首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Siglecs are a subfamily of I-type lectins (immunoglobulin superfamily proteins that bind sugars) that specifically recognize sialic acids. We report the cloning and characterization of human Siglec-9. The cDNA encodes a type 1 transmembrane protein with three extracellular immunoglobulin-like domains and a cytosolic tail containing two tyrosines, one within a typical immunoreceptor tyrosine-based inhibitory motif (ITIM). The N-terminal V-set Ig domain has most amino acid residues typical of Siglecs. Siglec-9 is expressed on granulocytes and monocytes. Expression of the full-length cDNA in COS cells induces sialic-acid dependent erythrocyte binding. A recombinant soluble form of the extracellular domain binds to alpha2-3 and alpha2-6-linked sialic acids. Typical of Siglecs, the carboxyl group and side chain of sialic acid are essential for recognition, and mutation of a critical arginine residue in domain 1 abrogates binding. The underlying glycan structure also affects binding, with Galbeta1-4Glc[NAc] being preferred. Siglec-9 shows closest homology to Siglec-7 and both belong to a Siglec-3/CD33-related subset of Siglecs (with Siglecs-5, -6, and -8). The Siglec-9 gene is on chromosome 19q13.3-13.4, in a cluster with all Siglec-3/CD33-related Siglec genes, suggesting their origin by gene duplications. A homology search of the Drosophila melanogaster and Caenorhabditis elegans genomes suggests that Siglec expression may be limited to animals of deuterostome lineage, coincident with the appearance of the genes of the sialic acid biosynthetic pathway.  相似文献   

2.
Siglecs are sialic acid-recognizing animal lectins of the immunoglobulin superfamily. We have cloned and characterized a novel human molecule, Siglec-11, that belongs to the subgroup of CD33/Siglec-3-related Siglecs. As with others in this subgroup, the cytosolic domain of Siglec-11 is phosphorylated at tyrosine residue(s) upon pervanadate treatment of cells and then recruits the protein-tyrosine phosphatases SHP-1 and SHP-2. However, Siglec-11 has several novel features relative to the other CD33/Siglec-3-related Siglecs. First, it binds specifically to alpha2-8-linked sialic acids. Second, unlike other CD33/Siglec-3-related Siglecs, Siglec-11 was not found on peripheral blood leukocytes. Instead, we observed its expression on macrophages in various tissues, such as liver Kupffer cells. Third, it was also expressed on brain microglia, thus becoming the second Siglec to be found in the nervous system. Fourth, whereas the Siglec-11 gene is on human chromosome 19, it lies outside the previously described CD33/Siglec-3-related Siglec cluster on this chromosome. Fifth, analyses of genome data bases indicate that Siglec-11 has no mouse ortholog and that it is likely to be the last canonical human Siglec to be reported. Finally, although Siglec-11 shows marked sequence similarity to human Siglec-10 in its extracellular domain, the cytosolic tail appears only distantly related. Analysis of genomic regions surrounding the Siglec-11 gene suggests that it is actually a chimeric molecule that arose from relatively recent gene duplication and recombination events, involving the extracellular domain of a closely related ancestral Siglec gene (which subsequently became a pseudogene) and a transmembrane and cytosolic tail derived from another ancestral Siglec.  相似文献   

3.
The sialic acid binding immunglobulin-like lectin (Siglec) family is a recently described member of the immunoglobulin superfamily. Within the Siglec family, there exists a subgroup, which bears a high degree of homology with the molecule CD33 (Siglec-3), and has thus been designated the CD33-like subgroup of Siglecs. Members of this subgroup have been localized to chromosome 19q13.4. Through the positional candidate approach, we identified a novel potential member of this subgroup of Siglecs. We have characterized the complete genomic structure of this gene, determined its chromosomal localization, its homology to other members of the Siglec family, and its tissue expression profile. This new Siglec-like gene is comprised of 11 exons, with 10 intervening introns, and is localized 278 kb telomeric to Siglec-9 and 35 kb centromeric to Siglec-8 and on chromosome 19q13.4. The coding region consists of 2094 base pairs, and encodes for a putative 76.6 kDa protein. All Siglec-conserved structural features, including V-set domain, three C-set domains, transmembrane domain, ITIM and SLAM motifs, were found in this Siglec-like gene. Also, it has the conserved amino acids essential for sialic acid binding. The Siglec-like gene has 40-66% homology with members of the CD33-like subgroup, including Siglecs 5-9. Through RT-PCR we have examined the expression profile of this new gene in a panel of human tissues and found it to be primarily expressed in the bone marrow, spleen, brain, small intestine, colon, and spinal cord. We were also able to identify three different splice variants of the new gene. This gene may represent the latest novel member of the CD33-like subgroup of Siglecs, and, given its high degree of homology, it may also serve a regulatory role in the proliferation and survival of a particular hematopoietic stem cell lineage, as has been found for CD33 and Siglec-7.  相似文献   

4.
The Siglecs (sialic acid-binding Ig-like lectins) are a subfamily of I-type lectins, which specifically recognize sialic acids. Nine members of the family have been identified thus far. We have obtained a novel cDNA clone from a human dendritic cell cDNA library encoding a protein with sequence and structural features of the Siglec family, hence designated as Siglec-10. The full-length Siglec-10 cDNA encodes a type 1 transmembrane protein containing four extracellular immunoglobulin-like domains, a transmembrane region, and a cytoplasmic tail with two classical immunoreceptor tyrosine-based inhibitory motifs. The N-terminal V-set Ig domain has most of the amino acid residues typical of the Siglecs. Siglec-10 shows the closest homology to Siglec-5 and Siglec-3/CD33. Various cells and cell lines including monocytes and dendritic cells express Siglec-10. High levels of mRNA expression were seen in peripheral blood leukocytes, spleen, and liver. When expressed on COS-7 cells, Siglec-10 was able to bind human red blood cells and soluble sialoglycoconjugates in a sialic acid-dependent manner. The identification of Siglec-10 as a new Siglec family member and its expression profile, together with its sialic acid-dependent binding capacity, suggest that it may be involved in cell-cell recognition by interacting with sialylated ligands expressed on specific cell populations.  相似文献   

5.
A novel mouse Siglec (mSiglec-F) belonging to the subfamily of Siglec-3-related Siglecs has been cloned and characterized. Unlike most human Siglec-3 (hSiglec-3)-related Siglecs with promiscuous linkage specificity, mSiglec-F shows a strong preference for alpha2-3-linked sialic acids. It is predominantly expressed in immature cells of the myelomonocytic lineage and in a subset of CD11b (Mac-1)-positive cells in some tissues. As with previously cloned Siglec-3-related mSiglecs, the lack of strong sequence similarity to a singular hSiglec made identification of the human ortholog difficult. We therefore conducted a comprehensive comparison of Siglecs between the human and mouse genomes. The mouse genome contains eight Siglec genes, whereas the human genome contains 11 Siglec genes and a Siglec-like gene. Although a one-to-one orthologous correspondence between human and mouse Siglecs 1, 2, and 4 is confirmed, the Siglec-3-related Siglecs showed marked differences between human and mouse. We found only four Siglec genes and two pseudogenes in the mouse chromosome 7 region syntenic to the Siglec-3-related gene cluster on human chromosome 19, which, in contrast, contains seven Siglec genes, a Siglec-like gene, and thirteen pseudogenes. Although analysis of gene maps and exon structures allows tentative assignments of mouse-human Siglec ortholog pairs, the possibility of unequal genetic recombination makes the assignments inconclusive. We therefore support a temporary lettered nomenclature for additional mouse Siglecs. Current information suggests that mSiglec-F is likely a hSiglec-5 ortholog. The previously reported mSiglec-3/CD33 and mSiglec-E/MIS are likely orthologs of hSiglec-3 and hSiglec-9, respectively. The other Siglec-3-like gene in the cluster (mSiglec-G) is probably a hSiglec-10 ortholog. Another mouse gene (mSiglec-H), without an apparent human ortholog, lies outside of the cluster. Thus, although some duplications of Siglec-3-related genes predated separation of the primate and rodent lineages (about 80-100 million years ago), this gene cluster underwent extensive duplications in the primate lineage thereafter.  相似文献   

6.
We report the expression cloning of a novel leptin-binding protein of the immunoglobulin superfamily (OB-BP1) and a cross-hybridizing clone (OB-BP2) that is identical to a recently described sialic acid-binding I-type lectin called Siglec-5. Comparisons to other known Siglec family members (CD22, CD33, myelin-associated glycoprotein, and sialoadhesin) show that OB-BP1, OB-BP2/Siglec-5, and CD33/Siglec-3 constitute a unique related subgroup with a high level of overall amino acid identity: OB-BP1 versus Siglec-5 (59%), OB-BP1 versus CD33 (63%), and OB-BP2/Siglec-5 versus CD33 (56%). The cytoplasmic domains are not as highly conserved, but display novel motifs which are putative sites of tyrosine phosphorylation, including an immunoreceptor tyrosine kinase inhibitory motif and a motif found in SLAM and SLAM-like proteins. Human tissues showed high levels of OB-BP1 mRNA in placenta and moderate expression in spleen, peripheral blood leukocytes, and small intestine. OB-BP2/Siglec-5 mRNA was detected in peripheral blood leukocytes, lung, spleen, and placenta. A monoclonal antibody specific for OB-BP1 confirmed high expression in the cyto- and syncytiotrophoblasts of the placenta. Using this antibody on peripheral blood leukocytes showed an almost exclusive expression pattern on B cells. Recombinant forms of the extracellular domains of OB-BP1, OB-BP2/Siglec-5, and CD33/Siglec-3 were assayed for specific binding of leptin. While OB-BP1 exhibited tight binding (K(d) 91 nM), the other two showed weak binding with K(d) values in the 1-2 microM range. Studies with sialylated ligands indicated that OB-BP1 selectively bound Neu5Acalpha2-6GalNAcalpha (sialyl-Tn) allowing its formal designation as Siglec-6. The identification of OB-BP1/Siglec-6 as a Siglec family member, coupled with its restricted expression pattern, suggests that it may mediate cell-cell recognition events by interacting with sialylated glycoprotein ligands expressed on specific cell populations. We also propose a role for OB-BP1 in leptin physiology, as a molecular sink to regulate leptin serum levels.  相似文献   

7.
The sialic acid binding immunoglobulin-like lectin (Siglec) family is a recently described member of the immunoglobulin superfamily. Within this Siglec family there exists a subgroup of molecules which bear a very high degree of homology with the molecule Siglec-3 (CD33), and has thus been designated the Siglec-3-like subgroup of Siglecs. The members of this subgroup have been localized to chromosome 19q13.4, through both in situ hybridization and precise genomic mapping at the nucleotide level. Through the positional cloning approach we have identified and characterized a Siglec-like gene (SLG), a putative novel member of the Siglec-3-like subgroup of Siglecs. We have characterized the complete genomic structure of SLG, as well as two alternative splice variants, and determined its chromosomal localization. The short isoform, SLG-S, consists of seven exons, with six intervening introns, while the longer isoform, SLG-L, consists of eight exons and seven intervening introns. The SLG gene is localized 32.9 kb downstream of Siglec-8 on chromosome 19q13.4. The putative SLG-S and SLG-L proteins, of 477 and 595 amino acid residues, respectively, show extensive homology to many members of the Siglec-3-like subgroup. This high degree of homology is conserved in the extracellular Ig-like domains, as well as in the cytoplasmic tyrosine-based motifs. Interestingly, the SLG-L protein contains two N-terminal V-set Ig-like domains, as opposed to SLG-S and other Siglec-3-like subgroup members which contain only one such domain. Through RT-PCR we have examined the expression profile of both SLG splice variants in a panel of human tissues and have found that SLG-S is highly expressed in spleen, small intestine and adrenal gland, while SLG-L exhibits high levels of expression in spleen, small intestine, and bone marrow. This gene is quite likely the latest novel member of the CD33-like subgroup of Siglecs, and given its high degree of homology, it may also serve a regulatory role in the proliferation and survival of a particular hematopoietic stem cell lineage, as has been found for CD33 and Siglec7.  相似文献   

8.
Here we characterize the properties and expression pattern of Siglec-9 (sialic acid-binding Ig-like lectin-9), a new member of the Siglec subgroup of the immunoglobulin superfamily. A full-length cDNA encoding Siglec-9 was isolated from a dibutyryl cAMP-treated HL-60 cell cDNA library. Siglec-9 is predicted to contain three extracellular immunoglobulin-like domains that comprise an N-terminal V-set domain and two C2-set domains, a transmembrane region and a cytoplasmic tail containing two putative tyrosine-based signaling motifs. Overall, Siglec-9 is approximately 80% identical in amino acid sequence to Siglec-7, suggesting that the genes encoding these two proteins arose relatively recently by gene duplication. Binding assays showed that, similar to Siglec-7, Siglec-9 recognized sialic acid in either the alpha2,3- or alpha2, 6-glycosidic linkage to galactose. Using a specific mAb, Siglec-9 was found to be expressed at high or intermediate levels by monocytes, neutrophils, and a minor population of CD16(+), CD56(-) cells. Weaker expression was observed on approximately 50% of B cells and NK cells and minor subsets of CD8(+) T cells and CD4(+) T cells. These results show that despite their high degree of sequence similarity, Siglec-7 and Siglec-9 have distinct expression profiles.  相似文献   

9.
BACKGROUND: Human immunodeficiency virus type 1 (HIV-1) infects macrophages effectively, despite relatively low levels of cell surface-expressed CD4. Although HIV-1 infections are defined by viral tropisms according to chemokine receptor usage (R5 and X4), variations in infection are common within both R5- and X4-tropic viruses, indicating additional factors may contribute to viral tropism. METHODOLOGY AND PRINCIPAL FINDINGS: Using both solution and cell surface binding experiments, we showed that R5- and X4-tropic HIV-1 gp120 proteins recognized a family of I-type lectin receptors, the Sialic acid-binding immunoglobulin-like lectins (Siglec). The recognition was through envelope-associated sialic acids that promoted viral adhesion to macrophages. The sialic acid-mediated viral-host interaction facilitated both R5-tropic pseudovirus and HIV-1(BaL) infection of macrophages. The high affinity Siglec-1 contributed the most to HIV-1 infection and the variation in Siglec-1 expression on primary macrophages from different donors was associated statistically with sialic acid-facilitated viral infection. Furthermore, envelope-associated sialoglycan variations on various strains of R5-tropic viruses also affected infection. CONCLUSIONS AND SIGNIFICANCE OF THE FINDINGS: Our study showed that sialic acids on the viral envelope facilitated HIV-1 infection of macrophages through interacting with Siglec receptors, and the expression of Siglec-1 correlated with viral sialic acid-mediated host attachment. This glycan-mediated viral adhesion underscores the importance of viral sialic acids in HIV infection and pathogenesis, and suggests a novel class of antiviral compounds targeting Siglec receptors.  相似文献   

10.
Siglec-7 and Siglec-9 are two members of the recently characterized CD33-related Siglec family of sialic acid binding proteins and are both expressed on human monocytes and NK cells. In addition to their ability to recognize sialic acid residues, these Siglecs display two conserved tyrosine-based motifs in their cytoplasmic region similar to those found in inhibitory receptors of the immune system. In the present study, we use the rat basophilic leukemia (RBL) model to examine the potential of Siglecs-7 and -9 to function as inhibitory receptors and investigate the molecular basis for this. We first demonstrate that Siglecs-7 and -9 are able to inhibit the FcepsilonRI-mediated serotonin release from RBL cells following co-crosslinking. In addition, we show that under these conditions or after pervanadate treatment, Siglecs-7 and -9 associate with the Src homology region 2 domain-containing phosphatases (SHP), SHP-1 and SHP-2, both in immunoprecipitation and in fluorescence microscopy experiments using GFP fusion proteins. We then show by site-directed mutagenesis that the membrane-proximal tyrosine motif is essential for the inhibitory function of both Siglec-7 and -9, and is also required for tyrosine phosphorylation and recruitment of SHP-1 and SHP-2 phosphatases. Finally, mutation of the membrane-proximal motif increased the sialic acid binding activity of Siglecs-7 and -9, raising the possibility that "inside-out" signaling may occur to regulate ligand binding.  相似文献   

11.
Sialic acid-binding immunoglobulin-like lectins (Siglecs) recognize sialylated glycoconjugates and play a role in cell-cell recognition. Siglec-7 is expressed on natural killer cells and displays unique ligand binding properties different from other members of the Siglec family. Here we describe the high resolution structures of the N-terminal V-set Ig-like domain of Siglec-7 in two crystal forms, at 1.75 and 1.9 A. The latter crystal form reveals the full structure of this domain and allows us to speculate on the differential ligand binding properties displayed by members of the Siglec family. A fully ordered N-linked glycan is observed, tethered by tight interactions with symmetry-related protein molecules in the crystal. Comparison of the structure with that of sialoadhesin and a model of Siglec-9 shows that the unique preference of Siglec-7 for alpha(2,8)-linked disialic acid is likely to reside in the C-C' loop, which is variable in the Siglec family. In the Siglec-7 structure, the ligand-binding pocket is occupied by a loop of a symmetry-related molecule, mimicking the interactions with sialic acid.  相似文献   

12.
Most mammalian cell surfaces display two major sialic acids (Sias), N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc). Humans lack Neu5Gc due to a mutation in CMP-Neu5Ac hydroxylase, which occurred after evolutionary divergence from great apes. We describe an apparent consequence of human Neu5Gc loss: domain-specific functional adaptation of Siglec-9, a member of the family of sialic acid-binding receptors of innate immune cells designated the CD33-related Siglecs (CD33rSiglecs). Binding studies on recombinant human Siglec-9 show recognition of both Neu5Ac and Neu5Gc. In striking contrast, chimpanzee and gorilla Siglec-9 strongly prefer binding Neu5Gc. Simultaneous probing of multiple endogenous CD33rSiglecs on circulating blood cells of human, chimp, or gorilla suggests that the binding differences observed for Siglec-9 are representative of multiple CD33rSiglecs. We conclude that Neu5Ac-binding ability of at least some human CD33rSiglecs is a derived state selected for following loss of Neu5Gc in the hominid lineage. These data also indicate that endogenous Sias (rather than surface Sias of bacterial pathogens) are the functional ligands of CD33rSiglecs and suggest that the endogenous Sia landscape is the major factor directing evolution of CD33rSiglec binding specificity. Exon-1-encoded Sia-recognizing domains of human and ape Siglec-9 share only approximately 93-95% amino acid identity. In contrast, the immediately adjacent intron and exon 2 have the approximately 98-100% identity typically observed among these species. Together, our findings suggest ongoing adaptive evolution specific to the Sia-binding domain, possibly of an episodic nature. Such domain-specific divergences should also be considered in upcoming comparisons of human and chimpanzee genomes.  相似文献   

13.
Ishida A  Ohta M  Toda M  Murata T  Usui T  Akita K  Inoue M  Nakada H 《Proteomics》2008,8(16):3342-3349
Many tumors arising from epithelial tissues produce mucins, which readily come into contact with infiltrating cells in cancer tissues. MUC2 mucins were purified from the conditioned medium of a colorectal cancer cell line, LS180 cells. It is known that in cancer patients, the number of dendritic cells (DCs) is reduced and their function is impaired. Mature DCs were generated from human peripheral blood monocytes through successive treatments with GM-CSF and IL-4, and then with proinflammatory mediators. When monocytes were cultured in the presence of MUC2 mucins in addition to GM-CSF and IL-4 at an early stage of development, mature DCs expressing CD83 decreased and apoptotic cells increased in a dose-dependent manner. During the development of DCs, sialic acid-binding Ig-like lectin (Siglec)-3 was constantly expressed. We prepared recombinant soluble Siglec-3 corresponding to the ectodomain of Siglec-3 and confirmed the binding of soluble Siglec-3 to the MUC2 mucins, probably through alpha2,6-sialic acid-containing O-glycans including a sialyl Tn antigen, which is known to bind to Siglec-3. Apoptosis was partially inhibited by anti-Siglec-3 mAb or recombinant soluble Siglec-3. These results suggest that apoptosis was partially induced through the ligation of the MUC2 mucins with Siglec-3.  相似文献   

14.
Human CD83 (hCD83) is a glycoprotein expressed predominantly on the surface of dendritic cells (DC) and represents the best marker for mature DC. Here, we report the cloning of the cDNA encoding mouse CD83 (mCD83) from a murine bone marrow-derived DC (BM-DC) cDNA library. DNA sequence analysis revealed a 196 amino acid protein including a signal peptide of 21 amino acids which shares 63% amino acid identity with hCD83. Using Northern blot analyses, mCD83 mRNA was found to be strongly expressed in mouse BM-DC and its expression was upregulated following stimulation with LPS or TNF-alpha. Transfection experiments using COS-7 cells revealed that mCD83 is glycosylated. Furthermore, the extracellular CD83 domain was recombinantly expressed in Escherichia coli and one-dimensional NMR data strongly support that the protein is structurally folded.  相似文献   

15.
Structural implications of Siglec-5-mediated sialoglycan recognition   总被引:1,自引:0,他引:1  
Sialic acid (Sia) Ig-like binding lectins are important mediators of recognition and signaling events among myeloid cells. To investigate the molecular mechanism underlying sialic acid Ig-like lectin (Siglec) functions, we determined the crystal structure of the two N-terminal extracellular domains of human myeloid cell inhibitory receptor Siglec-5 (CD170) and its complexes with two sialylated carbohydrates. The native structure revealed an unusual conformation of the CC′ ligand specificity loop and a unique interdomain disulfide bond. The α(2,3)- and α(2,6)-sialyllactose complexed structures showed a conserved Sia recognition motif that involves both Arg124 and a portion of the G-strand in the V-set domain forming β-sheet-like hydrogen bonds with the glycerol side chain of the Sia. Only few protein contacts to the subterminal sugars are observed and mediated by the highly variable GG′ linker and CC′ loop. These structural observations, in conjunction with surface plasmon resonance binding assays, provide mechanistic insights into linkage-dependent Siglec carbohydrate recognition and suggest that Siglec-5 and other CD33-related Siglec receptors are more promiscuous in sialoglycan recognition than previously understood.  相似文献   

16.
The mechanisms by which mature myeloid cells are released from the bone marrow into the peripheral blood are not clearly understood. Glycosylation is likely to play an important role, as has been shown in the homing of lymphocytes to lymph nodes and of neutrophils to inflamed endothelia. Cell surface sialylation is an important component of many cellular adhesive interactions, both as ligand-promoting interactions, as occurs in selectin and sialoadhesin-mediated adhesion, and for reducing cell adhesion as in some cancer cells. We have studied the expression of cell surface alpha2,6-linked sialic acid in the maturation of normal bone marrow myeloid cells, the expression of alpha2,6-sialyltransferase mRNA, and the role of sialylation in the adherence of myeloid cells to bone marrow stroma. Our data show that there is a dramatic increase in cell surface alpha2,6-sialylation during the late stage of maturation. This up-regulation is restricted to specific glycoproteins including CD11b and CD18. It is associated with a relative increase in the level of alpha2,6-sialyltransferase mRNA compared with alpha2,3-sialyltransferase mRNA. The changes in mature bone marrow myeloid cells are associated with reduced cell binding to fibronectin and cultured bone marrow stroma. Our data strongly suggest that alpha2,6-sialylation may be important in the interaction between maturing myeloid cells and bone marrow stroma and may govern the release of cells from the bone marrow into the peripheral blood.  相似文献   

17.
Sialoadhesin (Sn, also called Siglec-1 or CD169) is a transmembrane receptor and the prototypic member of the Siglec family of sialic acid binding immunoglobulin-like lectins. It is expressed on specialized subsets of resident macrophages in hematopoietic and lymphoid tissues and on inflammatory macrophages. In order to investigate its function, we generated Sn-deficient mice and confirmed that these mice are true nulls by fluorescence-activated cell sorter analysis and immunohistochemistry. Mice deficient in Sn were viable and fertile and showed no developmental abnormalities. Analysis of cell populations revealed no differences in bone marrow, peritoneal cavity, and thymus, but there was a small increase in CD8 T cells and a decrease in B220-positive cells in spleens and lymph nodes of Sn-deficient mice. Furthermore, in spleen there was a slight decrease in follicular B cells with an increase in numbers of marginal zone B cells. B- and T-cell maturation as well as responses to stimulation with thioglycolate were only slightly affected by Sn deficiency. Immunoglobulin titers in Sn-deficient mice were significantly decreased for immunoglobulin M (IgM) but similar for IgG subclasses. These results suggest a role for sialoadhesin in regulating cells of the immune system rather than in influencing steady-state hematopoiesis.  相似文献   

18.
CD200 (OX2) is a broadly distributed cell surface glycoprotein that interacts with a structurally related receptor (CD200R) expressed on rodent myeloid cells and is involved in regulation of macrophage function. We report the first characterization of human CD200R (hCD200R) and define its binding characteristics to hCD200. We also report the identification of a closely related gene to hCD200R, designated hCD200RLa, and four mouse CD200R-related genes (termed mCD200RLa-d). CD200, CD200R, and CD200R-related genes were closely linked in humans and mice, suggesting that these genes arose by gene duplication. The distributions of the receptor genes were determined by quantitative RT-PCR, and protein expression was confirmed by a set of novel mAbs. The distribution of mouse and human CD200R was similar, with strongest labeling of macrophages and neutrophils, but also other leukocytes, including monocytes, mast cells, and T lymphocytes. Two mCD200 receptor-like family members, designated mCD200RLa and mCD200RLb, were shown to pair with the activatory adaptor protein, DAP12, suggesting that these receptors would transmit strong activating signals in contrast to the apparent inhibitory signal delivered by triggering the CD200R. Despite substantial sequence homology with mCD200R, mCD200RLa and mCD200RLb did not bind mCD200, and presently have unknown ligands. The CD200 receptor gene family resembles the signal regulatory proteins and killer Ig-related receptors in having receptor family members with potential activatory and inhibitory functions that may play important roles in immune regulation and balance. Because manipulation of the CD200-CD200R interaction affects the outcome of rodent disease models, targeting of this pathway may have therapeutic utility.  相似文献   

19.
The expression of the Siglec family of molecules by hematopoietic cells from uninfected and SIV infected disease susceptible rhesus macaques (RM) and SIV infected disease resistant sooty mangabeys (SM) and for comparison humans was carried out. The predominant cell lineage in all three species expressing Siglec's was monocytes. The major finding by both a cross sectional and a prospective SIV infection study showed that, whereas monocytes from RM show marked increase in each Siglec constitutively expressed, monocytes from SM showed marked decreases in Siglec-1 expression. While monocytes from all three species constitutively expressed Siglec-3, human monocytes in addition expressed Siglec-5 and -9 and to a lower density 7, monocytes from RM expressed Siglec-7 and those from SM expressed Siglec-1. Monocytes from all three species, however, expressed mRNA for Siglec-1, -5, -7 and -9. The reasons for the failure to detect these molecules at the protein level and the mechanisms for such distinct effects of SIV infection on Siglec expression are discussed.  相似文献   

20.
Lectin galactoside-binding soluble 3 binding protein (LGALS3BP, also called Mac-2 binding protein) is a heavily glycosylated secreted molecule that has been shown previously to be up-regulated in many cancers and has been implicated in tumor metastatic processes, as well as in other cell adhesion and immune functions. The CD33-related subset of sialic acid-binding immunoglobulin-like lectins (Siglecs) consists of immunomodulatory molecules that have recently been associated with the modulation of immune responses to cancer. Because up-regulation of Siglec ligands in cancer tissue has been observed, the characterization of these cancer-associated ligands that bind to inhibitory CD33-related Siglecs could provide novel targets for cancer immunomodulatory therapy. Here we used affinity chromatography of tumor cell extracts to identify LGALS3BP as a novel sialic acid-dependent ligand for human Siglec-9 and for other immunomodulatory Siglecs, such as Siglec-5 and Siglec-10. In contrast, the mouse homolog Siglec-E binds to murine LGALS3BP with lower affinity. LGALS3BP has been observed to be up-regulated in human colorectal and prostate cancer specimens, particularly in the extracellular matrix. Finally, LGALS3BP was able to inhibit neutrophil activation in a sialic acid- and Siglec-dependent manner. These findings suggest a novel immunoinhibitory function for LGALS3BP that might be important for immune evasion of tumor cells during cancer progression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号