首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
  • 1.1. The effect of eyestalk ablation on preadults of Callinectes similis exposed to a constant salinity (30%.) and to simulated tidal changes in salinity (30-11 to 30%.) were measured.
  • 2.2. In constant salinity, crabs showed a persistent respiratory rhythm, with a maximum oxygen consumption during the day. Under these conditions, ablation significantly increased the respiratory rate but not the rhythm.
  • 3.3. In variable salinities, the highest respiratory rates occurred in salinities of 11 and 16%. during the night. In these crabs, ablation of eyestalks and subsequent injection of eyestalk extracts did not alter the respiration rate rhythm.
  • 4.4. The circadian rhythm is controlled by the periodicity of environmental changes instead of the influence of eyestalk hormones.
  • 5.5. Regulation of metabolism in C. similis associated with osmoregulation involves other neurosecretory organs.
  相似文献   

2.
Mahon JD 《Plant physiology》1977,60(6):817-821
Pisum sativum L. cv. Trapper plants were inoculated and grown in a controlled environment on N-free nutrient solution. After 4 weeks N was supplied to treatment plants as NH4NO3, KNO3, or NH4Cl and rates of C2H2 reduction, root + nodule respiration, and leaf photosynthesis were determined 1 week later. The increase in respiration per unit of C2H2 reduction was not affected by either the form of N added or the light conditions during growth, although the basal respiration rate with no C2H2 reduction increased with irradiance level. The mean regression coefficient from plots of respiration versus C2H2 reduction was 0.23 + 0.04 (P [unk] .01) mg of CO2 (μmol of C2H2 reduced)−1 which was very similar to the value for the coefficient of respiration associated with nitrogenase activity estimated by subtracting growth and maintenance respiration. Since the rate of N accumulation in N-free nutrient conditions was proportional to the rate of C2H2 reduction, it appears that the method gives a true estimate of the energy requirements for N fixation which for these conditions was equivalent to 17 grams of carbohydrate consumed per gram of N fixed.  相似文献   

3.
Persistent circadian rhythms in photosynthesis and stomatal opening occurred in bean (Phaseolus vulgaris L.) plants transferred from a natural photoperiod to a variety of constant conditions. Photosynthesis, measured as carbon assimilation, and stomatal opening, as conductance to water vapor, oscillated with a freerunning period close to 24 h under constant moderate light, as well as under light-limiting and CO2-limiting conditions. The rhythms damped under constant conditions conducive to high photosynthetic rates, as did rates of carbon assimilation and stomatal conductance, and this damping correlated with the accumulation of carbohydrate. No rhythm in respiration occurred in plants transferred to constant darkness, and the rhythm in stomatal opening damped rapidly in constant darkness. Damping of rhythms also occurred in leaflets exposed to constant light and CO2-free air, demonstrating that active photosynthesis and not simply light was necessary for sustained expression of these rhythms. This is CIWDPB Publication No. 1142 This research was supported by National Science Foundation grant BSR 8717422 (C.B.F.) and a U.S. Department of Agriculture training grant to Stanford University (T.L.H.).  相似文献   

4.
We conducted an open-top chamber experiment for 3?years to examine the effect of elevated CO2 and temperature on soil respiration in experimental stands of Quercus glauca, an evergreen tree species common in the warm temperate zone of Japan. Seedlings of Q. glauca were planted in open-top chambers and treated with factorial combinations of ambient and elevated (ambient?×?1.4, ambient?×?1.8) CO2 concentrations and ambient and elevated (+3°C) air temperatures. Elevated CO2 significantly increased the total soil respiration rate (P?<?0.001) and the soil respiration rate at 15°C (R 15) (P?<?0.05) but had no significant effect on the temperature coefficient Q 10. Although temperature significantly affected total soil respiration rate (P?<?0.05), neither the R 15 nor the Q 10 of total soil respiration was affected significantly by the air temperature increase. Annual soil respiration rate, estimated from R 15, Q 10, and soil temperature data, tended to increase with elevated CO2 concentration. These results suggest that soil respiration rate in Japanese warm temperate broad-leaved forests dominated by Q. glauca is sensitive to elevated CO2 and is likely to increase under future climatic conditions.  相似文献   

5.
Hourly development during a normal day of photosynthesis, transpiration, leaf and root respiration, and of N.P.K nutrition in Zea mays. Metabolism of Zea mays L. cv. INRA F7×F2 can be measured hourly with the “C23A system”, under favourable and constant growth conditions. The photosynthesis is especially stable and is submitted only to a development linked with the leaf surface growth. During the vegetative stage the leaf surface increases regularly both in the day and in the night. The water loss does not change during the diurnal period and remains important during the night if humidity is less than 100%. The leaf respiration is nearly stable. The root respiration, measured with O2 and CO2, fluctuates according to a typical rhythm with two maxima. Day and night mean rates were about the same. The respiratory quotient is about one during the vegetative stage. There is no decrease in the rate of phosphate absorption during the night, and a very small decrease in the rate of nitrate absorption. Ammonium is totally consumed in the first hours after renewal of the nutrient solution. At the same time the potassium consumption is decreased, and then presents a maximum followed by a night reduction. Under our conditions, all of the observations allowed us to assume the presence of an adequate reserve of assimilates and suggest the existence of a precise regulation process, which can ensure an even day night functioning of the plant metabolism, but which does not preclude the presence of internal rhythms, as indicated by the oscillation of the root respiration.  相似文献   

6.
The 6-week period of development and maturation of the barley (Hordeum vulgare L.) floret from anthesis to harvest is characterized by two phases: an early phase of rapid increase in respiration rate and dry weight, and a late phase during which respiration decreased rapidly whereas dry weight remained unchanged. Consumption of O2 by the embryo changed little during the entire developmental period, whereas O2 uptake by the endosperm and the lemma and palea decreased significantly during the late phase.  相似文献   

7.
A numerical simulation model of coral polyp photosynthesis, respiration and calcification was developed. The model is constructed with three components (ambient seawater, coelenteron and calcifying fluid), and incorporates photosynthesis, respiration and calcification processes with transcellular ion transport by Ca-ATPase activity and passive transmembrane CO2 transport and diffusion. The model calculates dissolved inorganic carbon and total alkalinity in the ambient seawater, coelenteron and calcifying fluid, dissolved oxygen (DO) in the seawater and coelenteron and stored organic carbon (CH2O). To reconstruct the drastic variation between light and dark respiration, respiration rate dependency on DO in the coelenteron is incorporated. The calcification rate depends on the aragonite saturation state in the calcifying fluid (Ωa cal). Our simulation result was a good approximation of “light-enhanced calcification.” In our model, the mechanism is expressed as follows: (1) DO in the coelenteron is increased by photosynthesis, (2) respiration is stimulated by increased DO in the light (or respiration is limited by DO depletion in the dark), then (3) calcification increases due to Ca-ATPase, which is driven by the energy generated by respiration. The model simulation results were effective in reproducing the basic responses of the internal CO2 system and DO. The daily calcification rate, the gross photosynthetic rate and the respiration rate under a high-flow condition increased compared to those under the zero-flow condition, but the net photosynthetic rate decreased. The calculated calcification rate responses to variations in the ambient aragonite saturation state (Ωa amb) were nonlinear, and the responses agreed with experimental results of previous studies. Our model predicted that in response to ocean acidification (1) coral calcification will decrease, but will remain at a higher value until Ωa amb decreases to 1, by maintaining a higher Ωa cal due to the transcellular ion transport mechanism and (2) the net photosynthetic rate will increase.  相似文献   

8.
During aerobic respiration, microorganisms consume oxygen (O2) through the use of different types of terminal oxidases which have a wide range of affinities for O2. The Km values for O2 of these enzymes have been determined to be in the range of 3 to 200 nmol liter−1. In this study, we examined the time course of development of aerobic respiratory kinetics of four marine bacterial species (Dinoroseobacter shibae, Roseobacter denitrificans, Idiomarina loihiensis, and Marinobacter daepoensis) during exposure to decreasing O2 concentrations. The genomes of all four species have genes for both high-affinity and low-affinity terminal oxidases. The respiration rate of the bacteria was measured by the use of extremely sensitive optical trace O2 sensors (range, 1 to 1,000 nmol liter−1). Three of the four isolates exhibited apparent Km values of 30 to 60 nmol liter−1 when exposed to submicromolar O2 concentrations, but a decrease to values below 10 nmol liter−1 was observed when the respiration rate per cell was lowered and the cell size was decreased due to starvation. The fourth isolate did not reach a low respiration rate per cell during starvation and exhibited apparent Km values of about 20 nmol liter−1 throughout the experiment. The results clearly demonstrate not only that enzyme kinetics may limit O2 uptake but also that even individual cells may be diffusion limited and that this diffusion limitation is the most pronounced at high respiration rates. A decrease in cell size by starvation, due to limiting organic carbon, and thereby more efficient diffusion uptake may also contribute to lower apparent Km values.  相似文献   

9.

Background and aims

The knowledge of individual tree species impacts on soil respiration based on rigorous experimental designs is limited, but is crucial to help guide selection of species for reforestation and carbon (C) management purposes.

Methods

We assessed monthly soil respiration and its components, litterfall input, fine root production and mortality under 19-year-old native coniferous Cunninghamia lanceolata and broadleaved Mytilaria laosensis plantations in sub-tropical China.

Results

Total soil respiration from October 2011 to March 2013 was significantly lower under the C. lanceolata than the M. laosensis plantation. The difference in respiration rates derived from fine roots and the litter layer explained much of the variation of total soil respiration between the two tree species. We used an exponential equation and base temperature (10 °C) to normalize soil respiration rate and its components (R10) and determined the correlation between R10 and soil moisture. Although soil moisture had a positive relationship with R10 derived from roots or litter under both C. lanceolata and M. laosensis forests, these positive correlations were masked by negative relationships between soil moisture and R10 derived from root-free soil, which resulted in a neutral correlation between total R10 and soil moisture under C. lanceolata forests. Monthly litterfall input was associated with variation in concurrent total soil respiration rate under the M. laosensis plantation and respiration rate lagging 3 months behind under the C. lanceolata plantation, which may suggest that litterfall input from M. laosensis can more rapidly produce C substrates for microbial respiration than litterfall from C. lanceolata.

Conclusions

This study highlighted that tree species-induced variation in the quality and quantity of fine roots and litterfall can impact not only the soil respiration rate but also the seasonal variation model of forest soil respiration.  相似文献   

10.
The rhythmic movement of darkened Albizzia leaflets is accompanied by K+ flux in pulvinule motor cells whose turgor changes control opening and closing. The azide-sensitive open phase is promoted by an increase in temperature from 16 to 33C (Q10 = 3), implying active transport of K+ ions during this period. The azide-insensitive closed phase is less temperature-sensitive and has a Q10 less than 1, implying diffusion or some other physical process as the predominant pathway of K+ flux at this time. Thus rhythmic leaflet movement is probably due to oscillation in active K+ transport or membrane permeability or both. External electrolytes (0. 1 n) alter leaflet angle during the open, but not the closed, phase of the rhythm. All chlorides except NH4+ promote opening, with divalent more effective than monovalent ions. Some anions promote and others inhibit opening; activity is not correlated with charge. It is likely that electrolytes alter leaflet movement by altering K+ flux, accomplishing this by interacting with key macromolecules in motor cell membranes.  相似文献   

11.
The process of endogenous respiration of two strains of bakers'' yeast, Saccharomyces cerevisiae, was examined kinetically. The rate of respiration with respect to time in a non-nutrient medium was found to exhibit two phases: (a) a period of constant rate of O2 consumption and CO2 production (R.Q. = 1) characteristic of cells with ample concentrations of stored material; (b) a first order decline in rate of respiration with respect to time, where the rate was proportional to the concentration of some substrate, S. (R.Q. = 1 throughout second phase.) The nature of this substrate was reexamined and the evidence summarized confirms the notion that it is a carbohydrate, probably glycogen. These phases of endogenous respiration were shown to depend upon the age of the culture and the amount of substrate available.  相似文献   

12.
The aim of this study is to investigate the effects of an artificially controlled environment, particularly elevated total pressure, on net photosynthesis and respiration during plant growth. Pressure directly affects not only cells and organelles in leaves but also the diffusion coefficients and degrees of solubility of CO2 and O2. In this study, the effects of elevated total pressure on the rates of net photosynthesis and respiration of a model plant, Arabidopsis thaliana, were investigated in a chamber that newly developed in this study to control the total pressure. The results clearly showed that the rate of respiration decreased linearly with increasing total pressure at a high humidity. The rate of respiration decreased linearly with increasing total pressure up to 0.2 MPa, and increased with increasing total pressure from 0.3 to 0.5 MPa at a low humidity. The rate of net photosynthesis decreased linearly with increasing total pressure under a constant partial pressure of CO2 at 40 Pa. On the other hand, the rate of net photosynthesis was clearly increased by up to 1.6-fold with increasing total pressure and partial pressure of CO2.  相似文献   

13.
1. In relatively low concentrations of NaCl, KCl, and CaCl2 the rate of respiration of Bacillus subtilis remains fairly constant for a period of several hours, while in the higher concentrations, there is a gradual decrease in the rate. 2. NaCl and KCl increase the rate of respiration of Bacillus subtilis somewhat at concentrations of 0.15 M and 0.2 M respectively; in sufficiently high concentrations they decrease the rate. CaCl2 increases the rate of respiration of Bacillus subtilis at a concentration of 0.05 M and decreases the rate at somewhat higher concentrations. 3. The effects of salts upon respiration show a well marked antagonism between NaCl and CaCl2, and between KCl and CaCl2. The antagonism between NaCl and KCl is slight and the antagonism curve shows two maxima.  相似文献   

14.

Aims

Root respiration is a major contributor to soil CO2 flux, and its response to management practices needs to be evaluated. The aim was to determine the effect of management practices (tillage systems and nitrogen fertilization levels) on root respiration and to develop a model able to simulate root respiration and its components.

Methods

The study was carried out during two contrasting growing seasons (2007–2008 and 2008–2009). Root respiration, including root tissue respiration (R ts ) and rhizomicrobial respiration of exudates (R rz ), was estimated as the difference between the soil CO2 flux of cropped and bare soil (the so-called root exclusion technique). Additionally a novel sub-model of R ts , was used to simulate root respiration based on root growth and specific root respiration rates.

Results

Root respiration was reduced under no-tillage. The model agreed well with the patterns and the amounts of the observed values of root respiration, although prior calibration was needed.

Conclusions

Root respiration was reduced by the long-term adoption of no-tillage, but was increased by N fertilizer. The root exclusion technique and the model were useful means to estimate root respiration on cropland under semiarid Mediterranean conditions. Additionally the model successfully separated out the theoretical contributions of R ts and R rz to root respiration.  相似文献   

15.
Spectral analysis indicated the presence of a cytochrome cbb3 oxidase under microaerobic conditions in Azospirillum brasilense Sp7 cells. The corresponding genes (cytNOQP) were isolated by using PCR. These genes are organized in an operon, preceded by a putative anaerobox. The phenotype of an A. brasilense cytN mutant was analyzed. Under aerobic conditions, the specific growth rate during exponential phase (μe) of the A. brasilense cytN mutant was comparable to the wild-type specific growth rate (μe of approximately 0.2 h−1). In microaerobic NH4+-supplemented conditions, the low respiration of the A. brasilense cytN mutant affected its specific growth rate (μe of approximately 0.02 h−1) compared to the wild-type specific growth rate (μe of approximately 0.2 h−1). Under nitrogen-fixing conditions, both the growth rates and respiration of the wild type were significantly diminished in comparison to those under NH4+-supplemented conditions. Differences in growth rates and respiration between the wild type and the A. brasilense cytN mutant were less pronounced under these nitrogen-fixing conditions (μe of approximately 0.03 h−1 for the wild type and 0.02 h−1 for the A. brasilense cytN mutant). The nitrogen-fixing capacity of the A. brasilense cytN mutant was still approximately 80% of that determined for the wild-type strain. This leads to the conclusion that the A. brasilense cytochrome cbb3 oxidase is required under microaerobic conditions, when a high respiration rate is needed, but that under nitrogen-fixing conditions the respiration rate does not seem to be a growth-limiting factor.  相似文献   

16.
H. Löppert 《Planta》1983,159(4):329-335
Respiration rate, ATP content and membrane potential of Lemna have been measured as a function of the concentration of dissolved oxygen. Kinetic analysis showed that within the range from 1 μM to 20 μM O2, the respiration rate of isolated mitochondria and intact plants was a hyperbolic function of the oxygen concentration. The apparent Michaelis constant (K m ) for the oxygen of respiration of intact plants (1.15±0.08 μM) is close to that for isolated mitochondria (1.07±0.06 μM), so that diffusion of oxygen within the tissue was obviously not rate-limiting under the applied experimental conditions. The ATP level decreased in parallel with the respiration rate when the oxygen concentration was reduced. In contrast, the hyperpolarization of the membrane potential above the diffusion potential had already decreased at oxygen concentrations where the respiration rate and ATP level remained practically unchanged and was completely abolished at oxygen concentrations above the K m of respiration. This result is discussed according to the current models for electrogenic pumps. It is concluded that ATP cannot be the fuel for the electrogenic process under investigation.  相似文献   

17.
1. In highly hypertonic solutions of sea water the rate of respiration of Laminaria agardhii is rapidly reduced. 2. In highly hypotonic solutions the rate of respiration of Laminaria agardhii is reduced somewhat less rapidly than in the case of hypertonic solutions. 3. Hypertonic solutions of NaCl, CaCl2, and of mixtures of NaCl, and CaCl2 in the proportion of 50:1, all caused a decrease in the rate of respiration of wheat seedlings.  相似文献   

18.
During fasting, mice (Mus musculus) undergo daily bouts of torpor, considerably reducing body temperature (Tb) and metabolic rate (MR). We examined females of different laboratory strains (Balb/c, C57/6N, and CD1) to determine whether liver mitochondrial metabolism is actively reduced during torpor. In all strains, we found that state 3 (phosphorylating) respiration rate measured at 37 °C was reduced up to 35% during torpor for at least one of the substrates (glutamate and succinate) used to fuel respiration. The extent of this suppression varied and was correlated with Tb at sampling. This suggests that, at the biochemical level, the transition to and from a hypometabolic torpid state is gradual. In fasted non-torpid animals, Tb and MR still fluctuated greatly: Tb dropped by as much as 4 °C and MR was reduced up to 25% compared to fed controls. Changes in Tb and MR in fasted, non-torpid animals were correlated with changes in mitochondrial state 3 respiration rate measured at 37 °C. This suggests that fasting mice may conserve energy even when not torpid by occasionally reducing Tb and mitochondrial oxidative capacity to reduce MR. Furthermore, proton conductance was higher in torpid compared to non-torpid animals when measured at 15 °C (the lower limit of torpid Tb). This pattern is similar to that reported previously for daily torpor in Phodopus sungorus.  相似文献   

19.
To evaluate the effect of understory dwarf bamboo (Sasa senanensis) on soil respiration in forest ecosystems, we compared soil respiration rates between four deciduous broad-leaved forest sites representing two levels of understory Sasa (with and without) and two levels of forest stand age (50-year-old stand and 1-year-old stand after clearcut). The understory Sasa enhances the soil respiration rate both before and after the clearcutting of deciduous broad-leaved forest. The Sasa sites had larger total belowground biomass compared with the non-Sasa sites, which could be attributed to Sasa presence. Our results also suggest that clearcutting decreases temperature-normalized soil respiration rates (R 15) and temperature sensitivity (Q 10) in both Sasa and non-Sasa ecosystems. Clearcutting significantly reduced the fine root biomass of trees and Sasa. The fine roots of trees and Sasa had high specific respiration rates compared with larger roots and rhizomes at Sasa and non-Sasa sites, respectively. Therefore, we hypothesize that the loss of fine roots after clearcutting is responsible for the reduction in soil respiration rate. A comparison with other studies revealed a positive linear relationship between total (tree and Sasa) fine root biomass and R 15, suggesting that fine root biomass controls soil respiration at the landscape scale. The Q 10 value is also likely to be related to fine root biomass, although the relationship was not significant. We conclude that understory Sasa increases belowground biomass, especially fine roots, and the spatial variation in soil respiration at the landscape scale.  相似文献   

20.
Rates of respiration and growth were measured for larvae of the spider crab Hyas araneus L., reared in the laboratory from hatching to metamorphosis. The moulting cycle was simultaneously monitored. In both zoeal instars individual respiration rate (R) increased as a linear function of time (t) of development, whereas growth, measured as dry weight (W), carbon (C), nitrogen (N), hydrogen (H), and energy content (E, calculated from C) followed a power function of t. Weight-specific respiration rate (QO2) was in all instars maximum in early postmoult, and minimum in intermoult and early premoult. Zoea II and megalopa instars showed another conspicuous QO2 increase during late premoult. Respiration (both R and QO2)and growth of the megalopa could be described by non-linear (quadratic) functions of t. R and QO2 during this larval stage were not correlated with W, but were controlled by events of the moulting cycle: R followed a similar pattern to QO2 (minimum values in intermoult), whereas biomass of the megalopa changed conversely, with a maximum in intermoult and early premoult. The respiratory coefficient (i.e. the ratio of metabolic energy loss: energy gain by body growth) was far lower (<0.8) in the zoeal instars than in the megalopa (>5), suggesting a strongly reduced capability of energy conversion in the final larval stage of H. araneus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号