首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Two cod stocks (western Baltic cod, WBC, and eastern Baltic cod, EBC) are managed in the Baltic Sea which is characterized by different main spawning areas and different main spawning periods. In this study we analyse the spatial and temporal occurrence of spawning individuals of both cod stocks in the main spawning grounds of the Baltic Sea based on eight microsatellite loci. Our results suggest that EBC (Gadus morhua callarias) has formed currently temporally stable, substantially homogeneous population not only in the Bornholm Sea (ICES SD: 25) but also in the Arkona Sea (ICES SD: 24). The presented analyses proved that EBC (G. m. callarias) can temporarily also spawn in the Belt Sea.  相似文献   

2.
The stable isotope ratios (δ13C and δ15N) of three tissues with different metabolic rates (plasma, liver, and muscle) were used to investigate temporal variation in diet among nine individual Baltic ringed seals (Phoca hispida botnica Gmelin) from the Bothnian Bay, northeast Baltic Sea. The isotope values from plasma should reflect the most recent diet, values from liver the diet of the past weeks prior to sampling, and values from muscle should integrate diet over almost the entire breeding season of the ringed seals. In general, δ13C values of liver were more enriched in 13C than were those of either muscle or plasma, suggesting that the diet of the seals may have included a higher proportion of 13C‐enriched benthic prey in April. Females showed more variable δ13C values than males, suggesting possible gender differences in diet or in foraging locations. The differences that were apparent between females possibly reflect individual variation in the onset and duration of parturition and lactation, both of which likely restrict female foraging. Previous data from parasite infections and from alimentary tract contents of the same seals were linked to the isotope data to assist in drawing inferences about changes in the diets of individual seals.  相似文献   

3.
We investigated the seasonal maturity development of cod in four areas of the Baltic Sea. Two different spawning peaks were identified and found to be consistent over the period 1992–2005. In the Kiel Bight and Mecklenburg Bight (ICES SD 22) a spawning peak was observed from March to April (spring spawning). In the areas of the Arkona Sea (ICES SD 24) and Bornholm Sea (ICES SD 25) the spawning peak occurred during summer. In the Bornholm Sea, the main spawning activities began in June and ended in September, with a spawning peak in June–August (summer spawning). In the Arkona Sea, which is a transition area between the Mecklenburg Bight and the central Baltic Sea, spawning began in March and lasted until July, with a spawning peak in June–July (summer spawning). Seasonal maturity development and proportions of spawning cod in June in the Arkona Sea were similar to that of the Bornholm Sea. In addition, the proportion of spawning cod in the Arkona Sea was positively correlated with the size of the spawning stock in the Bornholm Sea. Our results provide evidence of a spatial expansion of spawning activities of the summer spawning stock from the eastern Baltic Sea into the Arkona Sea. Therefore, the Arkona Sea should be considered as one of the spawning habitats of the summer spawning stock of Baltic cod.  相似文献   

4.
Conventional tags applied to individuals have been used to investigate animal movement, but these methods require tagged individuals be recaptured. Maps of regional isotopic variability known as “isoscapes” offer potential for various applications in migration research without tagging wherein isotope values of tissues are compared to environmental isotope values. In this study, we present the spatial variability in oxygen () and dissolved inorganic carbon (δ13CDIC) isotope values of Baltic Sea water. We also provide an example of how these isoscapes can reveal locations of individual animal via spatial probability surface maps, using the high‐resolution salmon otolith isotope data from salmon during their sea‐feeding phase in the Baltic Sea. A clear latitudinal and vertical gradient was found for both and δ13CDIC values. The difference between summer and winter in the Baltic Sea values was only slight, whereas δ13CDIC values exhibited substantial seasonal variability related to algal productivity. Salmon otolith δ18Ooto and δ13Coto values showed clear differences between feeding areas and seasons. Our example demonstrates that dual isotope approach offers great potential for estimating probable fish habitats once issues in model parameterization have been resolved.  相似文献   

5.
Ethanol storage and lipid and urea extraction had no effect on bluespotted maskray Neotrygon kuhlii muscle δ13C values whereas urea‐removal and ethanol storage increased δ15N values. Results presented here show a significant δ15N increase post‐urea removal and provide additional support for this approach in future elasmobranch stable‐isotope analysis (SIA) studies. Further experimental work on other elasmobranch species is needed to assess extraction and preservation effects on stable‐isotope (SI) values.  相似文献   

6.
In the Baltic Sea, herring stocks are surveyed and managed according to a spatial allocation based on ICES (International Council for the Exploration of the Sea) subdivisions. In the western Baltic, the distribution areas of two stocks overlap: the Western Baltic Spring Spawning Herring (WBSSH) and the Central Baltic Herring (CBH). Survey results of length‐at‐age data indicate in Subdivision (SD) 24, which is a part of the WBSSH management area, that a considerable fraction of CBH is present and correspondingly erroneously allocated to WBSSH stock indices. Accordingly, a stock Separation Function (SF) based on growth parameters was established to identify the fraction of CBH in the WBSSH area. In the present study, the SF was applied to 8 years of data from the GERman Acoustic Survey (GERAS), which is conducted annually in autumn in ICES subdivisions 21‐24. Results showed a distinct fraction of CBH in SD 24, and exclusion of the CBH greatly improved the quality of the GERAS index used in the assessment of the WBSSH stock.  相似文献   

7.
Fatty acids in muscle tissue and eggs of female Atlantic salmon Salmo salar spawners were analysed to evaluate the dietary quality of their final feeding areas in the Baltic Sea. The final likely feeding area was identified by comparing stable carbon and nitrogen isotope composition of the outermost growth region (final annulus) of scales of returned S. salar with that of reference S. salar caught from different feeding areas. Some overlap of stable‐isotope reference values among the three areas, in addition to prespawning fasting, decreased the ability of muscle tri‐acylglycerols to discriminate the final likely feeding area and the area's dietary quality. Among three long‐chained polyunsaturated fatty acids, docosahexaenoic acid (DHA; 22:6n‐3), eicosapentaenoic acid (EPA; 20:5n‐3) and arachidonic acid (ARA; 20:4n‐6), the proportions of ARA in total lipids of spawning S. salar muscle and eggs showed a significant negative correlation with increasing probability of S. salar having returned from the Baltic Sea main basin (i.e. the Baltic Sea proper). The results suggest that ARA in muscle and eggs is the best dietary indicator for dietary characteristics of final marine feeding area dietary characteristics among S. salar in the Baltic Sea.  相似文献   

8.
The long‐distance migrations by marine fishes are difficult to track by field observation. Here, we propose a new method to track such migrations using stable nitrogen isotopic composition at the base of the food web (δ15NBase), which can be estimated by using compound‐specific isotope analysis. δ15NBase exclusively reflects the δ15N of nitrate in the ocean at a regional scale and is not affected by the trophic position of sampled organisms. In other words, δ15NBase allows for direct comparison of isotope ratios between proxy organisms of the isoscape and the target migratory animal. We initially constructed a δ15NBase isoscape in the northern North Pacific by bulk and compound‐specific isotope analyses of copepods (n = 360 and 24, respectively), and then we determined retrospective δ15NBase values of spawning chum salmon (Oncorhynchus keta) from their vertebral centra (10 sections from each of two salmon). We then estimated the migration routes of chum salmon during their skeletal growth by using a state‐space model. Our isotope tracking method successfully reproduced a known chum salmon migration route between the Okhotsk and Bering seas, and our findings suggest the presence of a new migration route to the Bering Sea Shelf during a later growth stage.  相似文献   

9.
Several different factors in the collection and preservation of whale skin and blubber samples were examined to determine their effect on the results obtained by stable nitrogen and carbon isotope (δ15N and δ13C) analysis. Samples of wet killer whale skin retained their original stable isotope values for up to 14 d at 4°C or lower. However, decomposition significantly changed the δ15N value within 3 d at 20°C. Storage at ?20°C was as effective as ?80°C for the preservation of skin and blubber samples for stable isotope analysis for at least a year. By contrast, once a skin sample had been freeze‐dried and lipid extracted, the stable isotope values did not change significantly when it was stored dry at room temperature for at least 12 mo. Preservation of whale skin samples for a month in DMSO‐salt solution, frozen or at room temperature, did not significantly change the δ15N and δ13C values of lipid extracted tissues, although the slight changes seen could influence results of a study if only small changes are expected.  相似文献   

10.
The world's oceans have undergone significant ecological changes following European colonial expansion and associated industrialization. Seabirds are useful indicators of marine food web structure and can be used to track multidecadal environmental change, potentially reflecting long‐term human impacts. We used stable isotope (δ13C, δ15N) analysis of feathers from glaucous‐winged gulls (Larus glaucescens) in a heavily disturbed region of the northeast Pacific to ask whether diets of this generalist forager changed in response to shifts in food availability over 150 years, and whether any detected change might explain long‐term trends in gull abundance. Sampled feathers came from birds collected between 1860 and 2009 at nesting colonies in the Salish Sea, a transboundary marine system adjacent to Washington, USA and British Columbia, Canada. To determine whether temporal trends in stable isotope ratios might simply reflect changes to baseline environmental values, we also analysed muscle tissue from forage fishes collected in the same region over a multidecadal timeframe. Values of δ13C and δ15N declined since 1860 in both subadult and adult gulls (δ13C, ~ 2–6‰; δ15N, ~4–5‰), indicating that their diet has become less marine over time, and that birds now feed at a lower trophic level than previously. Conversely, forage fish δ13C and δ15N values showed no trends, supporting our conclusion that gull feather values were indicative of declines in marine food availability rather than of baseline environmental change. Gradual declines in feather isotope values are consistent with trends predicted had gulls consumed less fish over time, but were equivocal with respect to whether gulls had switched to a more garbage‐based diet, or one comprising marine invertebrates. Nevertheless, our results suggest a long‐term decrease in diet quality linked to declining fish abundance or other anthropogenic influences, and may help to explain regional population declines in this species and other piscivores.  相似文献   

11.
Estimates of terrestrial carbon isotope discrimination are useful to quantify the terrestrial carbon sink. Carbon isotope discrimination by terrestrial ecosystems may vary on seasonal and interannual time frames, because it is affected by processes (e.g. photosynthesis, stomatal conductance, and respiration) that respond to variable environmental conditions (e.g. air humidity, temperature, light). In this study, we report simulations of the temporal variability of canopy‐scale C3 photosynthetic carbon isotope discrimination obtained with an ecophysiologically based model (ISOLSM) designed for inclusion in global models. ISOLSM was driven by half‐hourly meteorology, and parameterized with eddy covariance measurements of carbon and energy fluxes and foliar carbon isotope ratios from a pine forest in Metolius (OR). Comparing simulated carbon and energy fluxes with observations provided a range of parameter values that optimized the simulated fluxes. We found that the sensitivity of photosynthetic carbon isotope discrimination to the slope of the stomatal conductance equation (m, Ball–Berry constant) provided an additional constraint to the model, reducing the wide parameter space obtained from the fluxes alone. We selected values of m that resulted in similar simulated long‐term discrimination as foliar isotope ratios measured at the site. The model was tested with 13C measurements of ecosystem (δR) and foliar (δf) respiration. The daily variability of simulated 13C values of assimilated carbon (δA) was similar to that of observed δf, and higher than that of observed and simulated δR. We also found similar relationships between environmental factors (i.e. vapor pressure deficit) and simulated δR as measured in ecosystem surveys of δR. Therefore, ISOLSM reasonably simulated the short‐term variability of δA controlled by atmospheric conditions at the canopy scale, which can be useful to estimate the variability of terrestrial isotope discrimination. Our study also shows that including the capacity to simulate carbon isotope discrimination, together with simple ecosystem isotope measurements, can provide a useful constraint to land surface and carbon balance models.  相似文献   

12.
Spatial variation in marine oxygen isotope ratios (δ18O) resulting from differential evaporation rates and precipitation inputs is potentially useful for characterizing marine mammal distributions and tracking movements across δ18O gradients. Dentine hydroxyapatite contains carbonate and phosphate that precipitate in oxygen isotopic equilibrium with body water, which in odontocetes closely tracks the isotopic composition of ambient water. To test whether dentine oxygen isotope composition reliably records that of ambient water and can therefore serve as a proxy for odontocete distribution and movement patterns, we measured δ18O values of dentine structural carbonate (δ18OSC) and phosphate (δ18OP) of seven odontocete species (n = 55 individuals) from regional marine water bodies spanning a surface water δ18O range of several per mil. Mean dentine δ18OSC (range +21.2 to +25.5‰ VSMOW) and δ18OP (+16.7 to +20.3‰) values were strongly correlated with marine surface water δ18O values, with lower dentine δ18OSC and δ18OP values in high‐latitude regions (Arctic and Eastern North Pacific) and higher values in the Gulf of California, Gulf of Mexico, and Mediterranean Sea. Correlations between dentine δ18OSC and δ18OP values with marine surface water δ18O values indicate that sequential δ18O measurements along dentine, which grows incrementally and archives intra‐ and interannual isotopic composition over the lifetime of the animal, would be useful for characterizing residency within and movements among water bodies with strong δ18O gradients, particularly between polar and lower latitudes, or between oceans and marginal basins.  相似文献   

13.
Analyses of the stable isotope composition of feathers can provide significant insight into the spatial structure of bird migration. We collected feathers from Great Reed Warblers Acrocephalus arundinaceus, Clamorous Reed Warblers A. stentoreus and a small sample of their hybrids in a sympatric breeding population in Kazakhstan to assess natural variation in stable isotope signatures and delineate wintering sites. The Great Reed Warbler is a long‐distance migrant that overwinters in sub‐Saharan Africa, whereas the Clamorous Reed Warbler performs a short‐distance migration to the Indian sub‐continent. Carbon (δ13C), nitrogen (δ15N) and deuterium (δD) isotope signatures were obtained from winter‐grown feathers of adult birds. There were highly significant differences in δD and less significant differences in δ13C between Great and Clamorous Reed Warblers. Thus, our results show that the stable isotope technique, and in particular the deuterium (δD) signal, resolves continental variation in winter distribution between these closely related Acrocephalus species with sympatric natal origin. The isotope signatures of hybrid Great × Clamorous Reed Warblers clustered with those of the Great Reed Warblers. Hence, a parsimonious suggestion is that the hybrids undergo moult in Afrotropical wintering grounds, as do the Great Reed Warblers. The observed δD values fell within the range of expected values based on available precipitation data collected at precipitation stations across the wintering continents of each species. However, the power to predict the winter origin of birds in our study system using these data was weak as the expected values ranged widely at this broad continental scale.  相似文献   

14.
Nitrogen isotope composition (δ15N) in plant organic matter is currently used as a natural tracer of nitrogen acquisition efficiency. However, the δ15N value of whole leaf material does not properly reflect the way in which N is assimilated because isotope fractionations along metabolic reactions may cause substantial differences among leaf compounds. In other words, any change in metabolic composition or allocation pattern may cause undesirable variability in leaf δ15N. Here, we investigated the δ15N in different leaf fractions and individual metabolites from rapeseed (Brassica napus) leaves. We show that there were substantial differences in δ15N between nitrogenous compounds (up to 30‰) and the content in (15N enriched) nitrate had a clear influence on leaf δ15N. Using a simple steady‐state model of day metabolism, we suggest that the δ15N value in major amino acids was mostly explained by isotope fractionation associated with isotope effects on enzyme‐catalysed reactions in primary nitrogen metabolism. δ15N values were further influenced by light versus dark conditions and the probable occurrence of alternative biosynthetic pathways. We conclude that both biochemical pathways (that fractionate between isotopes) and nitrogen sources (used for amino acid production) should be considered when interpreting the δ15N value of leaf nitrogenous compounds.  相似文献   

15.
We analyzed the δ13C and δ15N values in the vibrissae of captive adult breeding South American sea lions (Otaria byronia) fed at a constant diet and then used this information to analyze the change in stable isotope values along the vibrissae from wild individuals. The overall diet‐to‐vibrissa discrimination factor of the captive animals was 3.0‰ ± 0.1‰ for δ13C and 3.6‰ ± 0.1‰ for δ15N, but the stable isotope ratios fluctuated periodically despite constant diet. The δ13C and δ15N values of the captive male declined at the end of the breeding season, whereas the δ13C values of the female increased during the central part of pregnancy and the δ15N values peaked during lactation. The δ13C and δ15N values of adult wild specimens also fluctuated periodically and vibrissae growth rate (0.15 mm/d in both sexes) was slightly lower than in captivity (0.17 mm/d), assuming an annual periodicity for oscillations. Similarities in the amplitude of the cycles of captive and wild males suggested that fasting was probably the main source of periodic variability in the δ15N of wild males, whereas pregnancy and lactation were probably the main source of periodic variability for the δ13C of wild females.  相似文献   

16.
Within-lake variability in carbon and nitrogen stable isotope signatures   总被引:3,自引:0,他引:3  
1. We assessed spatial and temporal variation in carbon and nitrogen isotopic signatures in different compartments of a single lake ecosystem. Stable isotope analyses were made on samples of particulate organic matter (POM), zooplankton, periphyton, macrophytes, macroinvertebrates and fish collected from several locations throughout the ice‐free period. 2. No spatial variation in δ13C or δ15N values was found for pelagic samples of POM and zooplankton. However, pelagic δ15N signatures increased steadily through the summer resulting in an almost 6‰ average increase in POM and zooplankton. A concurrent decrease in epilimnetic nitrate concentrations suggested that the increase in δ15N of POM and zooplankton could have resulted from a progressive 15N‐enrichment of the available inorganic nitrogen pool as the size of this pool was reduced. 3. Significant spatial variation in isotopic ratios was observed within littoral and profundal communities. Some spatial differences were likely related to lake‐specific characteristics, such as a major inlet and a small harbour area and some were interconnected with temporal events. 4. Marked differences between spring and autumn δ15N and δ13C values of fish at one site probably reflected a spring spawning immigration from a larger downstream lake and also indicated limited dispersal of these immigrants. 5. Our results indicate that restricted sampling of ecosystem components from lakes may provide misleading single values for the isotope end members needed for quantitative uses of stable isotopes in mixing models and for estimating trophic position. Hence we strongly advise that studies of individual lakes, or multiple lake comparisons, that utilise stable isotope analyses should pay more attention to potential within lake spatial and temporal variability of isotope ratios.  相似文献   

17.
1. We studied seasonal changes in the carbon and nitrogen stable isotope ratios of larval Chironomus anthracinus and C. plumosus from the profundal sediments of four contrasting lakes. 2. Pronounced seasonal changes in both δ13C and δ15N values were evident in chironomid larvae of both species from two summer‐stratified, eutrophic lakes: Esthwaite Water and Wyresdale Park. Changes were most marked in the larvae of C. plumosus and in larvae from greater depths. In contrast, neither C. anthracinus in summer‐stratified but mesotrophic Schöhsee, nor C. plumosus in polymictic Großer Binnensee, showed marked seasonality in larval stable isotope ratios. 3. The particularly strong 13C‐depletion of larvae from the stratified, eutrophic lakes is attributed to a significant contribution of methane‐derived carbon to their diets. Feeding by larvae on isotopically light methanotrophic bacteria appears to occur mainly when autumn overturn of the water column restores oxygenated conditions to the sediment surface. At this time both δ13C and δ15N values of larvae decreased sharply. 4. Changes in the mean stable isotope ratio of the larval populations can also occur when larger, more isotopically light, larvae pupate and emigrate from the population to hatch as imagos. This effect can induce seasonal changes in larval isotope values even in lakes in which there is no evidence of a significant involvement of methane‐derived carbon in their diets. Variations in emergence patterns between species and between lakes may generate differences in the seasonal pattern of change in stable isotope ratios in larval populations. 5. Our results emphasise the importance of adequate seasonal sampling if stable isotope ratios are to be used as biomarkers to study the role of key groups, such as chironomid larvae, in the trophic structure of lakes.  相似文献   

18.
Foliar carbon isotope discrimination (Δ) of C3 plants decreases in water‐deficit situations as discrimination by the photosynthetic primary carboxylation reaction decreases. This diminished Δ in leaves under water deficit can be used as a tracer to study whole plant carbon allocation patterns. Carbon isotope composition (δ13C value) of leaf hot water extracts or leaf tissue sap represents a short‐term integral of leaf carbon isotope discrimination and thus represents the δ13C value of source carbon that may be distributed within a plant in water‐deficit situations. By plotting the δ13C values of source carbon against the δ13C values of sink tissues, such as roots or stems, it is possible to assess carbon allocation to and incorporation into sink organs in relation to already present biomass. This natural abundance labelling method has been tested in three independent experiments, a one‐year field study with the fruit tree species Ziziphus mauritiana and peach (Prunus persica), a medium‐term drought stress experiment with Ziziphus rotundifolia trees in the glasshouse, and a short‐term drought stress experiment with soybean (Glycine max). The data show that the natural abundance labelling method can be applied to qualitatively assess carbon allocation in drought‐stressed plants. Although it is not possible to estimate exact fluxes of assimilated carbon during water deficit the method represents an easy to use tool to study integrated plant adaptations to drought stress. In addition, it is a less laborious method that can be applied in field studies as well as in controlled experiments, with plants from any developmental stage.  相似文献   

19.
Recent studies showing consequences of species’ genetic diversity on ecosystem performance raise the concern of how key ecosystem species are genetically structured. The bladder wrack Fucus vesiculosus L. is a dominant species of macroalga in the northern Atlantic, and it is particularly important as a habitat‐forming species in the Baltic Sea. We examined the genetic structure of populations of F. vesiculosus with a hierarchical approach from a within‐shore scale (10 m) to a between‐seas scale (Baltic Sea–Skagerrak, 800 km). Analysis of five microsatellite loci showed that population differentiation was generally strong (average FST = 12%), being significant at all spatial scales investigated (101, 103, 104–5, 106 m). Genetic differentiation between seas (Baltic Sea and Skagerrak) was substantial. Nevertheless, the effects of isolation by distance were stronger within seas than between seas. Notably, Baltic summer‐reproducing populations showed a strong within‐sea, between‐area (70 km) genetic structure, while Baltic autumn‐reproducing populations and Skagerrak summer‐reproducing populations revealed most genetic diversity between samples within areas (<1 km). Despite such differences in overall structure, Baltic populations of summer‐ and autumn‐reproducing morphs did not separate in a cluster analysis, indicating minor, if any, barriers to gene flow between them. Our results have important implications for management and conservation of F. vesiculosus, and we raise a number of concerns about how genetic variability should be preserved within this species.  相似文献   

20.
The oxygen isotope signature of sulphate (δ18Osulphate) is increasingly used to study nutritional fluxes and sulphur transformation processes in a variety of natural environments. However, mechanisms controlling the δ18Osulphate signature in soil–plant systems are largely unknown. The objective of this study was to determine key factors, which affect δ18Osulphate values in soil and plants. The impact of an 18O‐water isotopic gradient and different types of fertilizers was investigated in a soil incubation study and a radish (Raphanus sativus L.) greenhouse growth experiment. Water provided 31–64% of oxygen atoms in soil sulphate formed via mineralization of organic residues (green and chicken manures) while 49% of oxygen atoms were derived from water during oxidation of elemental sulphur. In contrast, δ18Osulphate values of synthetic fertilizer were not affected by soil water. Correlations between soil and plant δ18Osulphate values were controlled by water δ18O values and fertilizer treatments. Additionally, plant δ34S data showed that the sulphate isotopic composition of plants is a function of S assimilation. This study documents the potential of using compound‐specific isotope ratio analysis for investigating and tracing fertilization strategies in agricultural and environmental studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号