首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Different developmental stages (trochophores, nectochaetae, non-mature and mature adults) of Anaitides mucosa were investigated ultrastructurally. A. mucosa has protonephridia throughout its life; during maturity a ciliated funnel is attached to these organs. The protonephridial duct cells are multiciliated, while the terminal cells are monociliated. The single cilium is surrounded by 14 microvilli which extend into the duct lumen without coming into any contact with the duct cells. Corresponding ultrastructure and development indicate that larval and adult protonephridia are identical in A. mucosa. Differences between various developmental stages can be observed only in the number of cells per protonephridium. A comparison between the funnel cells, the cells of the coelothel and the duct cells reveals that the ciliated funnel is a derivative of the duct. Due to the identical nature of the larval and postlarval protonephridia, such a funnel cannot be a secondary structure. In comparison with the mesodermally derived metanephridial funnel in phoronids it seems likely that the metanephridia of annelids and phoronids evolved convergently.  相似文献   

2.
Cirratuliformia includes Acrocirridae, Cirratulidae, Ctenodrilidae, Flabelligeridae, Flotidae and Sternaspidae. The phylogenetic affinities have not been settled due to a limited availability of type or non-type material and the relationship between acrocirrids and flabelligerids have been problematical. In our study, the type material of all type species for all flabelligerid, and most acrocirrid genera have been studied and the morphological features have been used in a phylogenetic analysis. The results indicate that Acrocirridae, Ctenodrilidae, Fauveliopsidae, Flabelligeridae and Flotidae are monophyletic and that Sternaspidae falls within Cirratulidae; however, the latter conclusion might be reversed through increased taxon-sampling. The flabelligerid genera Brada, Flabelligera, Pherusa and Stylarioides each consists of several monophyletic groups and may be split. Conversely, Bradiella includes Diversibranchius, and the pelagic Buskiella includes Flota. The generic affinities of Poeobius remain uncertain, collecting better materials may resolve this issue.  相似文献   

3.
Coelomocytes of Nephtys coeca were studied by transmission electron microscopy. The majority of the coelomocytes were found to be structurally identical with the muscle cells of the body wall. Animals kept under unfavourable conditions tended to have an increased number of coelomocytes and a decreased thickness of the body wall. The muscular coelomocytes, probably released from the body wall, showed various degrees of decomposition, indicating a process of autophagy.  相似文献   

4.
Ravara, A., Wiklund, H., Cunha, M. R. & Pleijel, F. (2010). Phylogenetic relationships within Nephtyidae (Polychaeta, Annelida). —Zoologica Scripta, 39, 394–405. We present the first phylogeny of nephtyids, a common, soft‐bottom living polychaete family comprising five genera and over 100 species. Characters used to distinguish nephtyid genera are a matter of controversy and considerable confusion remains as to the generic delineations. The phylogeny is estimated with molecular data from the mitochondrial genes cytochrome oxidase I and 16S rDNA, the nuclear genes 18S rDNA and 28S rDNA and morphological data. The results reveal two well‐supported major clades, corresponding in part to the two main genera of the family, Aglaophamus and Nephtys. The species Nephtys pulchra and Nephtys australiensis are transferred to Aglaophamus, and new diagnoses for the genera are provided. Dentinephtys is synonymized with Nephtys, and Nephtys cornuta is sister to the remaining nephtyids and is referred to the new genus Bipalponephtys, together with Nephtys danida and Micronephthys neotena. Micronephthys is sister to Nephtys and Inermonephtys is of uncertain position.  相似文献   

5.
An update of the systematics is given for the eight most important interstitial polychaete families: Diurodrilidae, Nerillidae, Protodrilidae, Protodriloididae, Saccocirridae, Parergodrilidae, Polygordidae and Psammodrilidae. Additional information and new observations are presented for the Diurodrilidae, Nerillidae and Psammodrilidae. Three new supplementary evolutionary hypotheses for these families are here suggested: (I) basal position of Diurodrilidae in Polychaeta, (2) evolution of Nerillidae in mud, and (3) evolution from meio- to macrofaunal forms of Psammodrilidae.  相似文献   

6.
AbstractThe impact of a commonly-used antifouling algicide, Irgarol 1051, on the larval development and post-settlement metamorphosis of the barnacle, Balanus albicostatus Pilsbry (Crustacea: Cirripedia), and the larval metamorphosis of a serpulid polycheate, Pomatoleios kraussii Baird, was evaluated. In the case of B. albicostatus, larval mortality increased with an increase in the concentration of Irgarol 1051, and there was a shift in the larval stage targeted from advanced instars to early instars. Nauplii that survived to the cyprid instar stage when reared in the presence of Irgarol 1051 showed prolonged instar and total naupliar duration when compared to the controls. The post-settlement metamorphosis of cyprids significantly varied with Irgarol concentration and also with biofilm age. One and 2-d-old untreated biofilms showed higher metamorphosis when compared to 5-d-old biofilms. However, when the biofilms that promoted cyprid metamorphosis were treated with Irgarol 1051 at low concentrations, metamorphosis rates decreased. Cyprids were prevented from metamorphosing completely by biofilms treated at the highest concentration of Irgarol 1051. Inhibition of metamorphosis was also observed in the case of competent polychaete larvae when exposed to Irgarol 1051 compared to those exposed to metamorphosis inducers such as 3-iso-butyl-1-methylxanthine (IBMX) and natural biofilms. Identification of the pathway(s) that caused the promotory biofilms to become toxic when exposed to Irgarol 1051 is discussed.  相似文献   

7.
8.
Paleal notochaetae belonging to a number of Chrysopetalum species (Chrysopetalidae) were examined by scanning and transmission electron microscopy. Paleae are composed of broad medullary channels stacked with a regular series of horizontal fibrous diaphragms. The medullary part of the palea is surrounded by irregular rows of narrow tubular channels within the chaetal cortex. The origin and function of camerate chaetae is discussed.  相似文献   

9.
10.
11.
Venezuela possesses a great variety of coastal environments allowing for a high diversity of marine species. However, systematic studies on marine invertebrates are scarce, especially on polychaetes. The family Syllidae is poorly known, and only 14 genera and 42 species have been reported from this country. A total of 13 genera and 26 species the Syllidae were identified from benthic samples collected on different substrata of the northeastern coast of Venezuela. Of these, seven genera and 16 species constitute new records for Venezuela: Odontosyllis guillermoi, Syllides floridanus, Salvatoria clavata, Salvatoria limbata, Sphaerosyllis longicauda, Parapionosyllis longicirrata, Trypanosyllis parvidentata, Trypanosyllis vittigera, Opisthosyllis sp., Syllis amica, Syllis armillaris, Syllis gracilis, Syllis pseudoarmillaris, Syllis vittata, Parasphaerosyllis indica and Myrianida convoluta.  相似文献   

12.
13.
Morphology of the nervous system of Polychaeta (Annelida)   总被引:5,自引:3,他引:5  
The article summarizes our up to date knowledge about the morphology of the annelid, especially the polychaete, central and peripheral nervous system. Since the cephalic nervous system was in the focus of controversial discussions for decades, the structure of its neuropile, associated ganglia and nerves is reviewed in detail. The enormous variation of the ventral nerve cord and peripheral nerves is presented as well as a theory how this might have evolved. A ground pattern of the polychaete nervous system is suggested, based on developmental and regeneration studies.  相似文献   

14.
15.
Summary Early development of Platynereis massiliensis was studied in serial sections of fixed embryos and in living or fixed embryos whose nuclei had been made visible with a fluorescent label. The unfertilized egg is an ellipsoid with three axes of differing length. The longest axis corresponds to the dorsoventral axis of the developing embryo. Egg volume is ten times that in the sibling species, P. dumerilii, mainly due to increased yolk content. The timing and spatial pattern of cleavage were observed from first cleavage to the 62-cell stage. Volumes of the blastomeres, their nuclei, their yolk-free cytoplasm and their yolk were determined from serial sections up to the 29-cell stage. In the P. massiliensis embryo, cell cycles are on average 3.7 times longer than in P. dumerilii; volume proportions among the blastomeres also differ and the macromeres containing the bulk of yolk are particularly large, but otherwise the cleavage patterns, differential segregation of yolk and yolk-free cytoplasm, and the histogenetic fates of the blastomeres are the same as in P. dumerilii. This equivalence of cell lineage and of cytoplasmic segregation mechanisms in both species, maintained in spite of the different appearance of the embryos, suggests functional importance of and selective constraint on these developmental features. The relatively accelerated divisions of the 2d cell line in P. massiliensis may be interpreted as the precocious development of cell lines which give rise to adult structures. Several structures, obviously functional in developing P. dumerilii, have lost their function in P. massiliensis: the egg contains few cortical granules, giving rise to only a moderate egg jelly layer in the zygote; prototroch cells develop cilia, but the heavy embryo is unable to swim; the larva develops three pairs of parapodia but, unlike the corresponding stage in P. dumerilii, is not capable of coordinate locomotion. This loss of motility is related to the brooding habit of the species developing inside the parental tube and is explained as the result of a switch from pelagic to benthic, protected reproduction in P. massiliensis. Offprint requests to: A.W.C. Dorresteijn  相似文献   

16.
The structure and location of the diaphragm (gular membrane) was studied in five families of Terebelliformia: Terebellidae, Trichobranchidae, Pectinariidae, Ampharetidae and Alvinellidae, using dissections, histology, and scanning and transmission electron microscopy. Position, shape, and structure of the diaphragm differ in these taxa. In Terebellidae and Pectinariidae the diaphragm is straight. In Trichobranchidae, Ampharetidae and Alvinellidae it is funnel-shaped. Diaphragm possesses two contractile sacs in Terebellidae and Pectinariidae, one in Alvinellidae and none at all in Trichobranchidae. The relative size and form of the sacs varied. Representatives of the family Ampharetidae have one or two sacs or none at all. Four kinds of the diaphragm can be distinguished: strait with two sacs, funnel-shaped with two sacs, funnel-shaped with one sac, funnel-shaped without sacs. In some Alvinellidae, the diaphragm is fenestrated, while in all other taxa it is continuous. The wall of the sacs is more muscular than the wall of the remaining diaphragm. The diaphragm is attached to the body wall at different levels: between the third and fourth segments in pectinariids or between the fourth and fifth in terebellids, ampharetids, alvinellids and trichobranchids. In most cases, the diaphragm contains two coelothelial layers with a well-developed extra-cellular matrix in between, and one or two muscle layers. The maximum development of the muscle fibres occurs in Terebellidae; probably related to the length of buccal tentacles. Significance of morphological and ultrastructural peculiarities of the diaphragm is discussed.  相似文献   

17.
Based on electron microscopic observations, the structure of the solenocytes ofA. mucosa is described. The tube of the solenocyte is made up of 14–15 rods. These rods, which are filled with regularly packed filaments, are interconnected by an amorphous to filamentous substance. A single flagellum, lying in the tube, is surrounded by a sheet of amorphous material. The functional organization of the solenocytes is discussed.  相似文献   

18.
The nereid polychaete, Platynereis dumerilii, possess two pairs of post-trochophoral eyes with one vitreous body each. The development of these eyes has first been observed in 2-day-old larvae. Whether the eye anlagen arise from stem cells or from undifferentiated ectodermal tissue was not determined. At first, the anlagen of the anterior and the posterior eyes adjoin each other. They separate in late 3-day-old larvae. The first separated eye complexes consist each of two supporting and two sensory cells. The supporting cells synthesize two different kinds of granules, the pigment granules of the pigment cup and the prospective tubules of the vitreous body. These tubules accumulate in the distal process of the supporting cell. The vitreous body is formed by compartments of the supporting cells filled with the osmiophilic vitreous body tubules. The short, bulbar photosensory processes bear microvilli that emerge into the ocular cavity. At the apex of each sensory cell process, a single cilium (or occasionally two) arises. The sensory cells contain a different kind of pigment granule within their necks at the level of the pigment cup. The rate of eye development and differentiation varies. New supporting cells are added to the rim of the eye cup. They contribute to the periphery of the vitreous body like onion skins, and sensory cells move between supporting cells. The older the individual compartments of the vitreous body are, the more densely packed is their content of vitreous body tubules. Elongation of the sensory and supporting cell processes of the older cells increases the volume of the eye. The eyespots of the trochophore are briefly described as of the two-celled rhabdomeric type with a single basal body with ciliary rootlet.  相似文献   

19.
Summary The ultrastructure of gill epidermal cells of Diopatra neapolitana and their relationship with blood spaces are described. The existence of a basal infolding complex, related to the blood spaces, is also reported. A possible involvement of these cells in osmoregulation and ion interchange, apart from their well-known role in respiration, is suggested.Abbreviations bc Blood cell - bi Basal infolding - bl Basal lamina - bs Blood space - ci Cilia - cu Cuticle - db Dense body - EC Epidermal cell - Gc Golgi complex - id Interdigitation - j Junction - m Mitochondria - mv Microvilli - n Nucleus - pv Pinocytotic vesicle - rer Rough endoplasmic reticulum  相似文献   

20.
Summary The development of the blood vascular system (BVS) in larvae of the polychaete (Sabellaria cementarium was studied by light and electron microscopy. BVS formation begins in the metatrochophore, concomitant with onset of segmentation, and all major vessels and sinuses of the BVS have formed by the nectochaeta stage. Blood vessels form de novo by a separation of apposing basal extracellular matrices (ECM) of adjacent myoepithelial peritoneal cell layers, and blood sinuses also form de novo by a separation of the basal ECM of peritoneal cells from the basal ECM of the gut epithelium. Blood vessels and sinuses are lined only by the ECM of overlying cell layers. Podocytes are present overlying lateral esophageal and ventro-lateral trunk blood vessels. The results support the blastocoel theory of Lang (1904) and the segmentation hypothesis and structural model of Ruppert and Carle (1983) which presents the BVS of triploblastic Metazoa as a developmental and evolutionary modification of the basal ECM of overlying cell layers and argues that the adaptive significance of the BVS is to bypass septal partitions with a fluid transport system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号