首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The precise contribution of the CO2-dependent respiratory rhythm to sinus arrhythmia in eupnea is unclear. The respiratory rhythm and sinus arrhythmia were measured in 12 normal, unanesthetized subjects in normocapnia and hypocapnia during mechanical hyperventilation with positive pressure. In normocapnia (41 +/- 1 mmHg), the respiratory rhythm was always detectable from airway pressure and inspiratory electromyogram activity. The amplitude of sinus arrhythmia (138 +/- 21 ms) during mechanical hyperventilation with positive pressure was not significantly different from that in eupnea. During the same mechanical hyperventilation pattern but in hypocapnia (24 +/- 1 mmHg), the respiratory rhythm was undetectable and the amplitude of sinus arrhythmia was significantly reduced (to 40 +/- 5 ms). These results show a greater contribution to sinus arrhythmia from the respiratory rhythm during hypocapnia caused by mechanical hyperventilation than previously indicated in normal subjects during hypocapnia caused by voluntary hyperventilation. We discuss whether the respiratory rhythm provides the principal contribution to sinus arrhythmia in eupnea.  相似文献   

2.
Control of ventilation in elite synchronized swimmers   总被引:1,自引:0,他引:1  
Synchronized swimmers perform strenuous underwater exercise during prolonged breath holds. To investigate the role of the control of ventilation and lung volumes in these athletes, we studied the 10 members of the National Synchronized Swim Team including an olympic gold medalist and 10 age-matched controls. We evaluated static pulmonary function, hypoxic and hypercapnic ventilatory drives, and normoxic and hyperoxic breath holding. Synchronized swimmers had an increased total lung capacity and vital capacity compared with controls (P less than 0.005). The hypoxic ventilatory response (expressed as the hyperbolic shape parameter A) was lower in the synchronized swimmers than controls with a mean value of 29.2 +/- 2.6 (SE) and 65.6 +/- 7.1, respectively (P less than 0.001). The hypercapnic ventilatory response [expressed as S, minute ventilation (1/min)/alveolar CO2 partial pressure (Torr)] was no different between synchronized swimmers and controls. Breath-hold duration during normoxia was greater in the synchronized swimmers, with a mean value of 108.6 +/- 4.8 (SE) vs. 68.03 +/- 8.1 s in the controls (P less than 0.001). No difference was seen in hyperoxic breath-hold times between groups. During breath holding synchronized swimmers demonstrated marked apneic bradycardia expressed as either absolute or heart rate change from basal heart rate as opposed to the controls, in whom heart rate increased during breath holds. Therefore the results show that elite synchronized swimmers have increased lung volumes, blunted hypoxic ventilatory responses, and a marked apneic bradycardia that may provide physiological characteristics that offer a competitive advantage for championship performance.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
We hypothesized that a decreased susceptibility to the development of hypocapnic central apnea during non-rapid eye movement (NREM) sleep in women compared with men could be an explanation for the gender difference in the sleep apnea/hypopnea syndrome. We studied eight men (age 25-35 yr) and eight women in the midluteal phase of the menstrual cycle (age 21-43 yr); we repeated studies in six women during the midfollicular phase. Hypocapnia was induced via nasal mechanical ventilation for 3 min, with respiratory frequency matched to eupneic frequency. Tidal volume (VT) was increased between 110 and 200% of eupneic control. Cessation of mechanical ventilation resulted in hypocapnic central apnea or hypopnea, depending on the magnitude of hypocapnia. Nadir minute ventilation in the recovery period was plotted against the change in end-tidal PCO(2) (PET(CO(2))) per trial; minute ventilation was given a value of 0 during central apnea. The apneic threshold was defined as the x-intercept of the linear regression line. In women, induction of a central apnea required an increase in VT to 155 +/- 29% (mean +/- SD) and a reduction of PET(CO(2)) by -4.72 +/- 0.57 Torr. In men, induction of a central apnea required an increase in VT to 142 +/- 13% and a reduction of PET(CO(2)) by -3.54 +/- 0.31 Torr (P = 0.002). There was no difference in the apneic threshold between the follicular and the luteal phase in women. Premenopausal women are less susceptible to hypocapnic disfacilitation during NREM sleep than men. This effect was not explained by progesterone. Preservation of ventilatory motor output during hypocapnia may explain the gender difference in sleep apnea.  相似文献   

4.
The pattern and control of respiration is virtually unknown in hatchling sea turtles. Using incubator-raised turtles, we measured oxygen consumption, frequency, tidal volume, and minute volume for leatherback (Dermochelys coriacea) and olive ridley (Lepidochelys olivacea) turtle hatchlings for the first six days after pipping. In addition, we tested the hatchlings' response to hypercapnic, hyperoxic, and hypoxic challenges over this time period. Hatchling sea turtles generally showed resting ventilation characteristics that are similar to those of adults: a single breath followed by a long respiratory pause, slow frequency, and high metabolic rate. With hypercapnic challenge, both species responded primarily by elevating respiratory frequency via a decrease in the non-ventilatory period. Leatherback resting tidal volume increased with age but otherwise, neither species' resting respiratory pattern nor response to gas challenge changed significantly over the first few days after hatching. At the time of nest emergence, sea turtles have achieved a respiratory pattern that is similar to that of actively diving adults.  相似文献   

5.
Anecdotal observations suggest that hypoxia does not elicit dyspnea. An opposing view is that any stimulus to medullary respiratory centers generates dyspnea via "corollary discharge" to higher centers; absence of dyspnea during low inspired Po(2) may result from increased ventilation and hypocapnia. We hypothesized that, with fixed ventilation, hypoxia and hypercapnia generate equal dyspnea when matched by ventilatory drive. Steady-state levels of hypoxic normocapnia (end-tidal Po(2) = 60-40 Torr) and hypercapnic hyperoxia (end-tidal Pco(2) = 40-50 Torr) were induced in naive subjects when they were free breathing and during fixed mechanical ventilation. In a separate experiment, normocapnic hypoxia and normoxic hypercapnia, "matched" by ventilation in free-breathing trials, were presented to experienced subjects breathing with constrained rate and tidal volume. "Air hunger" was rated every 30 s on a visual analog scale. Air hunger-Pet(O(2)) curves rose sharply at Pet(O(2)) <50 Torr. Air hunger was not different between matched stimuli (P > 0.05). Hypercapnia had unpleasant nonrespiratory effects but was otherwise perceptually indistinguishable from hypoxia. We conclude that hypoxia and hypercapnia have equal potency for air hunger when matched by ventilatory drive. Air hunger may, therefore, arise via brain stem respiratory drive.  相似文献   

6.
We have previously demonstrated that microinjection of dl-homocysteic acid (DLH), a glutamate analog, into the pre-B?tzinger complex (pre-B?tC) can produce either phasic or tonic excitation of phrenic nerve discharge during hyperoxic normocapnia. Breathing, however, is influenced by input from both central and peripheral chemoreceptor activation. This influence of increased respiratory network drive on pre-B?tC-induced modulation of phrenic motor output is unclear. Therefore, these experiments were designed to examine the effects of chemical stimulation of neurons (DLH; 10 mM; 10-20 nl) in the pre-B?tC during hyperoxic modulation of CO2 (i.e., hypercapnia and hypocapnia) and during normocapnic hypoxia in chloralose-anesthetized, vagotomized, mechanically ventilated cats. For these experiments, sites were selected in which unilateral microinjection of DLH into the pre-B?tC during baseline conditions of hyperoxic normocapnia [arterial PCO2 (PaCO2) = 37-43 mmHg; n = 22] produced a tonic (nonphasic) excitation of phrenic nerve discharge. During hypercapnia (PaCO2 = 59.7 +/- 2.8 mmHg; n = 17), similar microinjection produced excitation in which phasic respiratory bursts were superimposed on varying levels of tonic discharge. These DLH-induced phasic respiratory bursts had an increased frequency compared with the preinjection baseline frequency (P < 0.01). In contrast, during hypocapnia (PaCO2 = 29.4 +/- 1.5 mmHg; n = 11), microinjection of DLH produced nonphasic tonic excitation of phrenic nerve discharge that was less robust than the initial (normocapnic) response (i.e., decreased amplitude). During normocapnic hypoxia (PaCO2 = 38.5 +/- 3.7; arterial Po2 = 38.4 +/- 4.4; n = 8) microinjection of DLH produced phrenic excitation similar to that seen during hypercapnia (i.e., increased frequency of phasic respiratory bursts superimposed on tonic discharge). These findings demonstrate that phrenic motor activity evoked by chemical stimulation of the pre-B?tC is influenced by and integrates with modulation of respiratory network drive mediated by input from central and peripheral chemoreceptors.  相似文献   

7.
We tested the hypothesis that maximal exercise performance in adults with cystic fibrosis is limited by arterial hypoxemia. In study 1, patients completed two maximal exercise tests, a control and a test with 400 ml of added dead space. Maximal O2 consumption was significantly lower in the added dead space study vs. control (1.04 +/- 0.15 vs. 1.20 +/- 0.11 l/min; P < 0.05), with no difference in peak ventilation. There was significant O2 desaturation during exercise that was equal in both control and added dead space studies. The decrease in maximal O2 consumption with added dead space suggests that maximal exercise in cystic fibrosis is limited by respiratory factors. We subsequently examined whether pulmonary mechanics or arterial hypoxemia limits maximal exercise performance. In study 2, patients completed two maximal exercise tests, a control and a test with 400 ml of added dead space while also breathing 38% O2. Added dead space was used to overcome the suppressive effects of hyperoxia on minute ventilation. Maximal O2 consumption was significantly higher with added dead space and 38% O2 vs. control (1.62 +/- 0.16 vs. 1.43 +/- 0.14 l/min; P < 0.05). Peak ventilation and O2 saturation were significantly greater in the added dead space and 38% O2 test vs. control. The increase in maximal O2 consumption and peak ventilation with added dead space and 38% O2 suggests that maximal exercise in cystic fibrosis is limited by arterial hypoxemia.  相似文献   

8.
Ventilatory responses of crabs Carcinus maenas (L.) to changes in ambient oxygen and carbon dioxide were studied in field and laboratory experiments, over a range of PwO2 and Pwco2 conditions encompassing natural variations observed in intertidal rock-pools. Ventilatory activity was assessed by recording gill chamber hydrostatic pressure and estimating the specific ventilation, Vw/MO2, the reciprocal of the difference of oxygen concentrations in inspired and expired waters.

Variations in ambient oxygenation always induced large changes of ventilatory activity, hyperventilation in hypoxia, hypoventilation in hyperoxia. Conversely, PwCO2 changes either at constant PO2 or in combination with different PO2 values (hypoxic hypercapnia or hyperoxic hypocapnia) led only to small or even non-significant ventilatory responses. In the field, strong hyperventilation developed during tidal exposure at night, when the pool water became hypoxic and hypercapnic, whereas during the day the animals hypoventilated in progressively more hyperoxic and hypocapnic conditions.

Thus, in a typical intertidal animal such as C. maenas, the only ventilatory stimulus of ecological significance appears to be the ambient water oxygenation.  相似文献   


9.
Chemoreflex stimulation elicits both hyperventilation and sympathetic activation, each of which may have different influences on oscillatory characteristics of cardiovascular variability. We examined the influence of hyperventilation on the interactions between changes in R-R interval (RR) and muscle sympathetic nerve activity (MSNA) and changes in neurocirculatory variability, in 14 healthy subjects. We performed spectral analysis of RR and MSNA variability during each of the following interventions: 1) controlled breathing, 2) maximal end-expiratory apnea, 3) isocapnic voluntary hyperventilation, and 4) hypercapnia-induced hyperventilation. MSNA increased from 100% during controlled breathing to 170 +/- 25% during apnea (P = 0.02). RR was unchanged, but normalized low-frequency (LF) variability of both RR and MSNA increased markedly (P < 0.001). During isocapnic hyperventilation, minute ventilation increased to 20.2 +/- 1.4 l/min (P < 0.0001). During hypercapnic hyperventilation, minute ventilation also increased (to 19.7 +/- 1.7 l/min) as did end-tidal CO(2) (both P < 0.0001). MSNA remained unchanged during isocapnic hyperventilation (104 +/- 7%) but increased to 241 +/- 49% during hypercapnic hyperventilation (P < 0.01). RR decreased during both isocapnic and hypercapnic hyperventilation (P < 0.05). However, normalized LF variability of RR and of MSNA decreased (P < 0.05) during both isocapnic and hypercapnic hyperventilation, despite the tachycardia and heightened sympathetic nerve traffic. In conclusion, marked respiratory oscillations in autonomic drive induced by hyperventilation may induce dissociation between RR, MSNA, and neurocirculatory variability, perhaps by suppressing central genesis and/or inhibiting transmission of LF cardiovascular rhythms.  相似文献   

10.
Persistence of respiratory sinus arrhythmia (RSA) has been described in humans during intense exercise and attributed to an increase in ventilation. However, the direct influence of ventilation on RSA has never been assessed. The dynamic evolution of RSA and its links to ventilation were investigated during exercise in 14 healthy men using an original modeling approach. An evolutive model was estimated from the detrended and high-pass-filtered heart period series. The instantaneous RSA frequency (FRSA, in Hz) and amplitude (ARSA, in ms) were then extracted from all recordings. A(RSA) was calculated with short-time Fourier transform. First, measurements of FRSA and ARSA were performed from data obtained during a graded and maximal exercise test. Influences of different ventilation regimens [changes in tidal volume (VT) and respiratory frequency (FR)] on ARSA were then tested during submaximal [70% peak O2 consumption (VO2peak)] rectangular exercise bouts. Under graded and maximal exercise conditions, ARSA decreased from the beginning of exercise to 61.9 +/- 3.8% VO2peak and then increased up to peak exercise. During the paced breathing protocol, normoventilation (69.4 +/- 8.8 l/min), hyperventilation (81.8 +/- 8.3 l/min), and hypoventilation (56.4 +/- 6.2 l/min) led to significantly (P < 0.01) different ARSA values (3.8 +/- 0.5, 4.6 +/- 0.8, and 2.9 +/- 0.5 ms, respectively). In addition, no statistical difference was found in ARSA when ventilation was kept constant, whatever the FR-VT combinations. Those results indicate that RSA persists for all exercise intensities and increases during the highest intensities. Its persistence and increase are strongly linked to both the frequency and degree of lung inflation, suggesting a mechanical influence of breathing on RSA.  相似文献   

11.
Possible mechanisms of periodic breathing during sleep   总被引:3,自引:0,他引:3  
To determine the effect of respiratory control system loop gain on periodic breathing during sleep, 10 volunteers were studied during stage 1-2 non-rapid-eye-movement (NREM) sleep while breathing room air (room air control), while hypoxic (hypoxia control), and while wearing a tight-fitting mask that augmented control system gain by mechanically increasing the effect of ventilation on arterial O2 saturation (SaO2) (hypoxia increased gain). Ventilatory responses to progressive hypoxia at two steady-state end-tidal PCO2 levels and to progressive hypercapnia at two levels of oxygenation were measured during wakefulness as indexes of controller gain. Under increased gain conditions, five male subjects developed periodic breathing with recurrent cycles of hyperventilation and apnea; the remaining subjects had nonperiodic patterns of hyperventilation. Periodic breathers had greater ventilatory response slopes to hypercapnia under either hyperoxic or hypoxic conditions than nonperiodic breathers (2.98 +/- 0.72 vs. 1.50 +/- 0.39 l.min-1.Torr-1; 4.39 +/- 2.05 vs. 1.72 +/- 0.86 l.min-1.Torr-1; for both, P less than 0.04) and greater ventilatory responsiveness to hypoxia at a PCO2 of 46.5 Torr (2.07 +/- 0.91 vs. 0.87 +/- 0.38 l.min-1.% fall in SaO2(-1); P less than 0.04). To assess whether spontaneous oscillations in ventilation contributed to periodic breathing, power spectrum analysis was used to detect significant cyclic patterns in ventilation during NREM sleep. Oscillations occurred more frequently in periodic breathers, and hypercapnic responses were higher in subjects with oscillations than those without. The results suggest that spontaneous oscillations in ventilation are common during sleep and can be converted to periodic breathing with apnea when loop gain is increased.  相似文献   

12.
We determined the effects of high gestational loads on ventilation and the rate of oxygen consumption (VO2) in the scincid lizard Tiliqua rugosa. Tiliqua rugosa is a large viviparous lizard that gives birth to one to four young after 6-7 mo gestation. Pregnant females gave birth to large young, weighing 89.5+/-5.9 g, which represents 21.6%+/-2.6% of maternal body mass. As the embryos developed, they occupied an increasingly large proportion of the body cavity, decreasing food consumption and compressing the gastrointestinal tract. Computerized axial tomography scans demonstrated that the lungs were compressed and/or regionally collapsed by the developing embryos, potentially compromising ventilation. Both minute ventilation (VE) and tidal volume decreased as gestation progressed, but no compensatory changes in breathing frequency or in the duration of the nonventilatory period were observed. The total rate of VO2, consisting of contributions from both maternal and fetal tissues, did not change during gestation, suggesting that maternal VO2 decreases as fetal VO2 increases. Pregnant females demonstrated a decreased ventilatory response to increased respiratory drive (triggered via inhalation of hypoxic hypercapnic gas), which may be associated with the increased energetic cost of ventilating a compressed lung or the desensitization of chemoreceptors during gestation. The decreased ability of the respiratory system to respond to increased respiratory drive may have important consequences for locomotor performance and predator avoidance in pregnant lizards.  相似文献   

13.
Changes in cardiac output during sustained maximal ventilation in humans   总被引:2,自引:0,他引:2  
To determine the increment in cardiac output and in O2 consumption (Vo2) from quiet breathing to maximal sustained ventilation, Vo2 and cardiac output were measured using an acetylene rebreathing technique in five subjects. Cardiac output and Vo2 were measured multiple times in each subject at rest and during sustained maximal ventilation. During maximal ventilation subjects breathed 5% CO2 to prevent hypocapnia. The increase in cardiac output from rest to maximal breathing was taken as an estimate of respiratory muscle blood flow and was used to calculate the arteriovenous O2 content difference across the respiratory muscles from the Fick equation. Cardiac output increased by 4.3 +/- 1.0 l/min (mean +/- SD), from 5.6 +/- 0.7 l/min at rest to 9.9 +/- 1.1 l/min, during maximal ventilations ranging from 127 to 193 l/min. Vo2 increased from 312 +/- 29 to 723 +/- 69 ml/min during maximal ventilation. O2 extraction across the respiratory muscles during maximal breathing was 9.6 +/- 1.0 vol% (range 8.5 to 10.7 vol%). These values suggest an upper limit of respiratory muscle blood flow of 3-5 l/min during unloaded maximal sustained ventilation.  相似文献   

14.
To test whether active hyperventilation activates the "afterdischarge" mechanism during non-rapid-eye-movement (NREM) sleep, we investigated the effect of abrupt termination of active hypoxia-induced hyperventilation in normal subjects during NREM sleep. Hypoxia was induced for 15 s, 30 s, 1 min, and 5 min. The last two durations were studied under both isocapnic and hypocapnic conditions. Hypoxia was abruptly terminated with 100% inspiratory O2 fraction. Several room air-to-hyperoxia transitions were performed to establish a control period for hyperoxia after hypoxia transitions. Transient hyperoxia alone was associated with decreased expired ventilation (VE) to 90 +/- 7% of room air. Hyperoxic termination of 1 min of isocapnic hypoxia [end-tidal PO2 (PETO2) 63 +/- 3 Torr] was associated with VE persistently above the hyperoxic control for four to six breaths. In contrast, termination of 30 s or 1 min of hypocapnic hypoxia [PETO2 49 +/- 3 and 48 +/- 2 Torr, respectively; end-tidal PCO2 (PETCO2) decreased by 2.5 or 3.8 Torr, respectively] resulted in hypoventilation for 45 s and prolongation of expiratory duration (TE) for 18 s. Termination of 5 min of isocapnic hypoxia (PETO2 63 +/- 3 Torr) was associated with central apnea (longest TE 200% of room air); VE remained below the hyperoxic control for 49 s. Termination of 5 min of hypocapnic hypoxia (PETO2 64 +/- 4 Torr, PETCO2 decreased by 2.6 Torr) was also associated with central apnea (longest TE 500% of room air). VE remained below the hyperoxic control for 88 s. We conclude that 1) poststimulus hyperpnea occurs in NREM sleep as long as hypoxia is brief and arterial PCO2 is maintained, suggesting the activation of the afterdischarge mechanism; 2) transient hypocapnia overrides the potentiating effects of afterdischarge, resulting in hypoventilation; and 3) sustained hypoxia abolishes the potentiating effects of after-discharge, resulting in central apnea. These data suggest that the inhibitory effects of sustained hypoxia and hypocapnia may interact to cause periodic breathing.  相似文献   

15.
The effects of hyperoxic hypercapnia on cardiovascular and ventilatory variables and blood gas and acid/base parameters were examined in conscious and anesthetized spontaneously breathing (ASB) channel catfish, Ictalurus punctatus. These separate experiments were designed to determine: (1) if channel catfish show a ventilatory response to hypercapnic acidosis when blood O(2) content is maintained in conscious animals; and (2) whether branchial receptors innervated by cranial nerves IX and X mediate this response. The combination of high O(2) and CO(2) tensions allowed the cardioventilatory effects of hypercapnic acidosis to be assessed independently of Root or Bohr mediated changes in blood O(2) content. In the absence of significant changes in dorsal or ventral aorta O(2) content, hyperoxic hypercapnia significantly stimulated ventilation, relative to hyperoxic exposure. Hypercapnic acidosis, however, had no significant effects on blood pressure or heart rate. Branchial denervation in ASB fish abolished the ventilatory response to hypercapnic acidosis. The results indicate that hypercapnic acidosis independently stimulates ventilation in channel catfish. This response is mediated by CO(2)/pH-sensitive branchial receptors innervated by cranial nerves IX and X.  相似文献   

16.
In animals that rely on the respiratory system for both gas exchange and heat loss, exercise can generate conflict between chemoregulation and thermoregulation. We hypothesized that in panting animals, hypocapnia during hyperthermic exercise reflects a reduction in the arterial CO2 tension (Pa(CO2)) set point. To test this hypothesis, five sheep were subjected to tracheal insufflations of CO2 or air (control) at 3-4 L min(-1) in 3 min bouts at 5 min intervals over 31 min of exercise. During exercise, rectal temperature and minute ventilation (V(E)) rose continuously while Pa(CO2) fell from 35.4+/-3.1 to 18.6+/-2.9 Torr and 34.3+/-2.4 to 18.7+/-1.5 Torr in air and CO2 trials, respectively. Air insufflations did not affect V(E) or Pa(CO2). V(E) increased during CO2 insufflations via a shift to higher tidal volume and lower frequency. CO2 insufflations also increased Pa(CO2), although not above the pre-exercise level. Within 5 min after each CO2 insufflation, Pa(CO2) had decreased to match that following the equivalent air insufflation. These results are consistent with a reduced Pa(CO2) set point or an increased gain of the Pa(CO2) regulatory system during hyperthermic exercise. Either change in the control of Pa(CO2) could facilitate respiratory evaporative heat loss by mitigating homeostatic conflict.  相似文献   

17.
Increases in free radicals are believed to play a central role in the development of pulmonary ischemia/reperfusion (I-R) injury, leading to microvascular leakage and deterioration of pulmonary surfactant. Continued ventilation during ischemia offers significant protection against I-R injury, but the impact of alveolar oxygen supply both on lung injury and on radical generation is still unclear. We investigated the influence of hyperoxic (95% O2) and anoxic (0% O2) ventilation during ischemia on alveolar antioxidant status and surfactant properties in isolated rabbit lungs. Normoxic and hyperoxic ventilated, buffer-perfused lungs (n = 5 or 6) and native lungs (n = 6) served as controls. As compared with controls, biophysical and biochemical surfactant properties were not altered in anoxic as well as hyperoxic ventilated ischemic (2, 3, and 4 h) lungs. Assessment of several antioxidants (reduced glutathione (GSH), alpha-tocopherol (vitamin E), retinol (vitamin A), ascorbic acid (vitamin C), uric acid, and plasmalogens (1-O-alkenyl-2-acyl-phospholipids)) in bronchoalveolar lavage fluid (BALF) revealed a significant increase in antioxidant compounds under anoxic and hyperoxic ventilation, with maximum levels occuring after 3 h of ischemia. For example, GSH increased to 5.1 +/- 0.8 microM (mean +/- SE, p <.001) after 3 h of anoxic ventilated ischemia and to 2.7 +/- 0.2 microM (p <.01) after hyperoxic ventilated ischemia compared with native controls (1.3 +/- 0.2 microM), but did not significantly change under anoxic and hyperoxic ventilation alone. In parallel, under ischemic conditions, oxidized glutathione (GSSG) increased during hyperoxic (3 h: 0.81 +/- 0.04 microM, p <.001), but remained unchanged during anoxic (3 h: 0.31 +/- 0.04 microM) ventilation compared with native controls (0.22 +/- 0.02 microM), whereas F2-isoprostanes were elevated under both hyperoxic (3 h: 63 +/- 15 pM, p <.01) and anoxic (3 h: 50 +/- 9 pM, p <.01) ventilation compared with native controls (16 +/- 4 pM). We conclude that oxidative stress is increased in the lung alveolar lining layer during ischemia, during both anoxic and hyperoxic ventilation. This is paralleled by an increase rather than a decrease in alveolar antioxidant levels, suggested to reflect an adaptive response to oxidative stress during ischemia.  相似文献   

18.
Eight healthy young men underwent two separate steady-state incremental exercise runs within the aerobic range on a treadmill with alternating periods of breathing with no load (NL) and with an inspiratory resistive load (IRL) of approximately 12 cmH2O.1-1.s. End-tidal PCO2 was maintained constant throughout each run at the eucapnic or a constant hypercapnic level by adding 0-5% CO2 to the inspired O2. Hypercapnia caused a steepening, as well as upward shift, relative to the corresponding eucapnic ventilation-CO2 output (VE - VCO2) relationship in NL and IRL. Compared with NL, the VE - VCO2 slope was depressed by IRL, more so in hypercapnic [-19.0 +/- 3.4 (SE) %] than in eucapnic exercise (-6.0 +/- 2.0%), despite a similar increase in the slope of the occlusion pressure at 100 ms - VCO2 (P100 - VCO2) relationship under both conditions. The steady-state hypercapnic ventilatory response at rest was markedly depressed by IRL (-22.6 +/- 7.5%), with little increase in P100 response. For a given inspiratory load, breathing pattern responses to separate or combined hypercapnia and exercise were similar. During IRL, VE was achieved by a greater tidal volume (VT) and inspiratory duty cycle (TI/TT) along with a lower mean inspiratory flow (VT/TI). The increase in TI/TT was solely because of a prolongation of inspiratory time (TI) with little change in expiratory duration for any given VT. The ventilatory and breathing pattern responses to IRL during CO2 inhalation and exercise are in favor of conservation of respiratory work.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Five healthy young men underwent two separate steady-state incremental exercise runs within the aerobic range on a treadmill with alternating periods of breathing with no load (NL) and with a discontinuous inspiratory elastic load (IEL) of approximately 10 cmH2O/l. End-tidal PCO2 was maintained constant throughout each run at the eucapnic or a constant hypercapnic level by adding 0-5% CO2 to the inspired O2. Hypercapnia caused a steepening, as well as upward shift, relative to the corresponding eucapnic ventilation-CO2 output (VE-VCO2) relationship in NL and IEL. Compared with NL, the VE-VCO2 slope was depressed by IEL, more so in hypercapnic [-28.7 +/- 7.2 (SE) %] than in eucapnic exercise (-16.0 +/- 2.8%). The steady-state hypercapnic ventilatory response at rest was also markedly depressed (-32.1 +/- 11.2%). Occlusion pressure response was augmented in response to IEL during eucapnic exercise (88.7 +/- 13.3%) but not during CO2 inhalation at rest or during exercise. Breathing pattern characteristics were similar regardless of the type of stimulus input and the level of inspiratory load. Results are consistent with the notion that the control of VE and breathing pattern may both be influenced by a balance between the prevailing chemical drive and a propensity of the controller to reduce respiratory effort.  相似文献   

20.
beta-Adrenergic agonists may increase chemosensitivity in humans. We tested the hypothesis that the beta1-agonist dobutamine increases peripheral chemosensitivity in a double-blind placebo-controlled randomized and crossover study. In 15 healthy subjects, we examined the effects of dobutamine on breathing, hemodynamics, and sympathetic nerve activity (measured using microneurography) during normoxia, isocapnic hypoxia (10% O2), posthypoxic maximal voluntary end-expiratory apnea, hyperoxic hypercapnia, and cold pressor test (CPT). Dobutamine increased ventilation (7.5 +/- 0.3 vs. 6.7 +/- 0.2 l/min, P = 0.0004) during normoxia, markedly enhanced the ventilatory (16.1 +/- 1.6 vs. 11.4 +/- 0.7 l/min, P < 0.0001) and sympathetic (+403 +/- 94 vs. +222 +/- 5%, P < 0.03) responses at the fifth minute of isocapnic hypoxia, and enhanced the sympathetic response to the apnea performed after hypoxia (+501 +/- 107% vs. +291 +/- 38%, P < 0.05). No differences were observed between dobutamine and placebo on the responses to hyperoxic hypercapnia and CPT. Dobutamine increases ventilation during normoxia and potentiates the ventilatory and sympathetic responses to hypoxia in healthy subjects. Dobutamine does not affect the responses to hyperoxic hypercapnia and CPT. We conclude that dobutamine enhances peripheral chemosensitivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号