenicity study, as well as from the enzyme induction study, we propose the use of carp as a suitable model system for the study of chemical carcinogens.  相似文献   

11.
In the context of the bay region, K-region and radical cation hypotheses for polycyclic aromatic carcinogens, molecular properties were calculated for fourteen methyl derivatives of benz[a]anthracene (BA) related to (1) intrinsic substrate reactivities towards activating and detoxifying metabolism and (2)-the stabilities of the putative carbocation ultimate carcinogens. Allvalence electron methods were used, avoiding the inherent difficulties found in the π-electron methods. The calculated substrate reactivities were found to predict major metabolites sucessfully, supporting the validity of their use in attempted correlations with observed carcinogenic potencies. Positive correlations were found between observed carcinogenic potencies and (1) the reactivities of the parent polycyclic aromatic hydrocarbons (PAH) towards the initial distal bay region epoxidation and (2) the stabilities of the diol epoxide carbocations. This latter correlation holds when both the methyl derivatives of BA and previously studied unsubstituted PAH are considered together, indicating its potential usefulness as a screening parameter for carcinogenic activity.  相似文献   

12.
The DNA binding of nonreactive model compounds of metabolites of 7,12-dimethylbenz[a]-anthracene (DMBA)1 was studied in fluorescence quenching and fluorescence lifetime experiments. The model compounds examined were DMA and 8,9,10,11-tetrahydro-BA. DMA is a pi electron model of a highly carcinogenic bay region epoxide of DMBA, 8,9,10,11-tetrahydro-BA is a model compound of a less carcinogenic DMBA epoxide. The results indicate that the binding of DMA occurs primarily via intercalation. In 15% methanol the binding constant is 3.1 x 10(3) M-1. In 15% methanol and at DNA phosphate levels of 5.0 x 10(-4) M the intercalative binding of DMA is reduced by a factor of 6.2 when 5.0 x 10(-4) M Mg+2 is added. The DMA binding constant for intercalation is reduced by more than a factor of 4 when the methanol content of the solvent is increased from 0% to 20%. Finally DMA binding arising from pi interactions with the DNA bases is reduced more than 15 times when the DNA is denatured. For 8,9,10,11-tetrahydro-BA in 15% methanol the binding constant for intercalation is 6 times lower than that for DMA. These results along with previously reported binding data on other model compounds suggest that bay region metabolites of DMBA readily participate in physical pi stacking interactions with DNA.  相似文献   

13.
A V Capuco  M T Tseng 《Steroids》1981,37(6):649-662
Study of hormone binding in intact cells enables one to examine binding under conditions which elicit a biological response. Cells from 7,12-dimethylbenz(a)anthracene (DMBA)-induced mammary tumors of the rat were enzymatically dispersed. More than 80% of these cells excluded trypan blue and were used to study binding of [3H] estradiol-17 beta. Specific binding was determined by subtracting the amount of [3H]estradiol bound in the absence and presence of 200-fold excess unlabeled estradiol. Specific binding at 37 degrees was maximal after 15 min. Steroid competition studies indicated that [3H]estradiol binding sites were relatively specific for estrogens, although there was a 9-18% inhibition of binding by androgens and progestins when present at 150-fold molar excess. Scatchard analyses of [3H]estradiol (0.15-5.0 nM) binding by whole cells suggest a single, high-affinity binding site (Kd = 7.5 x 10-10M) of low capacity (6.1 fmol/10(6) cells). More [3H]estradiol was translocated to the nucleus after 1 hr at 37 degrees than at 0 degrees. Preliminary studies indicated that incubations at 37 degrees result in appreciable metabolism of [3H]estradiol to other steroids and/or conjugates when examined by silica gel thin layer chromatography.  相似文献   

14.
Amino acid residues that participate in antagonist binding to the strychnine-sensitive glycine receptor (GlyR) have been identified by selectively modifying functional groups with chemical reagents. Moreover, a region directly involved with strychnine binding has been localized in the 48-kDa subunit of this receptor by covalent labeling and proteolytic mapping. Modification of tyrosyl or arginyl residues promotes a marked decrease of specific [3H]strychnine binding either to rat spinal cord plasma membranes or to the purified GlyR incorporated into phospholipid vesicles. Occupancy of the receptor by strychnine, but not by glycine, completely protects from the inhibition caused by chemical reagents. Furthermore, these tyrosine- or arginine-specific reagents decrease the number of binding sites (Bmax) for [3H]strychnine binding without affecting the affinity for the ligand (Kd). These observations strongly suggest that such residues are present at, or very close to, the antagonist binding site. In order to localize the strychnine binding domain within the GlyR, purified and reconstituted receptor preparations were photoaffinity labeled with [3H]strychnine. The radiolabeled 48-kDa subunit was then digested with specific chemical proteolytic reagents, and the peptides containing the covalently bound radioligand were identified by fluorography after gel electrophoresis. N-Chlorosuccinimide treatment of [3H]strychnine-labeled 48K polypeptide yielded a single labeled peptide of Mr approximately 7300, and cyanogen bromide gave a labeled peptide of Mr 6200.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Hormonal interactions with benzodiazepine binding sites in vitro   总被引:1,自引:0,他引:1  
Prostaglandin A1 and hormones like corticosteroids and DL-Thyroxin (T4) inhibit binding of [3H]RO 5-4864 and [3H] Clonazepam to their respective binding sites with inhibition constants in the low micromolar range. The corticosteroid Cortisone inhibits [3H] RO 5-4864, but not [3H] Clonazepam binding in a competitive manner with an inhibition constant of 4.3 +/- 0.7 microM, Prostaglandin A1 inhibits [3H] Clonazepam, but not [3H] RO 5-4864 binding in a competitive manner with an inhibition constant of 6 +/- 1.2 microM and DL-Thyroxin (T4) inhibits both [3H] RO 5-4864 and [3H] Clonazepam binding with inhibition constants of 12.1 +/- 2.2 and 1.6 +/- 0.4 microM respectively. While the inhibition of [3H] RO 5-4864 binding by DL-Thyroxin (T4) is competitive, the inhibition of [3H] Clonazepam binding is of the mixed type as indicated by Scatchard Plot.  相似文献   

16.
Dietary factors play important roles in the carcinogenic process. The results of epidemiological data and some laboratory animal studies indicate that certain naturally occurring and synthetic components are able to block the carcinogenic process and inhibit the development of certain cancers. Dibenzoylmethane (DBM), a curcumin-related beta-diketone analogue has been reported to exhibit a remarkable inhibitory effect on 7,12-dimethylbenz[a]anthracene (DMBA)-induced mammary tumorigenesis in Sencar mice. The present study investigated the possible mechanisms of inhibitory action of DBM on DMBA-induced mammary tumorigenesis in mice. The summarized results indicate that: (1) in in-vitro studies. DBM inhibited DMBA metabolism and the formation of DMBA-DNA adducts in a dose-dependent manner; (2) in the assay of competitive binding to estrogen receptors with [3H]-estradiol in vitro, DBM showed weak binding affinity; (3) in vivo, feeding of 1% DBM in the diet of immature Sencar mice for 4 -5 weeks decreased the uterine and parametrial fat pad weights, and lowered the serum estrogen and triglyceride levels. This study provides insight into the mechanisms involved in the inhibitory action of DBM in mouse mammary tumorigenesis.  相似文献   

17.
The regulation of muscarinic receptor binding by guanine nucleotides and N-ethylmaleimide (NEM) was investigated using the agonist ligand, [3H] cis methyldioxolane ([3H] CD). Characterization studies on rat forebrain homogenates showed that [3H] CD binding was linear with tissue concentration and was unaffected by a change in pH from 5.5 to 8.0. The regional variation in [3H] CD binding in the rat brain correlated generally with [3H] (?)3-quinuclidinyl benzilate ([3H] (?)QNB) binding, although the absolute variation in binding was somewhat less. At a concentration of 100 μM, the GTP analogue, guanyl-5′-yl imidodiphosphate [Gpp(NH)p], caused a 43–77% inhibition of [3H] CD binding in the corpus striatum, ileum, and heart. The results of binding studies using several Gpp(NH)p concentrations demonstrated that the potency of this guanine nucleotide for inhibition of [3H] CD binding was greater in the heart than in the ileum. In contrast to its effects on [3H] CD binding, Gpp(NH)p caused an increase in [3H] (?)QNB binding in the heart heart and ileum and no change in [3H] (?)QNB binding in the corpus striatum. When measured by competitive inhibition of [3H] (?)QNB binding to the longitudinal muscle of the ileum, Gpp(NH)p (100 μM) caused an increase in the IC50 values of a series of agonists in a manner that was correlated with the efficacy of these compounds. The results of binding studies on NEM treated forebrain homogenates revealed an enhancement of [3H] CD binding by NEM.  相似文献   

18.
Treatment of isolated hepatocytes with the tumor-promoting agent, 4 beta-phorbol 12 beta-myristate 13 alpha-acetate (PMA) produced a time- and dose-dependent, non-competitive inhibition of alpha 1-adrenergic responses, including the activation of phosphorylase, increase in Ca2+ efflux, increase in free cytosolic Ca2+, and release of myo-inositol-1,4,5-P3. The actions of [8-arginine] vasopressin (AVP) on liver cells were also inhibited by PMA, but the inhibition could be overcome by high AVP concentrations. No significant inhibition of beta-adrenergic and glucagon-mediated activation of phosphorylase was induced by PMA and no inhibitory or synergistic effects of PMA were observed on the dose-dependent activation of phosphorylase by the Ca2+ ionophore A23187. In radioligand binding studies, PMA did not directly interfere with [3H]prazosin specific binding, the displacement of [3H]prazosin by (-)-norepinephrine nor with [3H]AVP specific binding to purified liver plasma membranes. Plasma membranes prepared from livers perfused with PMA exhibited a 30-44% reduction in [3H]prazosin binding capacity. Under identical conditions [3H]AVP binding was unchanged. The alpha 1-receptors remaining in membranes from PMA-treated livers had equivalent affinities for [3H]prazosin and (-)-norepinephrine, and were unaffected in terms of coupling to guanine nucleotide-regulating proteins as indicated by the ability of guanosine 5'-(beta, gamma-imido)triphosphate to promote the conversion of the remaining alpha 1-receptors into a low affinity state. These data indicate that tumor promoters are potent antagonists of alpha 1-adrenergic and vasopressin (low dose) responses in liver. It is proposed that PMA acting via protein kinase C (which presumably mediates the action of PMA) exerts its inhibitory action on alpha 1-adrenergic responses at the alpha 1-adrenergic receptor itself and also at a site close to or before myo-inositol-1,4,5-P3 release.  相似文献   

19.
The inhibition of receptor binding of [3H]phorbol-12,13-dibutyrate (PDBu) by a factor from human serum was characterized. The serum factor inhibited [3H]PDBu binding in intact monolayer cultures of the rat embryo cell line CREF N and in a subcellular system containing membranes from these cells. Inhibition occurred at both 37 and 4 degrees C and was rapid and reversible. An analysis of [3H]PDBu binding in the presence of the serum factor indicated that inhibition of [3H]PDBu binding by the serum factor was noncompetitive. Using gel filtration to separate the serum factor from free [3H]PDBu, we obtained evidence that the serum factor does not act by binding or trapping the [3H]PDBu. Unlike the phorbol ester tumor promoters, the serum factor alone did not stimulate the release of choline or arachidonic acid from cellular phospholipids, nor did it inhibit the binding of 125I-labeled epidermal growth factor to cellular receptors. The factor did, however, antagonize the inhibition of epidermal growth factor binding induced by PDBu. Sera from pregnant women were, in general, more inhibitory of [3H]PDBu binding than were those from nonpregnant women, which were more inhibitory than those from men. During these studies we found that CREF N cells responded to being grown in the presence of PDBu by partial down regulation of the phorboid receptor. The 50% effective dose for down regulation was 8 nM PDBu, and the maximum effect occurred after 6 h. Taken together, our results indicate that the serum factor inhibits [3H]PDBu binding by a direct physical effect at the level of the phorboid receptors or their associated membranes. It would appear that if this factor acts in vivo, then it might antagonize certain effects of this class of tumor promoters.  相似文献   

20.
The uptake of [3H]actinomycin D ([3H]AD) by ConA-stimulated lymphocytes was followed during 96 h of incubation and correlated with the level of nuclear proteins in the nucleus, DNA synthesis and the degree of AD-induced inhibition of RNA and DNA synthesis. During the first 48 h there is a parallel increase of drug binding to cells and a rising level of non-histone proteins (NHP) in the nucleus. During the next 48 h, DNA synthesis occurs, drug uptake decreases and the nuclear level of NHP continues to rise. The level of histones remains constant during 96 h. The variations in cellular [3H]AD uptake during 96 h are not due to changes in cell membrane permeability, since similar variations in drug binding are observed in isolated cell nuclei. NHP, obtained as 0.25 M NaCl extracts of cell nuclei, increase binding of [3H]AD to nuclei isolated from non-stimulated lymphocytes, while histones have no such effect. NHP extracted with phenol, after washing the nuclei with salt and acid solutions, or extracted with 0.25 M NaCl from non-stimulated and stimulated lymphocytes and Chang liver cells are equally active to bind [3H]AD to nuclei of non-stimulated lymphocytes. NHP from Chang cells, purified by DNA-cellulose chromatography using calf thymus DNA, stimulated [3H]AD binding to lymphocyte nuclei, indicating that the drug-binding activity is due to proteins binding to DNA. NHP increase binding of [3H]AD to pure DNA in the absence of histones. The degree of [3H]AD binding to ConA-stimulated lymphocytes during 96 h correlated with the degree of inhibition of RNA and DNA synthesis by AD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号