首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
The bacterial tRNA(Lys)-specific PrrC-anticodon nuclease cleaves its natural substrate 5' to the wobble base, yielding 2',3'-cyclic phosphate termini. Previous work has implicated the anticodon of tRNA(Lys) as a specificity element and a cluster of amino acid residues at the carboxy-proximal half of PrrC in its recognition. We further examined these assumptions by assaying unmodified and hypomodified derivatives of tRNA(Lys) as substrates of wild-type and mutant alleles of PrrC. The data show, first, that the anticodon sequence and wobble base modifications of tRNA(Lys) play major roles in the interaction with anticodon nuclease. Secondly, a specific contact between the substrate recognition site of PrrC and the tRNA(Lys) wobble base is revealed by PrrC missense mutations that suppress the inhibitory effects of wobble base modification mutations. Thirdly, the data distinguish between the anticodon recognition mechanisms of PrrC and lysyl-tRNA synthetase.  相似文献   

2.
3.
Unusual anticodon loop structure found in E.coli lysine tRNA.   总被引:3,自引:1,他引:2       下载免费PDF全文
Although both tRNA(Lys) and tRNA(Glu) of E. coli possess similar anticodon loop sequences, with the same hypermodified nucleoside 5-methylaminomethyl-2-thiouridine (mnm5s2U) at the first position of their anticodons, the anticodon loop structures of these two tRNAs containing the modified nucleoside appear to be quite different as judged from the following observations. (1) The CD band derived from the mnm5s2U residue is negative for tRNA(Glu), but positive for tRNA(Lys). (2) The mnm5s2U monomer itself and the mnm5s2U-containing anticodon loop fragment of tRNA(Lys) show the same negative CD bands as that of tRNA(Glu). (3) The positive CD band of tRNA(Lys) changes to negative when the temperature is raised. (4) The reactivity of the mnm5s2U residue toward H2O2 is much lower for tRNA(Lys) than for tRNA(Glu). These features suggest that tRNA(Lys) has an unusual anticodon loop structure, in which the mnm5s2U residue takes a different conformation from that of tRNA(Glu); whereas the mnm5s2U base of tRNA(Glu) has no direct bonding with other bases and is accessible to a solvent, that of tRNA(Lys) exists as if in some way buried in its anticodon loop. The limited hydrolysis of both tRNAs by various RNases suggests that some differences exist in the higher order structures of tRNA(Lys) and tRNA(Glu). The influence of the unusual anticodon loop structure observed for tRNA(Lys) on its function in the translational process is also discussed.  相似文献   

4.
5.
The natural modification of specific nucleosides in many tRNAs is essential during decoding of mRNA by the ribosome. For example, tRNA(Lys)(UUU) requires the modification N6-threonylcarbamoyladenosine at position 37 (t(6)A37), adjacent and 3' to the anticodon, to bind AAA in the A site of the ribosomal 30S subunit. Moreover, it can only bind both AAA and AAG lysine codons when doubly modified with t(6)A37 and either 5-methylaminomethyluridine or 2-thiouridine at the wobble position (mnm(5)U34 or s(2)U34). Here we report crystal structures of modified tRNA anticodon stem-loops bound to the 30S ribosomal subunit with lysine codons in the A site. These structures allow the rationalization of how modifications in the anticodon loop enable decoding of both lysine codons AAA and AAG.  相似文献   

6.
Kluyveromyces lactis gamma-toxin is a tRNA endonuclease that cleaves Saccharomyces cerevisiae [see text] between position 34 and position 35. All three substrate tRNAs carry a 5-methoxycarbonylmethyl-2-thiouridine (mcm(5)s(2)U) residue at position 34 (wobble position) of which the mcm(5) group is required for efficient cleavage. However, the different cleavage efficiencies of mcm(5)s(2)U(34)-containing tRNAs suggest that additional features of these tRNAs affect cleavage. In the present study, we show that a stable anticodon stem and the anticodon loop are the minimal requirements for cleavage by gamma-toxin. A synthetic minihelix RNA corresponding to the anticodon stem loop (ASL) of the natural substrate [see text] is cleaved at the same position as the natural substrate. In [see text], the nucleotides U(34)U(35)C(36)A(37)C(38) are required for optimal gamma-toxin cleavage, whereas a purine at position 32 or a G in position 33 dramatically reduces the cleavage of the ASL. Comparing modified and partially modified forms of E. coli and yeast [see text] reinforced the strong stimulatory effects of the mcm(5) group, revealed a weak positive effect of the s(2) group and a negative effect of the bacterial 5-methylaminomethyl (mnm(5)) group. The data underscore the high specificity of this yeast tRNA toxin.  相似文献   

7.
Previous nuclear magnetic resonance (NMR) studies of unmodified and pseudouridine39-modified tRNA(Lys) anticodon stem loops (ASLs) show that significant structural rearrangements must occur to attain a canonical anticodon loop conformation. The Escherichia coli tRNA(Lys) modifications mnm(5)s(2)U34 and t(6)A37 have indeed been shown to remodel the anticodon loop, although significant dynamic flexibility remains within the weakly stacked U35 and U36 anticodon residues. The present study examines the individual effects of mnm(5)s(2)U34, s(2)U34, t(6)A37, and Mg(2+) on tRNA(Lys) ASLs to decipher how the E. coli modifications accomplish the noncanonical to canonical structural transition. We also investigated the effects of the corresponding human tRNA(Lys,3) versions of the E. coli modifications, using NMR to analyze tRNA ASLs containing the nucleosides mcm(5)U34, mcm(5)s(2)U34, and ms(2)t(6)A37. The human wobble modification has a less dramatic loop remodeling effect, presumably because of the absence of a positive charge on the mcm(5) side chain. Nonspecific magnesium effects appear to play an important role in promoting anticodon stacking. Paradoxically, both t(6)A37 and ms(2)t(6)A37 actually decrease anticodon stacking compared to A37 by promoting U36 bulging. Rather than stack with U36, the t(6)A37 nucleotide in the free tRNAs is prepositioned to form a cross-strand stack with the first codon nucleotide as seen in the recent crystal structures of tRNA(Lys) ASLs bound to the 30S ribosomal subunit. Wobble modifications, t(6)A37, and magnesium each make unique contributions toward promoting canonical tRNA structure in the fundamentally dynamic tRNA(Lys)(UUU) anticodon.  相似文献   

8.
9.
Transfer RNA molecules translate the genetic code by recognizing cognate mRNA codons during protein synthesis. The anticodon wobble at position 34 and the nucleotide immediately 3' to the anticodon triplet at position 37 display a large diversity of modified nucleosides in the tRNAs of all organisms. We show that tRNA species translating 2-fold degenerate codons require a modified U(34) to enable recognition of their cognate codons ending in A or G but restrict reading of noncognate or near-cognate codons ending in U and C that specify a different amino acid. In particular, the nucleoside modifications 2-thiouridine at position 34 (s(2)U(34)), 5-methylaminomethyluridine at position 34 (mnm(5)U(34)), and 6-threonylcarbamoyladenosine at position 37 (t(6)A(37)) were essential for Watson-Crick (AAA) and wobble (AAG) cognate codon recognition by tRNA(UUU)(Lys) at the ribosomal aminoacyl and peptidyl sites but did not enable the recognition of the asparagine codons (AAU and AAC). We conclude that modified nucleosides evolved to modulate an anticodon domain structure necessary for many tRNA species to accurately translate the genetic code.  相似文献   

10.
Anticodon nuclease is a bacterial restriction enzyme directed against tRNA(Lys). We report that anticodon nuclease also cleaves mammalian tRNA(Lys) molecules, with preference and site specificity shown towards the natural substrate. Expression of the anticodon nuclease core polypeptide PrrC in HeLa cells from a recombinant vaccinia virus elicited cleavage of intracellular tRNA(Lys),3. The data justify an inquiry into the possible application of anticodon nuclease as an inhibitor of tRNA(Lys),3-primed HIV replication. They also indicate that the anticodon region of tRNA(Lys) is a substrate recognition site and suggest that PrrC harbors the enzymatic activity.  相似文献   

11.
12.
The structure of the human tRNA(Lys3) anticodon stem and loop domain (ASL(Lys3)) provides evidence of the physicochemical contributions of N6-threonylcarbamoyladenosine (t(6)A(37)) to tRNA(Lys3) functions. The t(6)A(37)-modified anticodon stem and loop domain of tRNA(Lys3)(UUU) (ASL(Lys3)(UUU)- t(6)A(37)) with a UUU anticodon is bound by the appropriately programmed ribosomes, but the unmodified ASL(Lys3)(UUU) is not [Yarian, C., Marszalek, M., Sochacka, E., Malkiewicz, A., Guenther, R., Miskiewicz, A., and Agris, P. F., Biochemistry 39, 13390-13395]. The structure, determined to an average rmsd of 1.57 +/- 0.33 A (relative to the mean structure) by NMR spectroscopy and restrained molecular dynamics, is the first reported of an RNA in which a naturally occurring hypermodified nucleoside was introduced by automated chemical synthesis. The ASL(Lys3)(UUU)-t(6)A(37) loop is significantly different than that of the unmodified ASL(Lys3)(UUU), although the five canonical base pairs of both ASL(Lys3)(UUU) stems are in the standard A-form of helical RNA. t(6)A(37), 3'-adjacent to the anticodon, adopts the form of a tricyclic nucleoside with an intraresidue H-bond and enhances base stacking on the 3'-side of the anticodon loop. Critically important to ribosome binding, incorporation of the modification negates formation of an intraloop U(33).A(37) base pair that is observed in the unmodified ASL(Lys3)(UUU). The anticodon wobble position U(34) nucleobase in ASL(Lys3)(UUU)-t(6)A(37) is significantly displaced from its position in the unmodified ASL and directed away from the codon-binding face of the loop resulting in only two anticodon bases for codon binding. This conformation is one explanation for ASL(Lys3)(UUU) tendency to prematurely terminate translation and -1 frame shift. At the pH 5.6 conditions of our structure determination, A(38) is protonated and positively charged in ASL(Lys3)(UUU)-t(6)A(37) and the unmodified ASL(Lys3)(UUU). The ionized carboxylic acid moiety of t(6)A(37) possibly neutralizes the positive charge of A(+)(38). The protonated A(+)(38) can base pair with C(32), but t(6)A(37) may weaken the interaction through steric interference. From these results, we conclude that ribosome binding cannot simply be an induced fit of the anticodon stem and loop, otherwise the unmodified ASL(Lys3)(UUU) would bind as well as ASL(Lys3)(UUU)-t(6)A(37). t(6)A(37) and other position 37 modifications produce the open, structured loop required for ribosomal binding.  相似文献   

13.
14.
15.
The tRNA(5-methylaminomethyl-2-thiouridine)-methyltransferase, which is involved in the biosynthesis of the modified nucleoside 5-methylaminomethyl-2-thiouridine (mnm5s2U) present in the wobble position of some tRNAs, was purified close to homogeneity (95% purity). The molecular mass of the enzyme is 79,000 daltons. The enzyme activity has a pH optimum of 8.0-8.5, is inhibited by magnesium ions, and stimulated by ammonium ions. Two different intermediates in the biosynthesis of mnm5s2U34 are present in tRNA from the mutants trmC1 and trmC2. Unexpectedly, the product present in tRNA from trmC1 cells was identified by mass spectrometric and chromatographic analyses as 5-carboxymethylaminomethyl-2-thiouridine (cmnm5s2U), i.e. a more complex derivative than the final product mnm5s2U. The product present in tRNA from trmC2 cells was identified as 5-aminomethyl-2-thiouridine (nm5s2U). In the presence of S-adenosylmethionine the most purified enzyme fraction converts both cmnm5s2U34 and nm5s2U34 into mnm5s2U34. In the absence of S-adenosylmethionine, however, cmnm5s2U34 is converted into nm5s2U by this enzyme fraction. We conclude that the purified polypeptide has two enzymatic activities; one actually demodifies cmnm5s2U to nm5s2U and the other catalyzes the transfer of a methyl group from S-adenosylmethionine to nm5s2U, thus forming mnm5s2U. The sequential order of the biosynthesis of mnm5s2U34 is suggested to be: (Formula: see text). The molecular activity of the methyltransferase activity (nm5s2U34----mnm5s2U34) is 74 min-1, and the steady state concentration of the enzyme is only 78 molecules/genome equivalent in cells growing at a specific growth rate of 1.0/h.  相似文献   

16.
In response to low (approximately 1 microM) levels of selenium, Escherichia coli synthesizes tRNA(Glu) and tRNA(Lys) species that contain 5-methylaminomethyl-2-selenouridine (mnm5Se2U) instead of 5-methylaminomethyl-2-thiouridine (mnm5S2U). Purified glutamate- and lysine-accepting tRNAs containing either mnm5Se2U (tRNA(SeGlu), tRNA(SeLys] or mnm5S2U (tRNA(SGlu), tRNA(SLys] were prepared by RPC-5 reversed-phase chromatography, affinity chromatography using anti-AMP antibodies and DEAE-5PW ion-exchange HPLC. Since mnm5Se2U, like mnm5S2U, appears to occupy the wobble position of the anticodon, the recognition of glutamate codons (GAA and GAG) and lysine codons (AAA and AAG) was studied. While tRNA(SGlu) greatly preferred GAA over GAG, tRNA(SeGlu) showed less preference. Similarly, tRNA(SGlu) preferred AAA over AAG, while tRNA(SeLys) did not. In a wheat germ extract--rabbit globin mRNA translation system, incorporation of lysine and glutamate into protein was generally greater when added as aminoacylated tRNA(Se) than as aminoacylated tRNA(S). In globin mRNA the glutamate and lysine codons GAG and AAG are more numerous than GAA and AAA, thus a more efficient translation of globin message with tRNA(Se) might be expected because of facilitated recognition of codons ending in G.  相似文献   

17.
The tRNALys-specific anticodon nuclease exists in latent form in Escherichia coli strains containing the optional prr locus. The latency is a result of a masking interaction between the anticodon nuclease core-polypeptide PrrC and the Type IC DNA restriction-modification enzyme EcoprrI. Activation of the latent enzyme by phage T4-infection elicits cleavage of tRNALys 5' to the wobble base, yielding 5'-OH and 2', 3'-cyclic phosphate termini. The N-proximal half of PrrC has been implicated with (A/G) TPase and EcoprrI interfacing activities. Therefore, residues involved in recognition and cleavage of tRNALys were searched for at the C-half. Random mutagenesis of the low-G+C portion encoding PrrC residues 200-313 was performed, followed by selection for loss of anticodon nuclease-dependent lethality and production of full-sized PrrC-like protein. This process yielded a cluster of missense mutations mapping to a region highly conserved between PrrC and two putative Neisseria meningitidis MC58 homologues. This cluster included two adjacent members that relaxed the inherent enzyme's cleavage specificity. We also describe another mode of relaxed specificity, due to mere overexpression of PrrC. This mode was shared by wild-type PrrC and the other mutant alleles. The additional substrates recognised under the promiscuous conditions had, in general, anticodons resembling that of tRNALys. Taken together, the data suggest that the anticodon of tRNALys harbours anticodon nuclease identity elements and implicates a conserved region in PrrC in their recognition.  相似文献   

18.
19.
Kambampati R  Lauhon CT 《Biochemistry》2003,42(4):1109-1117
Thionucleosides are uniquely present in tRNA. In many organisms, tRNA specific for Lys, Glu, and Gln contain hypermodified 2-thiouridine (s(2)U) derivatives at wobble position 34. The s(2) group of s(2)U34 stabilizes anticodon structure, confers ribosome binding ability to tRNA and improves reading frame maintenance. Earlier studies have mapped and later identified the mnmA gene (formerly asuE or trmU) as required for the s(2)U modification in Escherichia coli. We have prepared a nonpolar deletion of the mnmA gene and show that it is not required for viability in E. coli. We also cloned mnmA from E. coli, and overproduced and purified the protein. Using a gel mobility shift assay, we show that MnmA binds to unmodified E. coli tRNA(Lys) with affinity in the low micromolar range. MnmA does not bind observably to the nonsubstrate E. coli tRNA(Phe). Corroborating this, tRNA(Glu) protected MnmA from tryptic digestion. ATP also protected MnmA from trypsinolysis, suggesting the presence of an ATP binding site that is consistent with analysis of the amino acid sequence. We have reconstituted the in vitro biosynthesis of s(2)U using unmodified E. coli tRNA(Glu) as a substrate. The activity requires MnmA, Mg-ATP, l-cysteine, and the cysteine desulfurase IscS. HPLC analysis of thiolated tRNA digests using [(35)S]cysteine confirms that the product of the in vitro reaction is s(2)U. As in the case of 4-thiouridine synthesis, purified IscS-persulfide is able to provide sulfur for in vitro s(2)U synthesis in the absence of cysteine. Small RNAs that represent the anticodon stem loops for tRNA(Glu) and tRNA(Lys) are substrates of comparable activity to the full length tRNAs, indicating that the major determinants for substrate recognition are contained within this region.  相似文献   

20.
We previously showed that in mitochondrial tRNA(Lys) with an A8344G mutation responsible for myoclonus epilepsy associated with ragged-red fibers (MERRF), a subgroup of mitochondrial encephalomyopathic diseases, the normally modified wobble base (a 2-thiouridine derivative) remains unmodified. Since wobble base modifications are essential for translational efficiency and accuracy, we used mitochondrial components to estimate the translational activity in vitro of purified tRNA(Lys) carrying the mutation and found no mistranslation of non-cognate codons by the mutant tRNA, but almost complete loss of translational activity for cognate codons. This defective translation was not explained by a decline in aminoacylation or lowered affinity toward elongation factor Tu. However, when direct interaction of the codon with the mutant tRNA(Lys) defective anticodon was examined by ribosomal binding analysis, the wild-type but not the mutant tRNA(Lys) bound to an mRNA- ribosome complex. We therefore concluded that the anticodon base modification defect, which is forced by the pathogenic point mutation, disturbs codon- anticodon pairing in the mutant tRNA(Lys), leading to a severe reduction in mitochondrial translation that eventually could result in the onset of MERRF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号