首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Tyrosinase activities and dopachrome conversion activity were evaluated in extracts made from skins of 6-day-old mice that were mutant at the agouti and albino loci. Dopa oxidase (DO) activity of tyrosinase in fully pigmented (C/C) mice is reduced in extracts made from skins of yellow 6-day-old mice as compared to those of black mice. Dopachrome conversion (DC) activity is absent from skin extracts of normal yellow mice and is present in normal black mice. DC activity is a characteristic of a separate enzyme which has been called dopachrome conversion factor or dopachrome oxidoreductase. We measured the dopa oxidase activity and dopachrome conversion activity in skin extracts of yellow mice and black mice that were mutant at the albino (C) locus. Extracts made from extreme-dilution (ce/ce) mice do not have DO activity. Those from yellow extreme-dilution mice do not have DC activity, while those from black, extreme-dilution mice do. The DO and DC activities that characterize skin extracts made from platinum (cp/cp) yellow mice are similar to those of platinum black mice. These observations suggest possible mechanisms by which the functions controlled by the agouti and albino loci interact to control melanogenesis.  相似文献   

2.
We compared tyrosinase activity (TH, DO, and native PAGE-defined isozymes) and melanin production in particulate and soluble fractions of hairbulb melanocytes of lethal yellow (Ay/a C/C), nonagouti black (a/a C/C), and albino (a/a c2J/c2J) of 3-, 6-, 9-, and 12-day regenerating hairbulbs. With respect to tyrosine hydroxylase (TH) and dopa oxidase (DO) activities, Ay/a melanocytes possessed only 25-35% of the activity of a/a; there were no genotype differences in either the subcellular distribution of activity in soluble and particulate fractions or in the relative increases of activity over the 12-day developmental period. TH data on wild-type agouti (AwJ/AwJ) mice over the 3-11 day regeneration interval showed an activity intermediate between that of a/a and Ay/a; the rate of TH increase reflected black and yellow phases of the agouti hair cycle. Analyses of the number and densities of dopa-sensitive bands following native PAGE of 3-, 6-, 9-, and 12-day hairbulb fractions of a/a and Ay/a mice suggested stage-dependent patterns. A comparison of rates and amounts of melanin production in 3-, 6-, 9-, and 12-day fractions showed consistent melanin production in Ay/a to be 10-20% that of a/a; however, fold increases in melanin production over the four stages were similar between genotypes. Overall, tyrosinase activity data support the notion that agouti locus modification of tyrosinase activity is a graded or quantitative rather than a qualitative phenomenon.  相似文献   

3.
Melanocytes produce two chemically distinct types of melanin pigments, eumelanin and pheomelanin. These pigments can be quantitatively analyzed by acidic permanganate oxidation or reductive hydrolysis with hydriodic acid to form pyrrole-2,3,5-tricarboxylic acid or aminohydroxyphenylalanine, respectively. About 30 coat color genes in mice have been cloned, and functions of many of those genes have been elucidated. However, little is known about the interacting functions of these loci. In this study, we used congenic mice to eliminate genetic variability, and analyzed eumelanin and pheomelanin contents of hairs from mice mutant at one or more of the major pigment loci, i.e., the albino (C) locus that encodes tyrosinase, the slaty (Slt) locus that encodes tyrosinase-related protein 2 (TRP2 also known as dopachrome tautomerase, DCT), the brown (B) locus that encodes TRP1, the silver (Si) locus that encodes a melanosomal silver protein, the agouti (A) locus that encodes agouti signaling protein (ASP), the extension (E) locus that encodes melanocortin-1 receptor, and the mahogany (Mg) locus that encodes attractin. We also measured total melanin contents after solubilization of hairs in hot Soluene-350 plus water. Hairs were shaved from 2-3-month-old congenic C57BL/6J mice. The chinchilla (c(ch)) allele is known to encode tyrosinase, whose activity is about one third that of wild type (C). Phenotypes of chinchilla (c(ch)/c(ch)) mice that are wild type or mutant at the brown and/or slaty, loci indicate that functioning TRP2 and TRP1 are necessary, in addition to high levels of tyrosinase, for a full production of eumelanin. The chinchilla allele was found to reduce the amount of pheomelanin in lethal yellow and recessive yellow mice to less than one fifth of that in congenic yellow mice that were wild type at the albino locus. This indicates that reduction in tyrosinase activity affects pheomelanogenesis more profoundly compared with eumelanogenesis. Hairs homozygous for mutation at the slaty locus contain 5,6-dihydroxyindole-2-carboxylic acid (DHICA)-poor melanin, and this chemical phenotype was retained in hairs that were mutant at both the brown locus and the slaty locus. Hair from mice mutant at the brown locus, but not at the slaty locus, do not contain DHICA-poor melanin. This indicates that the proportion of DHICA in eumelanin is determined by TRP2, but not by TRP1. Mutation at the slaty locus (Slt(lt)) was found to have no effect on pheomelanogenesis, supporting a role of TRP2 only in eumelanogenesis. The mutation at silver (si) locus showed an effect similar to brown, a partial suppression of eumelanogenesis. The mutation at mahogany (mg) locus partially suppressed the effect of lethal yellow (Ay) on pheomelanogenesis, supporting a role of mahogany in interfering with agouti signaling. These results show that combination of double mutation study of congenic mice with chemical analysis of melanins is useful in evaluating the interaction of pigment gene functions.  相似文献   

4.
The tails of agouti C3H/HeJmsHir mice are completely pigmented, whereas the tails of black C57BL/10JHir animals possess unpigmented tips. Genetic analysis indicates that white tail-tipping is due to an autosomal recessive gene, with incomplete penetrance, that segregates independently from the gene for agouti with a maternal influence in the F1 generation. To analyze the influence of specific coat-color genes on the expression of tail-spotting in mice, five congenic lines of C57BL/10JHir with different coat colors were prepared. No influence was observed on the occurrence of tail-spotting in agouti (A/A) or dilute (d/d) mice or in F1 mice from crosses between black and albino (c/c), or in F1 mice from crosses between black and pink-eyed dilution (p/p). However, the frequency of tail-spotting was dramatically decreased in brown (b/b) mice. These results suggest that the mutant allele (b) at the brown locus is involved in determining the extent of pigmented areas in the tail tips of mice through an interaction with the tail-spotting gene.  相似文献   

5.
Two pigmentation related genes have recently been cloned which map to the brown (b) and albino (c) loci of mice; these loci influence the quality and quantity, respectively, of melanin produced by melanocytes. Both these gene products are biochemically similar and have extensive amino acid sequence similarity to each other and to lower forms of tyrosinase (EC 1.14.18.1), a copper binding enzyme responsible for melanin production. In order to characterize the catalytic activities of these molecules, we have synthesized peptides and prepared antibodies to them which specifically recognize the gene products in question. By use of immune affinity purification protocols, we have isolated the proteins encoded by the brown and albino loci and have determined that both have the catalytic functions ascribed to tyrosinase, i.e. hydroxylation of tyrosine to 3,4-dihydroxyphenylalanine (DOPA) and the oxidation of DOPA to DOPAquinone. These are the critical reactions to melanogenesis since melanin pigment can be spontaneously produced from those products. The specific activity of the albino locus encoded product is considerably higher than that of the protein encoded by the brown locus, although the latter protein is present in higher quantity in melanocytes than is the protein encoded by the albino locus. These results are surprising since it was anticipated that tyrosinase was the product of single gene locus, and suggest that regulation of melanogenesis in mammals is controlled at the enzymatic level by several different gene products.  相似文献   

6.
Several genes critical to the regulation of melanin production in mammals have recently been cloned and characterized. They map to the albino, brown, and slaty loci in mice, and encode proteins with similar structures and features, but with distinct catalytic capacities. The albino locus encodes tyrosinase, an enzyme with three distinct catalytic activities—tyrosine hydroxylase, 3,4-dihydroxyphenylalanine (DOPA) oxidase and DHI (5,6-dihydroxyindole) oxidase. The brown locus encodes TRP-l (tyrosinase-related protein-I), which has the same, but greatly reduced, catalytic potential. The slaty locus encodes TRP-2, another tyrosinase related-protein, which has DOPAchrome tautomerase activity. In this study we have examined the enzymatic interactions of these proteins, and their regulation by a novel melanogenic inhibitor. We observed that tyrosinase activity is more stable in the presence of TRP-l and/or TRP-2, but that the catalytic function of TRP-2 is not affected by the presence of TRP-1 or tyrosinase. Other factors also may influence melanogenesis and a unique melanogenic inhibitor suppresses tyrosinase and DOPAchrome tautomerase activities, but does not affect the spontaneous rate of DOPAchrome decarboxylation to DHI. The results demonstrate the catalytic functions of these proteins and how they stably interact within a melanogenic complex in the melanosome to regulate the quantity and quality of melanin synthesized by the melanocyte.  相似文献   

7.
To evaluate if loci responsible for coat color phenotypes contribute to behavioral characteristics, we specified novel gene loci associated with social exploratory behavior and examined the effects of the frequency of each allele at distinct loci on behavioral expression. We used the F2 generation, which arose from the mating of F1 mice obtained by interbreeding DBA/2 and ICR mice. Phenotypic analysis indicated that the agouti and albino loci affect behavioral traits. A genotype-based analysis revealed that novel exploratory activity was suppressed in a manner dependent on the frequency of the dominant wild-type allele at the agouti, but not albino, locus. The allele-dependent suppression was restricted to colored mice and was not seen in albino mice. The present results suggest that the agouti locus contributes to a particular behavioral trait in the presence of a wild-type allele at the albino locus, which encodes a structural gene for tyrosinase.  相似文献   

8.
The mouse pink-eyed dilution (p) locus is known to control eumelanin synthesis, melanosome morphology, and tyrosinase activity in melanocytes. However, it has not been fully determined whether the mutant allele, p affects pheomelanin synthesis. Effects of the p allele on eumelanin and phemelanin synthesis were investigated by chemical analysis of dorsal hairs of 5-week-old mice obtained from the F(2) generations (black, pink-eyed black, recessive yellow, pink-eyed recessive yellow, agouti, and pink-eyed agouti) between C57BL/10JHir (B10)-congenic pink-eyed black mice (B10-p/p) and recessive yellow (B10-Mc1r(e)/Mc1r(e)) or agouti (B10-A/A) mice. The eumelanin content was dramatically (>20-fold) decreased in pink-eyed black and pink-eyed agouti mice, whereas the pheomelanin content did not decrease in pink-eyed black, pink-eyed recessive yellow, or pink-eyed agouti mice compared to the corresponding P/- mice. These results suggest that the pink-eyed dilution allele greatly inhibits eumelanin synthesis, but not pheomelanin synthesis.  相似文献   

9.
Several genes critical to the enzymatic regulation of melanin production in mammals have recently been cloned and mapped to the albino, brown and slaty loci in mice. All three genes encode proteins with similar structures and features, but with distinct catalytic capacities; the functions of two of those gene products have previously been identified. The albino locus encodes tyrosinase, an enzyme with three distinct melanogenic functions, while the slaty locus encodes tyrosinase-related protein 2 (TRP2), an enzyme with a single specific, but distinct, function as DOPAchrome tautomerase. Although the brown locus, encoding TRP1, was actually the first member of the tyrosinase gene family to be cloned, its catalytic function (which results in the production of black rather than brown melanin) has been in general dispute. In this study we have used two different techniques (expression of TRP1 in transfected fibroblasts and immunoaffinity purification of TRP1 from melanocytes) to examine the enzymatic function(s) of TRP1. The data demonstrate that the specific melanogenic function of TRP1 is the oxidation of 5,6-dihydroxyindole-2-carboxylic acid (DHICA) to a carboxylated indole-quinone at a down-stream point in the melanin biosynthetic pathway. This enzyme activity appears to be essential to the further metabolism of DHICA to a high molecular weight pigmented biopolymer.  相似文献   

10.
11.
Melanocytes originate from the neural crest in vertebrates and migrate to the body surface where they differentiate into functional cells. Genes involved in melanocyte differentiation can be classified into two groups. One of them consists of the functional genes that control proteins specific to the function of the melanocyte. As the representative gene of this category, albino (c) locus in the mouse is considered to control tyrosinase, the key enzyme in melanogenesis. cDNA for mouse tyrosinase has been cloned and sequenced. The cDNA can be used to detect tyrosinase mRNA synthesized during melanocyte differentiation. On the other hand, genes such as brown (b) or pink-eyed dilution (p) have been assumed to control melanosome proteins. The other category consists of genes that regulate the expression of these functional genes directly or indirectly. In the mouse, so-called white-spotting genes and genes of the agouti series are considered to fall into this category. Based on the fact that mutations at the white-spotting loci result in the absence of melanocytes in a particular area of skin, it is assumed that some of these loci control the factors that promote either differentiation or migration of melanoblasts and are candidates for the classic regulator genes Genes at the agouti (a) locus in the mouse determine the type of melanin synthesized in hair follicle melanocytes, that is eumelanin or pheomelanin. An interesting feature of this locus is that the site of gene action is not within the melanocytes but in the cells surrounding them. The results of our study indicate that the gene product of the a-locus interacts with α-MSH at the α-MSH receptor site, regulates the cellular cAMP level via a signal transduction system and, in turn, determines the type of melanin synthesized in the cells.  相似文献   

12.
We compared tyrosinase activity (TH, DO, and native PAGE-defined isozymes) and melanin production in participate and soluble fractions of hairbulb melanocytes of lethal yellow (Ay/a C/C), nonagouti black (a/a C/C), and albino (a/a c2J/c2J) of 3-, 6-, 9-, and 12-day regenerating hairbulbs. With respect to tyrosine hydroxylase (TH) and dopa oxidase (DO) activities, Ay/a melanocytes possessed only 25-35% of the activity of a/a; there were no genotype differences in either the subcellular distribution of activity in soluble and particulate fractions or in the relative increases of activity over the 12-day developmental period. TH data on wild-type agouti (AwJ/AwJ) mice over the 3-11 day regeneration interval showed an activity intermediate between that of a/a and Ay/a; the rate of TH increase reflected black and yellow phases of the agouti hair cycle. Analyses of the number and densities of dopa-sensitive bands following native PAGE of 3-, 6-, 9-, and 12-day hairbulb fractions of a/a and Ay/a mice suggested stage-dependent patterns. A comparison of rates and amounts of melanin production in 3-, 6-, 9-, and 12-day fractions showed consistent melanin production in Ay/a to be 10-20% that of a/a; however, fold increases in melanin production over the four stages were similar between genotypes. Overall, tyrosinase activity data support the notion that agouti locus modification of tyrosinase activity is a graded or quantitative rather than a qualitative phenomenon.  相似文献   

13.
14.
15.
Tyrosinase activity in the first coat of agouti and black mice   总被引:2,自引:0,他引:2  
Tyrosinase activity was compared in the skin and hair bulbs of young black and agouti mice between 4 and 12 days old. Differences in activity were found to be maximal in both the hair and skin at the time of yellow pigment synthesis in agouti mice. Histological examination suggested that the number of dopa-positive melanocytes is similar in the hair bulbs of agouti and black mice. The level of SH-compounds in the hair bulb was examined and found to be elevated in agouti tissue at the time of phaeomelanin formation. It was shown that sulphydryl compounds such as cysteine and glutathione have an inhibitory effect on tyrosinase, and it is possible that the elevated levels of SH-compounds are responsible for a reduction in tyrosinase activity in agouti mice. In agouti hair bulbs, this effect can be reversed in vitro by addition of copper.  相似文献   

16.
Our objective was to determine using electron microscopy how nonagouti (a), lethal yellow (Ay), and albino (c2J) genes affect the program of mouse hairbulb melanosome differentiation; 1,921 hairbulb melanosomes from four genotypes (a/a C/C = B,Ay/a C/C = Y, a/a c2J/c2J = BA, and Ay/a c2J/c2J = YA) were scored for developmental stage, length, and width. Qualitative and quantitative electron microscopy revealed the following. An albino locus-induced diminution of melanosome size suggests that the albino locus is involved in structural features of melanosomes not directly related to the synthesis and deployment of tyrosinase. Ratio data on melanosome length-to-width confirm that the agouti locus determines melanosome shape, either spherical or elliptical; melanization is not required for melanosomes to achieve their agouti-locus-determined shapes. YA (Ay/a c2J/c2J) melanosomes, characterized by poorly organized matrices, absence of active tyrosinase, unusually large membrane invaginations, and significantly smaller dimensions than those of BA (a/a c2J/c2J), showed additive effects of both Ay and c2J alleles. These data suggest that the albino locus plays a structural as well as functional (tyrosinase) role in the differentiation of mouse hairbulb melanosomes. The agouti locus, even in the absence of melanization, directs melanosome shape either via synthesis and deployment of agouti-locus-encoded matrix proteins or by other structural factors. The additive effects of Ay and c2J alleles in compound YA mutants document the importance of specific interactions both functional and structural between agouti and albino loci.  相似文献   

17.
To study the relationship among tyrosinase activity, melanin production, and the routing of retinal ganglion cell (RGC) axons at the optic chiasm, we analysed mice with varying doses of the tyrosinase gene. These include the dark-eyed albino (Tyrc44H), a radiation-induced hypomorphic allele of tyrosinase; and transgenic mice carrying 1 or 2 alleles of a tyrosinase minigene on both wild-type (Tyr+) and albino (Tyrc) backgrounds. Melanization of the retinal pigment epithelium (RPE) occurred gradually even at <2% wild-type tyrosinase activity and was sensitive to tyrosinase activity up to <35% of wild-type levels, beyond which melanin synthesis appeared to be saturated. Overexpression of tyrosinase led to tyrosinase activity above wild type level, but did not increase melanin production. Although a loss of melanin because of a mutation in tyrosinase is associated with a decrease in the number of uncrossed fibers, elevating tyrosinase levels does not appear to cause an increase in the size of the uncrossed retinal projection. Our results suggest that replacing less than 35% of wild-type tyrosinase activity is sufficient to restore normal pigmentation of the RPE, and potentially, to allay visual defects.  相似文献   

18.
The genetics of coat colors in the mongolian gerbil (Meriones unguiculatus)   总被引:2,自引:0,他引:2  
Genetic studies demonstrated three loci controlling coat colors in the Mongolian gerbil. F1 hybrids of white gerbils with red eyes and agouti gerbils with wild coat color had the agouti coat color. The segregating ratio of agouti and white in the F2 generation was 3:1. In the backcross (BC) generation (white x F1), the ratio of the agouti and white coat colors was 1:1. Next, inheritance of the agouti coat color was investigated. Matings between agouti and non-agouti (black) gerbils produced only agouti gerbils. In the F2 generation, the ratio of agouti to non-agouti (black) was 3:1. There was no distortion in the sex ratios within each coat color in the F1, F2 and BC generations. This indicated that the white coat color of gerbils is governed by an autosomal recessive gene which should be named the c allele of the c (albino) locus controlling pigmentation, and the agouti coat color is controlled by an autosomal dominant gene which might be named the A allele of the A (agouti) locus controlling pigmentation patterns in the hair. The occurrence of the black gerbil demonstrated clearly the existence of the b (brown) locus, and it clearly indicated that the coat colors of gerbils can basically be explained by a, b, and c loci as in mice and rats.  相似文献   

19.
Tyrosinase activity at the time of phaeomelanin synthesis in neonatal mice is lower in agouti than in black skin and hair bulb tissue, and this depressed activity is associated with a reduction in the electrophoretically distinct de novo form of the enzyme. Direct chemical measurements of sulphydryl compounds show elevated levels in agouti hair bulb tissue at this stage of development. The addition of exogenous copper to hair bulb extracts raises the activity of tyrosinase in agouti to approximately the black level but has no affect on black itself. These results are discussed in relation to the role of sulphydryl compounds and copper availability in regulating tyrosinase activity and turnover.  相似文献   

20.
E. Zdarsky  J. Favor    I. J. Jackson 《Genetics》1990,126(2):443-449
The murine b locus encodes the tyrosinase related protein, TRP-1, a putative membrane-bound, copper-containing enzyme having about 40% amino acid identity with tyrosinase. The protein is essential for production of black rather than brown hair pigment. We show that skin of mutant brown mice contains the same amount of TRP-1 mRNA as wild type. On sequencing the coding region of the mutant mRNA we find four nucleotide differences from the wild-type (Black) sequence. Two of these differences result in different amino acid residues encoded by the brown allele. By sequencing the TRP-1 gene from a mouse in which a reversion from brown to Black has been induced by ethylnitrosourea we are able to show that only one of these amino acid changes, which substitutes a tyrosine for a conserved cysteine, is the cause of the brown phenotype. This mutation is adjacent to another cysteine at which, in the analogous position in tyrosinase a mutation results in the albino phenotype. The sequence of the revertant is the first report of DNA sequence of an ethylnitrosourea-induced genetic change in mouse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号