首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tomato golden mosaic virus (TGMV), a member of the geminivirus group, has a genome consisting of two DNA molecules designated the A and B components. Both are required for infectivity in healthy plants, although the former has been shown to replicate independently in transgenic plants containing tandem direct repeats of the A genome component. In the studies presented here, petunia plants transgenic for either both components (A×B hybrids) or the A component alone were examined for the presence of virus particles and encapsidated, single stranded viral DNA. The results of DNase protection experiments and direct observation of extracts from transgenic plants by electron microscopy indicate that single stranded TGMV DNA is in both cases packaged into paired particles identical to those obtained from virus-infected plants. DNase-treated virions isolated from A×B hybrid petunia are infectious when inoculated onto healthy Nicotiana benthamiana. Likewise, virions obtained from transgenic A petunia are infectious for plants transgenic for the B component.Our observations of TGMV replication in transgenic plants indicate that TGMV A DNA encodes all viral functions necessary for the replication and encapsidation of viral DNA. The possible role of the B component in TGMV replication is discussed.  相似文献   

2.
The genome of the geminivirus tomato golden mosaic virus (TGMV) is divided between two DNA components, designated A and B, which differ in sequence except for a 230-nucleotide common region. The A genome component is known to encode viral functions necessary for viral DNA replication, while the B genome component specifies functions necessary for spread of the virus through the infected plant. To identify cis-acting sequences required for viral DNA replication, several mutants were constructed by the introduction of small insertions into TGMV B at selected sites within and just outside the common region. Other mutants had the common region inverted or deleted. All of the mutants were tested for their effects on infectivity and DNA replication in whole plants and leaf discs. Our results indicate that the common region in its correct orientation is required for infectivity and for replication of TGMV B. Furthermore, the conserved hairpin loop sequence located within the TGMV common region and found in all geminiviruses is necessary for DNA replication, and may be part of the viral replication origin.  相似文献   

3.
4.
The geminiviruses are a unique group of higher plant viruses that are composed of twin isometric particles which contain circular, single-stranded DNA. Tomato golden mosaic virus (TGMV), a whitefly-transmitted agent, belongs to the subgroup of geminiviruses whose members possess a bipartite genome. The TGMV A genome component has the capacity to encode at least four proteins. One of these is the viral coat protein, as inferred by homology with coat-protein, genes of other geminiviruses and by the observation of typical geminate particles in transgenic plants that contain inserts of TGMV A DNA. We have investigated the role of the coat protein in TGMV replication and report here that its coding sequence may be interrupted or substantially deleted without loss of infectivity. However, certain coat-protein mutants showed reproducible delays in time of symptom appearance as well as reduced symptom development, when inoculated onto transgenic Nicotiana benthamiana plants containing the TGMV B component. The most attenuated symptoms were seen with a mutant in which the coat-protein coding sequence was almost entirely deleted. The significance of these findings for the development of plant vectors from TGMV DNA is discussed.  相似文献   

5.
The genome of the geminivirus tomato golden mosaic virus (TGMV) consists of two circular DNA molecules designated as components A and B. The A component encodes the only viral protein, AL1, that is required for viral replication. We showed that AL1 interacts specifically with TGMV A and B DNA by using an immunoprecipitation assay for AL1:DNA complex formation. In this assay, a monoclonal antibody against AL1 precipitated AL1:TGMV DNA complexes, whereas an unrelated antibody failed to precipitate the complexes. Competition assays with homologous and heterologous DNAs established the specificity of AL1:DNA binding. AL1 produced by transgenic tobacco plants and by baculovirus-infected insect cells exhibited similar DNA binding activity. The AL1 binding site maps to 52 bp on the left side of the common region, a 235-bp region that is highly conserved between the two TGMV genome components. The AL1:DNA binding site does not include the putative hairpin structure that is conserved in the common regions or the equivalent 5' intergenic regions of all geminiviruses. These studies demonstrate that a geminivirus replication protein is a sequence-specific DNA binding protein, and the studies have important implications for the role of this protein in virus replication.  相似文献   

6.
7.
Tomato golden mosaic virus (TGMV) belongs to the geminivirus subgroup that is characterized by a split genome consisting of two single-stranded circular DNAs. The TGMV A genome component encodes the virus coat protein as well as all of the functions necessary for viral DNA replication. Analysis of the nucleotide sequence indicates that the TGMV A component has, in addition to the coat protein encoding ORF, four overlapping open reading frames (ORFs) with the potential to encode proteins of greater than 10 kD. We have investigated the functions of these putative proteins in both symptom formation and DNA replication by creating mutations in each of the ORFs. Our results show that the AL4 ORF, which is encoded within the N-terminal region of ORF AL1, is not essential for normal virus infection. In contrast, we find that disruption of the AL3 ORF results in delay and attenuation of symptom formation. We also report that the products of the AL1 and AL2 ORFs are absolutely required for symptom formation. Studies of DNA replication show that only the AL1 open reading frame is essential for viral DNA synthesis. The significance of these results for the development of vectors from the geminiviruses is discussed.  相似文献   

8.
The effects of methylation on plant viral DNA replication have been studied inNicotiana tabacum protoplasts transfected with DNA of the geminivirus tomato golden mosaic virus (TGMV). The transfected cells were also used to determine whether experimentally introduced methylation patterns are maintained in extrachromosomal viral DNA. Replacement of cytosine residues with 5-methylcytosine (m5C) reduced the amount of viral DNA which accumulated in transfected protoplasts. The reduction was observed whether m5C residues were substituted for cytosine residuesin vitro in either the viral strand or the complementary strand of double-stranded circular inoculum DNAs containing tandemly repeated copies of the A component of the TGMV genome. Both limited and extensive cytosine methylation of TGMV DNA sequencesin vitro was not propagated in progeny viral DNA. The absence of detectable maintenance-type methylation of the transfecting TGMV DNA sequences may be related to the lack of methylation observed in double-stranded TGMV DNA isolated from infected plants.  相似文献   

9.
Linear double-stranded (ds)DNA, obtained by excision of the cloned A and B components of tomato golden mosaic virus (TGMV) from recombinant plasmids, was found to infect plants and to elicit symptoms identical to those obtained with TGMV or TGMV DNA. Progeny virus isolated from plants infected with cloned DNA was infective and indistinguishable from TGMV on the basis of (a) its circular single-stranded (ss)DNA genome, (b) its capsid polypeptide, (c) its particle morphology and (d) serological identity. Southern blot analysis of DNA extracted from cells infected with cloned DNA, or TGMV DNA, revealed the same intracellular ss and dsDNA species, represented in both A and B components, except for a subgenomic, possibly defective, DNA, which was not detected in infections with cloned DNA. Infection with cloned DNA was achieved when cloned A and B components were both present, but not with either cloned A or B components separately. TGMV is the first DNA virus for which unequivocal proof of a bipartite genome has been obtained.  相似文献   

10.
The genome of the geminivirus tomato golden mosaic virus (TGMV) consists of two single-stranded circular DNAs, A and B, that replicate through a rolling-circle mechanism in nuclei of infected plant cells. The TGMV origin of replication is located in a conserved 5' intergenic region and includes at least two functional elements: the origin recognition site of the essential viral replication protein, AL1, and a sequence motif with the potential to form a hairpin or cruciform structure. To address the role of the hairpin motif during TGMV replication, we constructed a series of B-component mutants that resolved sequence changes from structural alterations of the motif. Only those mutant B DNAs that retained the capacity to form the hairpin structure replicated to wild-type levels in tobacco protoplasts when the viral replication proteins were provided in trans from a plant expression cassette. In contrast, the same B DNAs replicated to significantly lower levels in transient assays that included replicating, wild-type TGMV A DNA. These data established that the hairpin structure is essential for TGMV replication, whereas its sequence affects the efficiency of replication. We also showed that TGMV AL1 functions as a site-specific endonuclease in vitro and mapped the cleavage site to the loop of the hairpin. In vitro cleavage analysis of two TGMV B mutants with different replication phenotypes indicated that there is a correlation between the two assays for origin activity. These results suggest that the in vivo replication results may reflect structural and sequence requirements for DNA cleavage during initiation of rolling-circle replication.  相似文献   

11.
12.
Geminivirus replication origins have a modular organization.   总被引:15,自引:2,他引:13       下载免费PDF全文
Tomato golden mosaic virus (TGMV) and bean golden mosaic virus (BGMV) are closely related geminiviruses with bipartite genomes. The A and B DNA components of each virus have cis-acting sequences necessary for replication, and their A components encode trans-acting factors are required for this process. We showed that virus-specific interactions between the cis- and trans-acting functions are required for TGMV and BGMV replication in tobacco protoplasts. We also demonstrated that, similar to the essential TGMV AL1 replication protein, BGMV AL1 binds specifically to its origin in vitro and that neither TGMV nor BGMV AL1 proteins bind to the heterologous origin. The in vitro AL1 binding specificities of the B components were exchanged by site-directed mutagenesis, but the resulting mutants were not replicated by either A component. These results showed that the high-affinity AL1 binding site is necessary but not sufficient for virus-specific origin activity in vivo. Geminivirus genomes also contain a stem-loop sequence that is required for origin function. A BGMV B mutant with the TGMV stem-loop sequence was replicated by BGMV A, indicating that BGMV AL1 does not discriminate between the two sequences. A BGMV B double mutant, with the TGMV AL1 binding site and stem-loop sequences, was not replicated by either A component, indicating that an additional element in the TGMV origin is required for productive interaction with TGMV AL1. These results suggested that geminivirus replication origins are composed of at least three functional modules: (1) a putative stem-loop structure that is required for replication but does not contribute to virus-specific recognition of the origin, (2) a specific high-affinity binding site for the AL1 protein, and (3) at least one additional element that contributes to specific origin recognition by viral trans-acting factors.  相似文献   

13.
The bipartite geminiviruses such as tomato golden mosaic virus (TGMV) and squash leaf curl virus (SqLCV) have two single-stranded circular genomic DNAs, the A and B components, thought to be replicated from double-stranded circular DNA intermediates. Although it has been presumed that the origin sequences for viral replication are located in the highly conserved 200-nucleotide common region (CR) present in both genomic components and that the viral-encoded AL1 protein interacts with these sequences to effect replication, there has been no evidence that this is in fact so. We have investigated these questions, demonstrating selectivity and sequence specificity in this protein-DNA interaction. Simple component switching between the DNAs of TGMV and SqLCV and analysis of replication in leaf discs showed that whereas the A components of both TGMV and SqLCV promote their own replication and that of their cognate B component, neither replicates the noncognate B component. Furthermore, using an in vivo functional replication assay, we found that cloned viral CR sequences function as a replication origin and direct the replication of nonviral sequences in the presence of AL1, with both circular single-stranded and double-stranded DNA being synthesized. Finally, by the creation of chimeric viral CRs and specific subfragments of the viral CR, we demonstrated sequence-specific recognition of the replication origin by the AL1 protein, thereby localizing the origin to an approximately 90-nucleotide segment in the AL1 proximal side of the CR that includes the conserved geminiviral stem-loop structure and approximately 60 nucleotides of 5' upstream sequence. By deletional analysis, we further demonstrated that the conserved stem-loop structure is essential for replication. These studies identify the functional viral origin of replication within the CR, demonstrating that sequence-specific recognition of this origin by the AL1 protein is required for replication.  相似文献   

14.
Extracts obtained from cells infected with the geminivirus tomato golden mosaic (TGMV) are shown to contain, in addition to viral single-stranded DNA, several novel species of virus-specific single- and double- stranded DNA (ss and ds DNA). The results of nuclease studies and electron microscopy suggest that three of the intracellular DNAs are unit-genome length duplexes of closed circular, relaxed circular, and linear form. The remaining ds DNA species are of high molecular weight and appear to be concatamers consisting of two or more unit-length circular ds TGMV DNA resulted in fragments whose combined size is twice the unit-genome length. Thus ds TGMV is composed of two components of nearly identical size but different nucleotide sequence.  相似文献   

15.
16.
17.
18.
A chimeric tomato golden mosaic virus (TGMV) A component DNA, which results from replacement of the coding region of the viral coat protein gene (CP) with the larger bacterial beta-glucuronidase coding sequence (GUS), can replicate in agroinoculated leaf discs but is unstable in systemically infected plants (1). We have made similar replacements of the TGMV CP gene with the GUS coding sequence in both the sense and antisense orientations. Both derivatives replicated in leaf discs inoculated via Agrobacterium. However, systemic movement of the GUS substituted vectors was not detected in agroinoculated Nicotiana benthamiana plants. The only TGMV A derivatives detected in systemically infected leaves of inoculated plants were similar in size to the wild type viral component. Sequence analysis of derivatives from six independently inoculated plants revealed that they did not result from internal deletions of the larger replicons detected in leaf discs but, instead, were generated by fusion events occuring within the original T-DNA insert. These results indicate that systemic movement of TGMV in N. benthamiana plants provides a strong selective pressure favoring viral derivatives similar in size to the wild type virus components.  相似文献   

19.
Phenotypically normal petunia plants carrying chromosomal inserts of either the tomato golden mosaic virus (TGMV) A or the B component DNA, as single or tandem inserts, were obtained using an Agrobacterium tumefaciens Ti plasmid-based transformation system. Southern hybridization analysis revealed that the tandem, direct-repeat A plants contained free single and double stranded A component DNAs. No free B component DNA was detected in plants carrying tandem repeats of the B component. Progeny of self-fertilized plants appeared normal. In contrast, one-quarter of the progeny from tandem A by tandem B plant crosses showed chlorotic lesions on their leaves similar to virus symptoms. The significance of these results and the use of this method for the study of virus functions involved in TGMV replication and symptom production are discussed.  相似文献   

20.
The feasibility of obtaining clonal lines with replicating, multicopy geminivirus vectors by direct DNA trans-formation of cultured tobacco cells was studied. The replicating vectors pTGA32 and pST31 are based on the tomato golden mosaic virus (TGMV) A genome and encode the neomycin phosphotransferase type II (NPT-II) enzyme that confers kanamycin resistance to plant cells. Following introduction into plant cells, unit-length viral genomes were released from the tandem repeats and replicated. In protoplasts, replication of unit-length pTGA32 and pST31 was about as efficient as replication of unit-length DNA A from plasmid pTGA26, which contains 1.5 copies of wild-type DNA A. Tobacco suspension culture cells were bombarded with the recombinant DNA A constructs and selected for kanamycin resistance. The number of kanamycin-resistant clones per bombardment was about the same when the TGMV DNA A vectors or a non-replicating plasmid (pLC14) which also encodes NPT-II was used. Replicating, unit-length DNA A in up to approximately 1000 copies per cell was found in about 10% of the kanamycin-resistant clones selected following bombardment of cells with TGMV vectors. The results suggest that geminiviruses may serve as useful multicopy vectors in cultured cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号