首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The FYVE domain is a conserved protein motif characterized by its ability to bind with high affinity and specificity to phosphatidylinositol 3-phosphate (PI3P), a phosphoinositide highly enriched in early endosomes. The PI3P polar head group contacts specific amino acid residues that are conserved among FYVE domains. Despite full conservation of these residues, the ability of different FYVE domains to bind to endosomes in cells is highly variable. Here we show that the endosomal localization in intact cells absolutely requires structural features intrinsic to the FYVE domain in addition to the PI3P binding pocket. These features are involved in FYVE domain dimerization and in interaction with the membrane bilayer. These interactions, which are determined by non-conserved residues, are likely to be essential for the temporal and spatial control of protein associations at the membrane-cytosol interface within the endocytic pathway.  相似文献   

2.
FYVE domains are membrane targeting domains that are found in proteins involved in endosomal trafficking and signal transduction pathways. Most FYVE domains bind specifically to phosphatidylinositol 3-phosphate (PI(3)P), a lipid that resides mainly in endosomal membranes. Though the specific interactions between FYVE domains and the headgroup of PI(3)P have been well characterized, principally through structural studies, the available experimental structures suggest several different models for FYVE/membrane association. Thus, the manner in which FYVE domains adsorb to the membrane surface remains to be elucidated. Towards this end, recent experiments have shown that FYVE domains bind PI(3)P in the context of phospholipid bilayers and that hydrophobic residues on a conserved loop are able to penetrate the membrane interface in a PI(3)P-dependent manner.Here, the finite difference Poisson-Boltzmann (FDPB) method has been used to calculate the energetic interactions of FYVE domains with phospholipid membranes. Based on the computational analysis, it is found that (1) recruitment to membranes is facilitated by non-specific electrostatic interactions that occur between basic residues on the domains and acidic phospholipids in the membrane, (2) the energetic analysis can quantitatively differentiate among the modes of membrane association proposed by the experimentally determined structures, (3) FDPB calculations predict energetically feasible models for the membrane-associated states of FYVE domains, (4) these models are consistent with the observation that conserved hydrophobic residues insert into the membrane interface, and (5) the calculations provide a molecular model for the hydrophobic partitioning: binding of PI(3)P significantly neutralizes positive potential in the region of the hydrophobic residues, which acts as an "electrostatic switch" by reducing the energetic barrier for membrane penetration. Finally, the computational results are extended to FYVE domains of unknown structure through the construction of high quality homology models for human FYVE sequences.  相似文献   

3.
Hrs is an early endosomal protein that is tyrosine-phosphorylated in cells stimulated with growth factors. Hrs is thought to play a regulatory role in endocytosis of growth factor-receptor complexes through early endosomes. Early endosomal localization of Hrs seems to be essential for Hrs to exert its function in the endocytosis. Hrs has a FYVE finger domain that binds specifically to phosphatidylinositol 3-phosphate in vitro. The FYVE finger is a likely domain that mediates membrane association of endosomal proteins. In this study, we examined whether the FYVE finger participates in early endosomal targeting of Hrs. Hrs with a zinc binding-defective FYVE finger was still localized to early endosomes. In addition, the N-terminal FYVE finger-containing fragment of Hrs showed a cytosolic distribution in mammalian cells. These results indicate that the FYVE finger is not required for the localization of Hrs to early endosomes. Furthermore, by analyzing a series of deletion mutants of Hrs, we identified a sequence of about 100 amino acids within the C-terminal proline- and glutamine-rich region as a domain essential for the targeting of Hrs to early endosomes.  相似文献   

4.
Early endosome autoantigen localization to early endosomes is mediated by a C-terminal region, which includes a calmodulin binding motif, a Rab5 interaction site, and a FYVE domain that selectively binds phosphatidyl inositol 3-phosphate. The crystal structure of the C-terminal region bound to inositol 1,3-bisphosphate reveals an organized, quaternary assembly consisting of a parallel coiled coil and a dyad-symmetric FYVE domain homodimer. Structural and biochemical observations support a multivalent mechanism for endosomal localization in which domain organization, dimerization, and quaternary structure amplify the weak affinity and modest specificity of head group interactions with conserved residues. A unique mode of membrane engagement deduced from the quaternary structure of the C-terminal region provides insight into the structural basis of endosome tethering.  相似文献   

5.
PIKfyve is a phosphatidylinositol (PtdIns) 3-phosphate (P)-metabolizing enzyme, which, in addition to a C-terminally positioned catalytic domain, harbors several evolutionarily conserved domains, including a FYVE finger. The FYVE finger domains are thought to direct the protein localization to intracellular membrane PtdIns 3-P. Recent studies with several FYVE domain proteins challenge this general concept. Here we have examined the binding of PIKfyve's FYVE domain to PtdIns 3-P in vitro and in vivo and a plausible contribution of this binding mechanism for the intracellular localization of the full-length protein. We document now a specific and high affinity interaction of a recombinantly produced PIKfyve FYVE domain peptide fragment with PtdIns 3-P-containing liposomes that requires the presence of the conservative core of basic residues within the FYVE domain. PIKfyve localization to membranes of the late endocytic pathway was found to be absolutely dependent on the presence of an intact FYVE finger. Cell treatment with PI 3-kinase inhibitor wortmannin dissociated endosome-bound PIKfyve, indicating that the protein targeted the membrane PtdIns 3-P. An enzymatically inactive peptide fragment of the PIKfyve catalytic domain was found to also specifically bind to PtdIns 3-P-containing liposomes, with residue Lys-1999 being critical in the interaction. This binding, however, was of relatively low affinity and, in the cellular context, was found ineffective in directing the molecule to PtdIns 3-P-enriched endosomes. Collectively, these results demonstrate that interaction of the FYVE domain with PtdIns 3-P is absolutely necessary for PIKfyve targeting to the membranes of the late endocytic pathway and determine PIKfyve as a downstream effector of PtdIns 3-P.  相似文献   

6.
Eukaryotic signaling and trafficking proteins are rich in modular domains that bind cell membranes. These binding events are tightly regulated in space and time. The structural, biochemical, and biophysical mechanisms for targeting have been worked out for many families of membrane binding domains. This review takes a comparative view of seven major classes of membrane binding domains, the C1, C2, PH, FYVE, PX, ENTH, and BAR domains. These domains use a combination of specific headgroup interactions, hydrophobic membrane penetration, electrostatic surface interactions, and shape complementarity to bind to specific subcellular membranes.  相似文献   

7.
Rabip4 is a Rab4 effector, which possesses a RUN domain, two coiled-coil domains, and a FYVE finger. It is associated with the early endosomes and leads, in concert with Rab4, to the enlargement of endosomes, resulting in the fusion of sorting and recycling endosomes. Our goal was to characterize the role of these various domains in Rabip4 subcellular localization and their function in Chinese hamster ovary cells. Although the FYVE finger domain specifically bound phosphatidylinositol 3-phosphate and was necessary for the function of Rabip4, it was not sufficient for the protein association with membranes. Indeed a protein containing the FYVE finger and the Rab4-binding site was cytosolic, whereas the total protein was mostly associated to the membrane fraction, whether or not cells were pretreated with wortmannin. By contrast, a construct corresponding to the N-terminal end, Rabip4-(1-212), and containing the RUN domain was membrane-associated. The complete protein partitioned between the Triton X-100-insoluble and -soluble fractions and a wortmannin treatment increased the amount of the protein in the Triton X-100 fraction. Rabip4-(1-212) was totally Triton X-100-insoluble, and confocal microscopic examination showed that it labeled not only the endosomes, positive for Rabip4, but also a filamentous network with a honeycomb appearance. The Triton X-100-insoluble fraction that contains Rabip4 did not correspond to the caveolin or glycosylphosphatidylinositol-enriched lipid rafts. Rabip4 did not appear directly linked to actin but seemed associated to the actin network. We propose that the subcellular localization of the protein is primarily driven by the RUN domain to endosomal microdomains characterized by Triton X-100 insolubility and that the FYVE domain and the Rab4-binding domain then allow for the recruitment of the protein to lipophilic microdomains enriched in phosphatidylinositol 3-phosphate.  相似文献   

8.
The C2 domain is a Ca(2+)-dependent membrane-targeting module found in many cellular proteins involved in signal transduction or membrane trafficking. C2 domains are unique among membrane targeting domains in that they show a wide range of lipid selectivity for the major components of cell membranes, including phosphatidylserine and phosphatidylcholine. To understand how C2 domains show diverse lipid selectivity and how this functional diversity affects their subcellular targeting behaviors, we measured the binding of the C2 domains of group IVa cytosolic phospholipase A(2) (cPLA(2)) and protein kinase C-alpha (PKC-alpha) to vesicles that model cell membranes they are targeted to, and we monitored their subcellular targeting in living cells. The surface plasmon resonance analysis indicates that the PKC-alpha C2 domain strongly prefers the cytoplasmic plasma membrane mimic to the nuclear membrane mimic due to high phosphatidylserine content in the former and that Asn(189) plays a key role in this specificity. In contrast, the cPLA(2) C2 domain has specificity for the nuclear membrane mimic over the cytoplasmic plasma membrane mimic due to high phosphatidylcholine content in the former and aromatic and hydrophobic residues in the calcium binding loops of the cPLA(2) C2 domain are important for its lipid specificity. The subcellular localization of enhanced green fluorescent protein-tagged C2 domains and mutants transfected into HEK293 cells showed that the subcellular localization of the C2 domains is consistent with their lipid specificity and could be tailored by altering their in vitro lipid specificity. The relative cell membrane translocation rate of selected C2 domains was also consistent with their relative affinity for model membranes. Together, these results suggest that biophysical principles that govern the in vitro membrane binding of C2 domains can account for most of their subcellular targeting properties.  相似文献   

9.
FYVE domains are small zinc-finger-like domains found in many proteins that are involved in regulating membrane traffic and have been shown to bind specifically to phosphatidylinositol 3-phosphate (PtdIns-3-P). FYVE domains are thought to recruit PtdIns-3-P effectors to endosomal locations in vivo, where these effectors participate in controlling endosomal maturation and vacuolar protein sorting. We have compared the characteristics of PtdIns-3-P binding by the FYVE domain from Hrs-1 (the hepatocyte growth factor-regulated tyrosine kinase substrate) with those of specific phosphoinositide binding by Pleckstrin homology (PH) domains. Like certain PH domains (such as that from phospholipase C-delta(1)), the Hrs-1 FYVE domain specifically recognizes a single phosphoinositide. However, while phosphoinositide binding by highly specific PH domains is driven almost exclusively by interactions with the lipid headgroup, this is not true for the Hrs-1 FYVE domain. The phospholipase C-delta(1) PH domain shows a 10-fold preference for binding isolated headgroup over its preferred lipid (phosphatidylinositol 4,5-bisphosphate) in a membrane, while the Hrs-1 FYVE domain greatly prefers (more than 50-fold) intact lipid in a bilayer over the isolated headgroup (inositol 1,3-bisphosphate). By contrast with reports for certain PH domains, we find that this preference for membrane binding over interaction with soluble lipid headgroups does not require FYVE domain oligomerization.  相似文献   

10.
Early endosome antigen 1 (EEA1) is 170-kDa polypeptide required for endosome fusion. EEA1 binds to both phosphtidylinositol 3-phosphate (PtdIns3P) and to Rab5-GTP in vitro, but the functional role of this dual interaction at the endosomal membrane is unclear. Here we have determined the structural features in EEA1 required for binding to these ligands. We have found that the FYVE domain is critical for both PtdIns3P and Rab5 binding. Whereas PtdIns3P binding only required the FYVE domain, Rab5 binding additionally required a 30-amino acid region directly adjacent to the FYVE domain. Microinjection of glutathione S-transferase fusion constructs into Cos cells revealed that the FYVE domain alone is insufficient for localization to cellular membranes; the upstream 30-amino acid region required for Rab5 binding must also be present for endosomal binding. The importance of Rab5 in membrane binding of EEA1 is underscored by the finding that the increased expression of wild-type Rab5 increases endosomal binding of EEA1 and decreases its dependence on PtdIns3P. Thus, the levels of Rab5 are rate-limiting for the recruitment of EEA1 to endosome membranes. PtdIns3P may play a role in modulating the Rab5 EEA1 interaction.  相似文献   

11.

Background  

FYVE domains have emerged as membrane-targeting domains highly specific for phosphatidylinositol 3-phosphate (PtdIns(3)P). They are predominantly found in proteins involved in various trafficking pathways. Although FYVE domains may function as individual modules, dimers or in partnership with other proteins, structurally, all FYVE domains share a fold comprising two small characteristic double-stranded β-sheets, and a C-terminal α-helix, which houses eight conserved Zn2+ ion-binding cysteines. To date, the structural, biochemical, and biophysical mechanisms for subcellular targeting of FYVE domains for proteins from various model organisms have been worked out but plant FYVE domains remain noticeably under-investigated.  相似文献   

12.
Double FYVE‐containing protein 1 (DFCP1) is ubiquitously expressed, participates in intracellular membrane trafficking and labels omegasomes through specific interactions with phosphatidylinositol‐3‐phosphate (PI3P). Previous studies showed that subcellular DFCP1 proteins display multi‐organelle localization, including in the endoplasmic reticulum (ER), Golgi apparatus and mitochondria. However, its localization and function on lipid droplets (LDs) remain unclear. Here, we demonstrate that DFCP1 localizes to the LD upon oleic acid incubation. The ER‐targeted domain of DFCP1 is indispensable for its LD localization, which is further enhanced by double FYVE domains. Inhibition of PI3P binding at the FYVE domain through wortmannin treatment or double mutation at C654S and C770S have no effect on DFCP1's LD localization. These show that the mechanisms for DFCP1 targeting the omegasome and LDs are different. DFCP1 deficiency in MEF cells causes an increase in LD number and reduces LD size. Interestingly, DFCP1 interacts with GTP‐bound Rab18, an LD‐associated protein. Taken together, our work demonstrates the dynamic localization of DFCP1 is regulated by nutritional status in response to cellular metabolism.  相似文献   

13.
Phosphatidylinositol 3-phosphate [PtdIns(3)P], a phospholipid produced by PI 3-kinases in early endosomes and multivesicular bodies, often serves as a marker of endosomal membranes. PtdIns(3)P recruits and activates effector proteins containing the FYVE or PX domain and therefore regulates a variety of biological processes including endo- and exocytosis, membrane trafficking, protein sorting, signal transduction and cytoskeletal rearrangement. Structures and PtdIns(3)P binding modes of several FYVE and PX domains have recently been characterized, unveiling the molecular basis underlying multiple cellular functions of these proteins. Here, structural and functional aspects and current mechanisms of the multivalent membrane anchoring by the FYVE and PX domains are reviewed and compared.  相似文献   

14.
Membrane targeting of C2 domains of phospholipase C-delta isoforms.   总被引:1,自引:0,他引:1  
The C2 domain is a Ca(2+)-dependent membrane-targeting module found in many cellular proteins involved in signal transduction or membrane trafficking. To understand the mechanisms by which the C2 domain mediates the membrane targeting of PLC-delta isoforms, we measured the in vitro membrane binding of the C2 domains of PLC-delta1, -delta3, and -delta4 by surface plasmon resonance and monolayer techniques and their subcellular localization by time-lapse confocal microscopy. The membrane binding of the PLC-delta1-C2 is driven by nonspecific electrostatic interactions between the Ca(2+)-induced cationic surface of protein and the anionic membrane and specific interactions involving Ca(2+), Asn(647), and phosphatidylserine (PS). The PS selectivity of PLC-delta1-C2 governs its specific Ca(2+)-dependent subcellular targeting to the plasma membrane. The membrane binding of the PLC-delta3-C2 also involves Ca(2+)-induced nonspecific electrostatic interactions and PS coordination, and the latter leads to specific subcellular targeting to the plasma membrane. In contrast to PLC-delta1-C2 and PLC-delta3-C2, PLC-delta4-C2 has significant Ca(2+)-independent membrane affinity and no PS selectivity due to the presence of cationic residues in the Ca(2+)-binding loops and the substitution of Ser for the Ca(2+)-coordinating Asp in position 717. Consequently, PLC-delta4-C2 exhibits unique pre-localization to the plasma membrane prior to Ca(2+) import and non-selective Ca(2+)-mediated targeting to various cellular membranes, suggesting that PLC-delta4 might have a novel regulatory mechanism. Together, these results establish the C2 domains of PLC-delta isoforms as Ca(2+)-dependent membrane targeting domains that have distinct membrane binding properties that control their subcellular localization behaviors.  相似文献   

15.
Teleman AA  Strigini M  Cohen SM 《Cell》2001,105(5):559-562
Phosphatidylinositol 3-phosphate directs the endosomal localization of regulatory proteins by binding to FYVE and PX domains. New structures of these domains complexed with the phosphoinositide headgroup show how interactions with phosphate and hydroxyl groups differentiate this lipid from all others.  相似文献   

16.
Protrudin is a FYVE (Fab 1, YOTB, Vac 1, and EEA1) domain-containing protein involved in transport of neuronal cargoes and implicated in the onset of hereditary spastic paraplegia. Our image-based screening of the lipid binding domain library revealed novel plasma membrane localization of the FYVE domain of protrudin unlike canonical FYVE domains that are localized to early endosomes. The membrane binding study by surface plasmon resonance analysis showed that this FYVE domain preferentially binds phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2), phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4)P2), and phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) unlike canonical FYVE domains that specifically bind phosphatidylinositol 3-phosphate (PtdIns(3)P). Furthermore, we found that these phosphoinositides (PtdInsP) differentially regulate shuttling of protrudin between endosomes and plasma membrane via its FYVE domain. Protrudin mutants with reduced PtdInsP-binding affinity failed to promote neurite outgrowth in primary cultured hippocampal neurons. These results suggest that novel PtdInsP selectivity of the protrudin-FYVE domain is critical for its cellular localization and its role in neurite outgrowth.  相似文献   

17.
The assembly of actin monomers into filaments is a highly regulated basic cellular function. The structural organization of a cell, morphological changes or cell motility is dependent on actin filament dynamics. While within the last decade substantial knowledge has been acquired about actin dynamics at the cell membrane, today only little is known about the actin cytoskeleton and its functions at intracellular endosomal and organelle membranes. The Spir actin nucleators are specifically targeted towards endosomal membranes by a FYVE zinc finger membrane localization domain, and provide an important link to study the role of actin dynamics in the regulation of intracellular membrane transport. Spir proteins are the founding members of a novel class of actin nucleation factors, which initiate actin polymerization by binding of actin monomers to one or multiple Wiskott-Aldrich syndrome protein (WASp) homology 2 (WH2) domains. Although Spir proteins can nucleate actin polymerization in vitro by themselves, they form a regulatory complex with the distinct actin nucleators of the formin subgroup (Fmn) of formins. A cooperative mechanism in actin nucleation has been proposed. Ongoing studies on the function and regulation of the Spir proteins in vesicle transport processes will reveal important insights into actin dynamics at intracellular membranes and how this regulates the highly directed and controlled routes of intracellular membrane trafficking.  相似文献   

18.
Targeting of a wide variety of proteins to membranes involves specific recognition of phospholipid head groups and insertion into lipid bilayers. For example, proteins that contain FYVE domains are recruited to endosomes through interaction with phosphatidylinositol 3-phosphate (PtdIns(3)P). However, the structural mechanism of membrane docking and insertion by this domain remains unclear. Here, the depth and angle of micelle insertion and the lipid binding properties of the FYVE domain of early endosome antigen 1 are estimated by NMR spectroscopy. Spin label probes incorporated into micelles identify a hydrophobic protuberance that inserts into the micelle core and is surrounded by interfacially active polar residues. A novel proxyl PtdIns(3)P derivative is developed to map the position of the phosphoinositide acyl chains, which are found to align with the membrane insertion element. Dual engagement of the FYVE domain with PtdIns(3)P and dodecylphosphocholine micelles yields a 6-fold enhancement of affinity. The additional interaction of phosphatidylserine with a conserved basic site of the protein further amplifies the micelle binding affinity and dramatically alters the angle of insertion. Thus, the FYVE domain is targeted to endosomes through the synergistic action of stereospecific PtdIns(3)P head group ligation, hydrophobic insertion and electrostatic interactions with acidic phospholipids.  相似文献   

19.
Signaling by phosphatidylinositol 3-kinases (PI3Ks) is often mediated by proteins which bind PI3K products directly and are localized to intracellular membranes rich in PI3K products. The FYVE finger domain binds with high specificity to PtdIns3P and proteins containing this domain have been shown to be important components of diverse PI3K signaling pathways. The genome of the yeast Saccharomyces cerevisiae encodes five proteins containing FYVE domains, including Pib1p, whose function is unknown. In addition to a FYVE finger motif, the primary structure of Pib1p contains a region rich in cysteine and histidine residues that we demonstrate binds 2 mol eq of zinc, consistent with this region containing a RING structural domain. The Pib1p RING domain exhibited E2-dependent ubiquitin ligase activity in vitro, indicating that Pib1p is an E3 RING-type ubiquitin ligase. Fluorescence microscopy was used to demonstrate that a GFP-Pib1p fusion protein localized to endosomal and vacuolar membranes and deletional analysis of Pib1p domains indicated that localization of GFP-Pib1p is mediated solely by the FYVE domain. These results suggest that Pib1p mediates ubiquitination of a subset of cellular proteins localized to endosome and vacuolar membranes, and they expand the repertoire of PI3K-regulated pathways identified in eukaryotic cells.  相似文献   

20.
The FYVE domain is a small zinc binding module that recognizes phosphatidylinositol 3-phosphate [PtdIns(3)P], a phospholipid enriched in membranes of early endosomes and other endocytic vesicles. It is usually present as a single module or rarely as a tandem repeat in eukaryotic proteins involved in a variety of biological processes including endo- and exocytosis, membrane trafficking and phosphoinositide metabolism. A number of FYVE domain-containing proteins are recruited to endocytic membranes through the specific interaction of their FYVE domains with PtdIns(3)P. Structures and PtdIns(3)P binding modes of several FYVE domains have recently been characterized, shedding light on the molecular basis underlying multiple cellular functions of these proteins. Here, structural and functional aspects and the current mechanism of the multivalent membrane anchoring by monomeric or dimeric FYVE domain are reviewed. This mechanism involves stereospecific recognition of PtdIns(3)P that is facilitated by non-specific electrostatic contacts and modulated by the histidine switch, and is accompanied by hydrophobic insertion. Contributions of each component to the FYVE domain specificity and affinity for PtdIns(3)P-containing membranes are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号