首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Aspirin consumption has been reported to be able to reduce colorectal cancer risk in humans and in animal models of colon carcinogenesis. Although the mechanism involved in such an effect is not yet clear, both prostaglandin-dependent and -independent effects have been proposed. Using HT-29 Glc(-/+)cells, which originate from a human colon adenocarcinoma, we demonstrated in this study a dose-dependent effect of millimolar concentration of aspirin on cell growth that was concomitant with a rapid accumulation of the cells in the G0/G1 phase, followed by an accumulation in the G2/M phase and by a minor increase in the proportion of cells undergoing nuclear condensation. Cell membrane integrity and cell release into the culture medium were not affected by this treatment. The aspirin effects were apparently unrelated to prostaglandin biosynthesis inhibition, since although these cells were found to express high levels of cyclooxygenase 1 (COX-1) and low levels of COX-2 proteins, they did not produce any measurable net amounts of prostaglandins, based on both utilization of radiolabelled arachidonic acid and the radioimmunoassay of prostaglandins E2 and F2 alpha. In contrast, we identified polyamine biosynthesis as a cellular target of aspirin, since the treatment of HT-29 Glc(-/+) cells with aspirin reduced the flux of L-ornithine through ornithine decarboxylase, an effect that could not be explained by an acute action of the drug on the ornithine decarboxylase catalytic activity. Since polyamine biosynthesis is strictly necessary for HT-29 cell growth, our data suggest that reduced flux through ornithine decarboxylase may participate in the antiproliferative activity of aspirin towards colonic tumoral cells. It is concluded that in HT-29 Glc(-/+) cells that are not functional for prostaglandin production, aspirin can affect cell growth, cell cycle, and polyamine biosynthesis without affecting cell membrane integrity.  相似文献   

2.
A group of polypeptide factors that regulate cell growth and differentiation has been tested for their biological activities on the growth and differentiation of leukemic cells isolated from patients with Acute Myeloid Leukemias (AML). The effects of Transforming Growth Factor beta 1 (TGF beta), Tumor Necrosis Factor alpha (TNF alpha), Interferon gamma (IFN gamma) and LIF-HILDA were compared on leukemic cells cultured in vitro for seven days. Spontaneously growing leukemic cells were selected in order to study either inhibition or enhancement of proliferation induced by these factors. Only TGF beta 1 was found to induce a clear inhibition of leukemic proliferation in all cases tested. Recombinant TNF alpha and IFN gamma were found to induce either inhibition or enhancement of the proliferation on separate specimens. Under the conditions of culture, it was not possible to document any effect of LIF-HILDA. Cell differentiation and cell maturation were documented studying the modulation of cell surface antigens. TGF beta did not modify antigen expression on the cells surviving after 3 days in culture. Both TNF alpha and IFN gamma were found to enhance the expression of adhesion molecules and to a lesser extent, the expression of some lineage associated antigens. No effect of LIF-HILDA on antigen modulation was documented in the cases tested. These data confirm that TGF beta is by itself a potent inhibitor of the myeloid leukemia cells proliferation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Preexposure of resident mouse peritoneal macrophages for 1 hr to traces of bacterial lipopolysaccharide (LPS) (less than or equal to 1 ng/ml) rendered the cells refractory to activation by recombinant interferon-gamma (rIFN gamma) or recombinant tumor necrosis factor-alpha (rTNF alpha), as evaluated by release of H2O2 upon stimulation with phorbol myristate acetate. Inhibition persisted for at least 4 days. Fifty percent inhibition of activation mediated by rIFN gamma followed 1 hr exposure to 10 pg/ml LPS. Fifty percent inhibition of activation mediated by rTNF alpha was achieved with 1 hr exposure to 1 pg/ml LPS. Such low levels LPS exposures (concentration X time) are far below those reported for many other actions of LPS on host cells. Inhibition was partially prevented by the cyclooxygenase inhibitors indomethacin, ibuprofen, and acetylsalicylic acid. Exogenous prostaglandins PGE1 and PGE2, and the 3',5'-cyclic adenosine monophosphate analog dibutyryl cyclic adenosine monophosphate (cAMP), mimicked the inhibitory effect of LPS in a dose-dependent manner, consistent with the hypothesis that formation of endogenous cyclooxygenase products in response to LPS may elevate intracellular cAMP and that the latter may mediate the observed inhibition. In addition, neutralizing antibody against IFN alpha and IFN beta selectively prevented LPS inhibition of activation mediated by rIFN gamma, but not by rTNF alpha. This suggests that IFN alpha and/or IFN beta induced by LPS also contributed to inhibition of activation by rIFN gamma. Thus, release of LPS may afford microorganisms a means by which to interfere with immunologically mediated enhancement of the respiratory burst-dependent antimicrobial capacity of macrophages.  相似文献   

4.
Integrin-mediated interactions between the basement membrane and epithelial cells control the differentiation of epithelia. We characterized the modulation of adhesive behaviors to basement membrane proteins and of integrin function in the human colon adenocarcinoma HT-29 cell line, which differentiates into enterocytes after the substitution of galactose for glucose in the medium. We demonstrate an increased capability of these cells to adhere to collagen type IV during the early stage of differentiation. This effect occurs without any changes in integrin cell surface expression but rather results from an alpha2beta1/alpha3beta1 integrin switch, alpha3beta1 integrin becoming the major collagen receptor. The increase in laminin-5 secretion and deposit on the matrix is a key factor in the mechanism regulating cell adhesion, because it is responsible for the activation of alpha3beta1 integrin. Furthermore, down-regulation of RhoA GTPase activity occurs during HT-29 cell differentiation and correlates with the activation of the integrin alpha3beta1. Indeed, C3 transferase, a RhoA GTPase inhibitor, induces a similar alpha2beta1/alpha3beta1 switch in undifferentiated HT-29 cells. These results indicate that the decrease in RhoA activation is the biochemical mechanism underlying this integrin switch observed during cell differentiation. The physiological relevance of such modulation of integrin activity in the functioning of the crypt-villus axis is discussed.  相似文献   

5.
The effects of the differentiating agent N-methylformamide (NMF) on cell proliferation and antigenic pattern of HT-29 colon carcinoma cells have been investigated. The cell line was cultured in the presence, or absence, of 1% NMF and tested for the above mentioned characteristics, both in vitro and after injection into nude mice. The percentage of cells in the various cell cycle compartments was estimated by flow cytometry. The presentation on the cell surface of molecules such as tumour associated antigens (TAAs), HLA class I molecules and epidermal growth factor receptor (EGF-R) was analysed by ELISA, flow cytometry and immunohistochemistry. Results demonstrate that NMF impairs HT-29 cell proliferation with a remarkable accumulation in the G0/G1 phases, as well as inducing a modification of the membrane antigenic pattern. The presence of NMF in the culture medium decreases the TAAs and EGF-R whereas HLA antigen maintains the same level of positivity in the two cell lines. These alterations are consistent with a different behaviour in vivo of the tumours originated from NMF treated and untreated cells. Tumours derived from NMF treated cells show a delay in the appearance and low levels of immunodetectable carcinoembryonic antigen (CEA) molecules.  相似文献   

6.
Peroxisome proliferator-activated receptor gamma (PPARγ) plays an important role in the differentiation of intestinal cells and tissues. Our previous reports indicate that PPARγ is expressed at considerable levels in human colon cancer cells. This suggests that PPARγ expression may be an important factor for cell growth regulation in colon cancer. In this study, we investigated PPARγ expression in 4 human colon cancer cell lines, HT-29, LOVO, DLD-1, and Caco-2. Real-time polymerase chain reaction (PCR) and Western blot analysis revealed that the relative levels of PPARγ mRNA and protein in these cells were in the order HT-29>LOVO>Caco-2>DLD-1. We also found that PPARγ overexpression promoted cell growth inhibition in PPARγ lower-expressing cell lines (Caco-2 and DLD-1), but not in higher-expressing cells (HT-29 and LOVO). We observed a correlation between the level of PPARγ expression and the cells' sensitivity for proliferation.  相似文献   

7.
HT29-D4 clonal cells can be induced to differentiate by a simple alteration of the culture medium, that is, by the replacement of glucose by galactose [Fantini, J., et al. (1986) J. Cell Sci., 83:235-249] as reported for the nonclonal HT29 cells [Pinto, M., (1982) Biol. Cell, 44:193-196]. An essential property of the HT29-D4 cell line is the fact that no cell loss occurs after the medium change, so that the differentiated cells can be considered as the true counterpart of the undifferentiated one. This model is particularly suitable to study morphological and biochemical events associated with the progressive establishment of the differentiation state. We report here that carcinoembryonic antigen (CEA), a 180 kDa glycoprotein originally described as a colon tumor associated antigen, is faintly expressed at the surface of undifferentiated HT29-D4 cells. These cells release a small amount of CEA (2.5 ng/10(6) cells/24 hr) in the culture medium. Fourty-eight hours after glucose substitution by galactose, both CEA cell surface expression and release are strongly enhanced as demonstrated by immunofluorescence and immunoprecipitation studies. Ten days after the medium change, the amount of CEA released reaches a maximum value of 130 ng/10(6) cells/24 hr, which remains stable for differentiated HT29-D4 cells cultured in glucose-free, galactose-containing medium (Gal-medium) for several months. HT29-D4 cells grown in Gal-medium in porous-bottom culture dishes generate leakproof epithelial monolayers. We have successfully performed an independent radioiodination of the apical and basolateral domains of these cells, followed by immunoprecipitation. We demonstrate that CEA is expressed exclusively at the apical surface of differentiated HT29-D4 cells, since the 180 kDa polypeptide was immunoprecipitated only when the radioiodination was performed at the apical side of the monolayer. Leakproof HT29-D4 monolayers cultured in permeable chambers were also used to demonstrate that CEA was exclusively released in the medium bathing the apical side of the cells. In conclusion, this study of cell surface CEA expression and CEA release during the process of differentiation of HT29-D4 cells demonstrated that 1) CEA cell surface expression and CEA release are correlated with cell differentiation; 2) CEA is expressed in the apical brush border membrane of differentiated HT29-D4 cells; and 3) CEA release is exclusively oriented toward the apical side of the polarized monolayer.  相似文献   

8.
Epidermal growth factor (EGF) receptor ligands such as EGF and transforming growth factor-alpha (TGF-alpha) play an important role in controlling the proliferation, survival, morphology, and motility of colonic epithelial cells. There is also increasing evidence that growth factors and extracellular matrix (ECM) proteins cooperate to regulate these cellular processes. We have reported previously that autocrine TGF-alpha and an unidentified ECM protein in the serum-free conditioned medium of the human colon carcinoma cell line LIM1215 synergize to induce spreading of these cells in low-density cultures. We have now purified the ECM protein secreted by LIM1215 cells and show that it synergizes with EGF to induce spreading of LIM1215 cells and other human cell lines from the colon and other tissues. The purified ECM migrated as a single protein band with an apparent molecular mass of approximately 800 kDa on SDS-PAGE under nonreducing conditions and, under reducing conditions, as three protein bands of approximately 360, 210, and 200 kDa. Immunoblotting experiments and mass spectrometry analysis of tryptic digests on the purified protein identified the 360-, 210-, and 200-kDa protein bands as laminin alpha5, beta1, and gamma1 chains, respectively, indicating that LIM1215 cells secrete laminin-10 (alpha5 beta1 gamma1). In serum-free medium, LIM1215 cells adhere to laminin-10 primarily via alpha2 beta1 and alpha3 beta1 integrin receptors. EGF-induced spreading of LIM1215 cells on laminin-10 is partially inhibited by pretreatment of the cells with blocking antibodies directed against integrin alpha3 or beta1 but not alpha2, alpha6, or beta4 subunits. Spreading is almost completely inhibited by blocking alpha3 + alpha2, alpha3 + alpha6, or beta1 + beta4 integrin chains and results in cell death. Increased spreading in the presence of EGF correlates with up-regulation of alpha6 beta4 integrins in these cells after exposure to EGF. These results indicate that colon cancer cells attach and spread on laminin-10 via multiple integrin receptors and suggest a critical role for alpha3 beta1 integrins in the spreading response. Together, our results support the concept that the adhesive properties of colon cancer cells are modulated by autocrine production of TGF-alpha and laminin-10 and autocrine induction of appropriate integrins.  相似文献   

9.
HT 29 cells, an established cell line of human colon adenocarcinoma, were grown in RPMI 1640 medium without or with cholesterol at 25, 50, 100 micrograms/ml concentrations. In some experiments 100 or 200 U/ml alfa-2-A recombinant Interferon were added to the medium. Only in the case of the highest cholesterol concentration there was a reduced number of cells at confluence. Moreover, only the production of CEA increased in the presence of cholesterol. Interferon did not affect cell growth appreciably but stimulated CEA release into the medium during the first three days of culture. Morphological analysis of cells in the presence of cholesterol seems to indicate an attempt of the cells to differentiate.  相似文献   

10.
Wong HP  Ho JW  Koo MW  Yu L  Wu WK  Lam EK  Tai EK  Ko JK  Shin VY  Chu KM  Cho CH 《Life sciences》2011,88(25-26):1108-1112
AimsStress has been implicated in the development of cancers. Adrenaline levels are increased in response to stress. The effects of adrenaline on colon cancer are largely unknown. The aims of the study are to determine the effects of adrenaline in human colon adenocarcinoma HT-29 cells and the possible underlying mechanisms involved.Main methodsThe effect of adrenaline on HT-29 cell proliferation was determined by [3H] thymidine incorporation assay. Expression of cyclooxygenase-2 (COX-2) and vascular endothelial growth factor (VEGF) were detected by Western blot. Matrix metalloproteinase-9 (MMP-9) activity and prostaglandin E2 (PGE2) release were determined by zymography and enzyme immunoassay, respectively.Key findingsAdrenaline stimulated HT-29 cell proliferation. This was accompanied by the enhanced expression of COX-2 and VEGF in HT-29 cells. Adrenaline also upregulated MMP-9 activity and PGE2 release. Adrenaline stimulated HT-29 cell proliferation which was reversed by COX-2 inhibitor sc-236. COX-2 inhibitor also reverted the action of adrenaline on VEGF expression and MMP-9 activity. Further study was performed to determine the involvement of β-adrenoceptors. The stimulatory action of adrenaline on colon cancer growth was blocked by atenolol and ICI 118,551, a β1- and β2-selective antagonist, respectively. This signified the role of β-adrenoceptors in this process. In addition, both antagonists also abrogated the stimulating actions of adrenaline on COX-2, VEGF expression, MMP-9 activity and PGE2 release in HT-29 cells.SignificanceThese results suggest that adrenaline stimulates cell proliferation of HT-29 cells via both β1- and β2-adrenoceptors by a COX-2 dependent pathway.  相似文献   

11.
The human colon cancer cell line HT-29 remains totally undifferentiated when glucose is present in the culture medium (HT-29 Glc+), while the same cells may undergo typical enterocytic differentiation after reaching confluence when grown in glucose-deprived medium (HT-29 Glc-). Recently, we demonstrated a deficiency in the overall N-glycan processing in confluent undifferentiated cells, whereas differentiated cells follow a classical pattern of N-glycosylation. The main changes in N-glycosylation observed in confluent undifferentiated cells may be summarised as follows: 1) the conversion of high mannose into complex glycopeptides is greatly decreased; 2) this decreased conversion could be a consequence of an accumulation of Man9-8-GlcNAc2-Asn high mannose species. Whether these changes in N-glycan processing appear progressively during cell culture or are already present from the beginning of the culture was investigated in this study by comparing the actual status of N-glycan processing in exponentially growing HT-29 Glc- and HT-29 Glc+ cells. Under these conditions, HT-29 Glc- cells do not exhibit any characteristics of differentiation. The conversion of high mannose into complex glycoproteins is severely reduced in HT-29 Glc+ cells, regardless of the growth phase studied. In contrast, HT-29 Glc- cells display a normal pattern of N-glycan processing in both growth phases. We therefore conclude that N-glycan processing may be used as an early biochemical marker of the enterocytic differentiation process of HT-29 cells.  相似文献   

12.
Cyclic phosphatidic acid (cPA), a structural analog of lysophosphatidic acid (LPA), is one of the simplest phospholipids found in every cell type. cPA is a specific, high-affinity antagonist of peroxisome proliferator-activated receptor gamma (PPARγ); however, the molecular mechanism by which cPA inhibits cellular proliferation remains to be clarified. In this study, we found that inhibition of PPARγ prevents proliferation of human colon cancer HT-29 cells. cPA suppressed cell growth, and this effect was reversed by the addition of a PPARγ agonist. These results indicate that the physiological effects of cPA are partly due to PPARγ inhibition. Our results identify PPARγ as a molecular mediator of cPA activity in HT-29 cells, and suggest that cPA and the PPARγ pathway might be therapeutic targets in the treatment of colon cancer.  相似文献   

13.
14.
Several lines of evidence suggest that tumor-derived trypsin contributes to the growth and invasion of cancer cells. We have recently shown that trypsin is a potent growth factor for colon cancer cells through activation of the G protein-coupled receptor protease-activated receptor 2 (PAR2). Here, we analyzed the signaling pathways downstream of PAR2 activation that lead to colon cancer cell proliferation in HT-29 cells. Our data are consistent with the following cascade of events upon activation of PAR2 by the serine protease trypsin or the specific PAR2-activating peptide (AP2): (i) a matrix metalloproteinase-dependent release of transforming growth factor (TGF)-alpha, as demonstrated with TGF-alpha-blocking antibodies and measurement of TGF-alpha in culture medium; (ii) TGF-alpha-mediated activation of epidermal growth factor receptor (EGF-R) and subsequent EGF-R phosphorylation; and (iii) activation of ERK1/2 and subsequent cell proliferation. The links between these events are demonstrated by the fact that stimulation of cell proliferation and ERK1/2 upon activation of PAR2 is reversed by the metalloproteinase inhibitor batimastat, TGF-alpha-neutralizing antibodies, EGF-R ligand binding domain-blocking antibodies, and the EGF-R tyrosine kinase inhibitors AG1478 and PD168393. Therefore, transactivation of EGF-R appears to be a major mechanism whereby activation of PAR2 results in colon cancer cell growth. By using the Src tyrosine kinase inhibitor PP2, we further showed that Src plays a permissive role for PAR2-mediated ERK1/2 activation and cell proliferation, probably acting downstream of the EGF-R. These data explain how trypsin exerts robust trophic action on colon cancer cells and underline the critical role of EGF-R transactivation.  相似文献   

15.
Peroxisome proliferator-activated receptor gamma (PPARγ) is a nuclear receptor that plays an essential role in cell proliferation, apoptosis, and inflammation. It is over-expressed in many types of cancer, including colon, stomach, breast, and lung cancer, suggesting that regulation of PPARγ might affect cancer pathogenesis. Here, using a proteomic approach, we identify PTB-associated splicing factor (PSF) as a novel PPARγ-interacting protein and demonstrate that PSF is involved in several important regulatory steps of colon cancer cell proliferation. To investigate the relationship between PSF and PPARγ in colon cancer, we evaluated the effects of PSF expression in DLD-1 and HT-29 colon cancer cell lines, which express low and high levels of PPARγ, respectively PSF affected the ability of PPARγ to bind, and expression of PSF siRNA significantly suppressed the proliferation of colon cancer cells. Furthermore, PSF knockdown induced apoptosis via activation of caspase-3. Interestingly, DLD-1 cells were more susceptible to PSF knockdown-induced cell death than HT-29 cells. Our data suggest that PSF is an important regulator of cell death that plays critical roles in the survival and growth of colon cancer cells. The PSF-PPARγ axis may play a role in the control of colorectal carcinogenesis. Taken together, this study is the first to describe the effects of PSF on cell proliferation, tumor growth, and cell signaling associated with PPARγ.  相似文献   

16.
Several studies indicated that people who live in the Mediterranean region have very low rates of chronic diseases such as cardiovascular disease and cancer. It is well known that Mediterranean-style diet is rich in vegetables, tomato, fruit, fish and olive oil. These important dietary components may contribute to lower risk of cancer. Lycopene, a major component in tomato, exhibited potential anticarcinogenic activity. Previous studies showed that consumption of fish containing eicosapentaenoic acid (EPA) correlated with reduced risk of cancer. However, the combined effects of lycopene and EPA on the proliferation of human colon cancer have not been studied well yet. Thus, we investigated the anticancer properties and therapeutic potential of lycopene and EPA in human colon cancer HT-29 cells. In this study, we determined the combined effects of lycopene and EPA on the proliferation of human colon cancer HT-29 cells. We demonstrated that low concentration of lycopene and EPA could synergistically inhibit the proliferation of colon cancer cells. The inhibitory mechanism was associated with suppression of phosphatidylinositol 3-kinase/Akt signaling pathway. Furthermore, treatment of lycopene and EPA also synergistically blocked the activation of downstream mTOR molecule. Immunocytochemical staining results revealed that lycopene and EPA could also up-regulate the expression of apoptotic proteins such as Bax and Fas ligand to suppress cell survival. In conclusion, our novel findings suggest that lycopene and EPA synergistically inhibited the growth of human colon cancer HT-29 cells even at low concentration. The inhibitory effects of lycopene and EPA on cell proliferation of human colon cancer HT-29 cells were, in part, associated with the down-regulation of the PI-3K/Akt/mTOR signaling pathway.  相似文献   

17.
The present experiments examined the potential ability of parathyroid hormone-related protein (PTHrP) to influence growth of the human colon cancer cell HT-29 and the ability of the cell to adhere to several extracellular matrix (ECM) proteins found in normal tissues. Addition of PTHrP analogs, PTHrP (1-34), PTHrP (67-86), or PTHrP (107-139), to HT-29 cells in culture did not influence cell growth or the adhesion of the cells to wells coated with fibronectin, laminin, or collagen type I. Likewise, in HT-29 cells induced to overexpress PTHrP by stable transfection with PTHrP cDNA, compared to vector-transfected control HT-29 cells, no effect on cell growth occurred. However, in the transfected cells, the increased production of PTHrP significantly enhanced cell adhesion to type I collagen but not to fibronectin or laminin. The results raise the possibility that PTHrP might play a role in colon tumor invasion and metastasis by influencing cell adhesion to specific extracellular matrix proteins.  相似文献   

18.
19.
Colon cancer is a malignancy that develops in colon and rectal tissues. The prognosis for metastatic colon cancer remains poor, and novel therapeutic options are required to reduce colon cancer mortality. Recently, intracellular cAMP levels have been suggested to influence the behavior of cancer cells. Intriguingly, cyclic phosphatidic acid (cPA) and its structural analogs inhibit growth in many cancer cell lines, and our previous work has suggested that cPA increases cAMP production. Phosphodiesterase (PDE) type 3 isoforms PDE3A and PDE3B are expressed mainly in cardiovascular tissue and adipose tissue, respectively. Moreover, increase in intracellular cAMP levels has been associated with the inhibition of growth in colon cancer cells. These findings suggest that cPA could be used in colon cancer therapy. In this study, we found that cPA inhibited the growth of HT-29 cells, which express high levels of PDE3B, but not the growth of DLD-1 cells, which express low levels of PDE3B. Furthermore, cPA inhibited the phosphorylation of Akt in HT-29 cells in a dose-dependent fashion. Our results suggest that PDE3B expression and intracellular cAMP levels are correlated with the proliferation of colon cancer cells. These findings demonstrate for the first time that cPA may serve as a useful a molecule in targeted therapy for colon cancer.  相似文献   

20.
Serine proteases are now considered as crucial contributors to the development of human colon cancer. We have shown recently that thrombin is a potent growth factor for colon cancer cells through activation of the aberrantly expressed protease-activated receptor 1 (PAR1). Here, we analyzed the signaling pathways downstream of PAR1 activation, which lead to colon cancer cell proliferation in HT-29 cells. Our data are consistent with the following cascade of events on activation of PAR1 by thrombin or specific activating peptide: (a) a matrix metalloproteinase-dependent release of transforming growth factor-alpha (TGF-alpha) as shown with TGF-alpha blocking antibodies and measurement of TGF-alpha in culture medium; (b) TGF-alpha-mediated activation of epidermal growth factor receptor (EGFR) and subsequent EGFR phosphorylation; and (c) activation of extracellular signal-regulated protein kinase 1/2 (ERK1/2) and subsequent cell proliferation. The links between these events are shown by the fact that stimulation of cell proliferation and ERK1/2 on activation of PAR1 is reversed by the MMP inhibitor batimastat, TGF-alpha neutralizing antibodies, EGFR ligand binding domain blocking antibodies, and the EGFR tyrosine kinase inhibitors AG1478 and PD168393. Therefore, transactivation of EGFR seems to be a major mechanism whereby activation of PAR1 results in colon cancer cell growth. Finally, PAR1 activation induces Src phosphorylation, which is reversed by using the Src tyrosine kinase inhibitor PP2, suggesting that Src activation plays a permissive role for PAR1-mediated ERK1/2 activation and cell proliferation probably acting downstream of the EGFR. These data explain how thrombin exerts robust trophic action on colon cancer cells and underline the critical role of EGFR transactivation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号