首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Fluid shear stress activates a member of the mitogen-activated protein (MAP) kinase family, extracellular signal-regulated kinase (ERK), by mechanisms dependent on cholesterol in the plasma membrane in bovine aortic endothelial cells (BAEC). Caveolae are microdomains of the plasma membrane that are enriched with cholesterol, caveolin, and signaling molecules. We hypothesized that caveolin-1 regulates shear activation of ERK. Because caveolin-1 is not exposed to the outside, cells were minimally permeabilized by Triton X-100 (0.01%) to deliver a neutralizing, polyclonal caveolin-1 antibody (pCav-1) inside the cells. pCav-1 then bound to caveolin-1 and inhibited shear activation of ERK but not c-Jun NH(2)-terminal kinase. Epitope mapping studies showed that pCav-1 binds to caveolin-1 at two regions (residues 1-21 and 61-101). When the recombinant proteins containing the epitopes fused to glutathione-S-transferase (GST-Cav(1-21) or GST-Cav(61-101)) were preincubated with pCav-1, only GST-Cav(61-101) reversed the inhibitory effect of the antibody on shear activation of ERK. Other antibodies, including m2234, which binds to caveolin-1 residues 1-21, had no effect on shear activation of ERK. Caveolin-1 residues 61-101 contain the scaffolding and oligomerization domains, suggesting that binding of pCav-1 to these regions likely disrupts the clustering of caveolin-1 or its interaction with signaling molecules involved in the shear-sensitive ERK pathway. We suggest that caveolae-like domains play a critical role in the mechanosensing and/or mechanosignal transduction of the ERK pathway.  相似文献   

3.
4.
Summary Epidermal growth factor receptor (EGFR) signaling regulates a variety of cellular functions, including proliferation, gene expression, and differentiation. Infection of laryngeal epithelial cells by human papillomaviruses causes recurrent respiratory papillomas, benign tumors characterized by an altered pattern of differentiation. Papilloma cells overexpress the EGFR and have constitutively active extracellular signal-regulated kinase (ERK) and enhanced phosphatidylinositol 3-kinase (PI3K) activity, but overexpression of the lipid phosphatase PTEN (Phosphatase and Tensin Homolog) reduces activation of Akt by PI3K. We hypothesized that the altered differentiation of papillomas reflects these changes in signaling from the EGFR-ERK and PI3K-Akt pathways and that one or both of these pathways is required for the normal differentiation process in mucosal epithelium. Inhibiting either the enzymatic activity or the synthesis of PI3K in uninfected laryngeal cells blocked expression of keratin-13 (K13), a protein induced during normal differentiation. In contrast, inhibiting activation of ERK had minimal effect. Using ribonucleic acid interference to reduce protein levels of integrinlinked kinase 1 or phosphoinositide-dependent protein kinase 1, intermediates in the activation of Akt by PI3K, or reducing levels of Akt-1 itself did not inhibit K13 expression by normal laryngeal keratinocytes. We conclude that PI3K activation is an important regulator of expression of K13, a marker for the normal differntiation process in human mucosal keratinocytes, that this function does not require activation of Akt-1, and that the failure to express K13 in papilloma cells is not because of reduction in activated Akt.  相似文献   

5.
The system of extracellular proteolysing, consists of plasminogen (PGn), its active protease (plasmin), PGn activation and PGn activators inhibitors, influences the nervous tissue functions, their growth, differentiation and proliferation in both, normal and pathological conditions. The purpose of the investigation was to study the effects of exogenous PGn, its activator streptokinase (SK), PK and their equimolar complex on the morpho-functional state neuroblastoma IMR-32 cells. PGn, SK, PK and their complexes stimulated cells proliferation during 1-3 days of incubation, shown by cell quantity increase. We also observed DNA, RNA and protein increase. The low lactate dehydrogenase efflux was evidence of that an addition of the proteins under investigation in the culture medium prevented the development of degenerative alterations connected with serum deprivation. The levels of extracellular PGn-activator activity, as measured by the biochemical fibrinolytic assay, increased over SK. This SK effect vanished on the 3rd day when SK formed complexes with PK. New original facts obtained testify the probability of initiation of neoplastic transformation and tumor growth potentiation.  相似文献   

6.
The system of extracellular proteolysis consisted of plasminogen (PGn), its active protease, plasmin, and PGn activators and their inhibitors affect the growth, differentiation, and proliferation of nervous cells both under normal and pathological conditions. The purpose of our investigation was to study the effects of exogenous PGn, its activator, streptokinase (SK), pyruvate kinase (PK), and their equimolar complexes on morphological and functional properties of IMR-32 neuroblastoma cells. It has been found that PGn, SK, PK, and their complexes stimulate cell proliferation during 1–3 days of incubation. We also observed increased DNA, RNA, and protein content. The low-lactate dehydrogenase (LDH) efflux indicated that the addition of the proteins we assayed to the culture medium prevented the development of degenerative processes caused by serum deprivation. The levels of extracellular PGn-activator activity, as measured by the fibrinolytic method, increased in the presence of SK. The SK effect vanished if SK was in the complex with PK on the 3rd day of cultivation. New original facts were obtained to testify the probability of initiation of neoplastic transformation and tumor growth potentiation.  相似文献   

7.
8.
Erythropoietin (Epo)-induced glycosylphosphatidylinositol (GPI) hydrolysis was previously described to be correlated with phospholipase C-gamma 2 (PLC-gamma2) activation. Here, we analyzed the involvement of phosphatidylinositol (PtdIns) 3-kinase in GPI hydrolysis through PLC-gamma2 tyrosine phosphorylation in response to Epo in FDC-P1 cells transfected with a wild type (WT) erythropoietin-receptor (Epo-R). We showed that phosphatidylinositol 3-kinase (PtdIns 3-kinase) inhibitor LY294002 inhibits Epo-induced hydrolysis of endogenous GPI and Epo-induced PLC-gamma2 tyrosine phosphorylation in a dose-dependent manner. Wortmannin, another PtdIns 3-kinase inhibitor, also suppressed Epo-induced PLC-gamma2 tyrosine phosphorylation. We also present evidence that PLC-gamma2 translocation to the membrane fraction on Epo stimulation is completely inhibited by LY294002. Upon Epo stimulation, the tyrosine-phosphorylated PLC-gamma2 was found to be associated with the tyrosine-phosphorylated Grb2-associated binder (GAB)2, SHC and SHP2 proteins. LY294002 cell preincubation did not affect GAB2, SHC and SHP2 tyrosine phosphorylation but inhibited the binding of PLC-gamma2 to GAB2 and SHP2. Taken together, these results show that PtdIns 3-kinase controls Epo-induced GPI hydrolysis through PLC-gamma2.  相似文献   

9.
《FEBS letters》2014,588(24):4708-4719
Thymic atrophy occurs during normal aging, and is accelerated by exposure to chronic stressors that elevate glucocorticoid levels and impair the naïve T cell output. The orexigenic hormone ghrelin was recently shown to attenuate age-associated thymic atrophy. Here, we report that ghrelin enhances the proliferation of murine CD4+ primary T cells and a CD4+ T-cell line. Ghrelin induced activation of the ERK1/2 and Akt signaling pathways, via upstream activation of phosphatidylinositol-3-kinase and protein kinase C, to enhance T-cell proliferation. Moreover, ghrelin induced expression of the cell cycle proteins cyclin D1, cyclin E, cyclin-dependent kinase 2 (CDK2) and retinoblastoma phosphorylation. Finally, ghrelin activated the above-mentioned signaling pathways and stimulated thymocyte proliferation in young and older mice in vivo.  相似文献   

10.
12(S)-Hydroxyeicosatetraenoic acid (12(S)-HETE), a 12-lipoxygenase metabolite of arachidonic acid, has multiple effects on tumor and endothelial cells, including stimulation of invasion and angiogenesis. However, the signaling mechanisms controlling these physiological processes are poorly understood. In a human epidermoid carcinoma cell line (i.e. A431), 12(S)-HETE activates extracellular signal-regulated kinases 1/2 (ERK1/2), which is mediated by upstream kinases MEK and Raf. 12(S)-HETE stimulates phosphorylation of phospholipase Cgamma1 and activity of protein kinase Calpha (PKCalpha). In addition, independent of PKC 12(S)-HETE increases tyrosine phosphorylation of Shc, and Grb2, stimulates association between Shc and Src, and increases the activity of Ras, via Src family kinases. Furthermore, at low (10-100 nm) concentrations 12(S)-HETE counteracts epidermal growth factor-stimulated activation of ERK1/2 via stimulating protein tyrosine phosphatases. We also present evidence that 12(S)-HETE stimulates ERK1/2 via G proteins and that A431 cells have multiple binding sites for 12(S)-HETE. Finally, inhibition of 12-lipoxygenase induced apoptosis of A431 cells, which was reversed by addition of exogenous 12(S)-HETE. Collectively we demonstrate that the activation of ERK1/2 by 12(S)-HETE may be regulated by multiple receptors triggering PKC-dependent and PKC-independent pathways in A431 cells.  相似文献   

11.
Gastrin-releasing peptide (GRP), the mammalian equivalent of bombesin (BBS), is an autocrine growth factor for neuroblastoma; its receptor is up-regulated in undifferentiated neuroblastomas. Phosphatidylinositol 3-kinase (PI3K) is a critical cell survival pathway; it is negatively regulated by the PTEN tumor suppressor gene. We have recently found that poorly differentiated neuroblastomas express decreased PTEN protein levels. Moreover, overexpression of the GRP receptor, a member of the G-protein coupled receptor family, down-regulates PTEN expression, resulting in increased neuroblastoma cell growth. Therefore, we sought to determine whether GRP or BBS activates PI3K in neuroblastoma cells (BE(2)-C, LAN-1, SK-N-SH). GRP or BBS treatment rapidly increased phosphorylation of Akt and GSK-3beta in neuroblastoma cells. Inhibition of GRP receptor, with antagonist GRP-H2756 or siRNA, attenuated BBS-induced phosphorylation of Akt. LY294002, a PI3K inhibitor, also abrogated BBS-stimulated phospho-Akt as well as its cell cycle targets. GRP increased G1/S phase progression in SK-N-SH cells. BBS-mediated BrdU incorporation was blocked by LY294002. Our findings identify PI3K as an important signaling pathway for GRP-mediated neuroblastoma cell growth. A novel therapy targeted at GRP/GRP receptor may prove to be an effective treatment option to inhibit PI3K in neuroblastomas.  相似文献   

12.
In this study we have investigated the effects of the small GTP-binding-protein Ras on the redox signalling of the human neuroblastoma cell line, SK-N-BE stably transfected with HaRas(Val12). The levels of reactive oxygen species (ROS) and superoxide anions were significantly higher in HaRas(Val12) expressing (SK-HaRas) cells than in control cells. The treatment of cells with 4-(2-aminoethyl) benzenesulfonylfluoride, a specific inhibitor of the membrane superoxide generating system NADPH oxidase, suppressed the rise in ROS and significantly reduced superoxide levels produced by SK-HaRas cells. Moreover, HaRas(Val12) induced the translocation of the cytosolic components of the NADPH oxidase complex p67(phox) and Rac to the plasma membrane. These effects depended on the mitogen-activated protein kinase kinase/extracellular signal-regulated kinase (MEK/ERK1/2) pathway, as the specific MEK inhibitor, PD98059, prevented HaRas-mediated increase in ROS and superoxide anions. In contrast, the specific phosphoinositide 3-kinase (PI3K) inhibitors LY294002 and wortmannin were unable to reverse the effects of HaRas(Val12). Moreover, cholinergic stimulation of neuroblastoma cells by carbachol, which activated endogenous Ras/ERK1/2, induced a significant increase in ROS levels and elicited membrane translocation of p67(phox) and Rac. ROS generation induced by carbachol required the activation of ERK1/2 and PI3K. Hence, these data indicate that HaRas-induced ERK1/2 signalling selectively activates NADPH oxidase system in neuroblastoma cells.  相似文献   

13.
The caspase-8 homologue FLICE-inhibitory protein (FLIP) functions as a caspase-8 dominant negative, blocking apoptosis induced by the oligomerization of the adapter protein FADD/MORT-1. FLIP expression correlates with resistance to apoptosis induced by various members of the tumor necrosis factor family such as TRAIL. Furthermore, forced expression of FLIP renders cells resistant to Fas-mediated apoptosis. Although FLIP expression is regulated primarily by MEK1 activity in activated T cells, the oncogenic signaling pathways that regulate FLIP expression in tumor cells are largely unknown. In this report, we examined the roles of the MAP kinase and phosphatidylinositol (PI) 3-kinase signaling pathways in the regulation of FLIP expression in tumor cells. We observed that the MEK1 inhibitor PD98059 reduced FLIP levels in only 2 of 11 tumor cell lines tested. In contrast, disruption of the PI 3-kinase pathway with the specific inhibitor LY294002 reduced Akt (protein kinase B) phosphorylation and the levels of FLIP protein and mRNA in all cell lines evaluated. The introduction of a dominant negative Akt adenoviral construct also consistently reduced FLIP expression as well as the phosphorylation of the Akt target glycogen synthase kinase-3. In addition, infection of the same cell lines with a constitutively active Akt adenovirus increased FLIP expression and the phosphorylation of GSK-3. These data add FLIP to the growing list of apoptosis inhibitors in which expression or function is regulated by the PI 3-kinase-Akt pathway.  相似文献   

14.
The extracellular signal-regulated kinase (ERK) pathway participates in the control of numerous cellular processes, including cell proliferation. Since its activation kinetics are critical for to its biological effects, they are tightly regulated. We report that the protein translation factor, eukaryotic translation initiation factor 3, subunit a (eIF3a), binds to SHC and Raf-1, two components of the ERK pathway. The interaction of eIF3a with Raf-1 is increased by β-arrestin2 expression and transiently decreased by epidermal growth factor (EGF) stimulation in a concentration-dependent manner. The EGF-induced decrease in Raf-1-eIF3a association kinetically correlates with the time course of ERK activation. eIF3a interferes with Raf-1 activation and eIF3a downregulation by small interfering RNA enhances ERK activation, early gene expression, DNA synthesis, expression of neuronal differentiation markers in PC12 cells, and Ras-induced focus formation in NIH 3T3 cells. Thus, eIF3a is a negative modulator of ERK pathway activation and its biological effects.  相似文献   

15.
16.
Adenosine exerts its effects through four subtypes of G-protein-coupled receptors: A(1), A(2A), A(2B), and A(3). Stimulation of the human A(3) receptor has been suggested to influence cell death and proliferation. The phosphatidylinositide-3-OH kinase (PI3K)/Akt and the Raf/mitogen-activated protein kinase (MAPK/ERK) kinase (MEK)/mitogen-activated protein kinase (MAPK) pathways have central roles in the regulation of cell survival and proliferation. Due to their importance, the cross-talk between these two pathways has been investigated. Here, we show that the A(3) adenosine receptor agonist Cl-IB-MECA stimulates PI3K-dependent phosphorylation of Akt leading to the reduction of basal levels of ERK1/2 phosphorylation, which in turn inhibits cell proliferation. The response to Cl-IB-MECA was not blocked by A(1), A(2A), or A(2B) receptor antagonists, although it was abolished by A(3) receptor antagonists. Furthermore, the response to Cl-IB-MECA was generated at the cell surface, since the inhibition of A(3) receptor expression, by using small interfering RNA, abolished agonist effects. Using A375 cells, we show that A(3) adenosine receptor stimulation results in PI3K-dependent phosphorylation of Akt, leading to the reduction of basal levels of ERK1/2 phosphorylation, which in turn inhibits cell proliferation.  相似文献   

17.
Tsai CW  Lin CY  Lin HH  Chen JH 《Neurochemical research》2011,36(12):2442-2451
Carnosic acid (CA), a rosemary phenolic compound, has been shown to display anti-cancer activity. We examined the apoptotic effect of CA in human neuroblastoma IMR-32 cells and elucidated the role of the reactive oxygen species (ROS) and mitogen-activated protein kinase (MAPK) associated with carcinogenesis. The result indicated that CA decreased the cell viability in a dose-dependent manner. Further investigation in IMR-32 cells revealed that cell apoptosis following CA treatment is the mechanism as confirmed by flow cytometry, hoechst 33258, and caspase-3/-9 and poly(ADP-ribose) polymerase (PARP) activation. Immunoblotting suggested a down-regulation of anti-apoptotic Bcl-2 protein in the CA-treated cells. In flow cytometric analysis, CA caused the generation of reactive oxygen species (ROS); however, pretreatment with the antioxidant N-acetylcysteine (NAC) attenuated the CA-induced generation of ROS and apoptosis. This effect was accompanied by increased activation of p38 and by decreased activation of extracellular signal-regulated kinase (ERK) as well as activation of c-Jun NH2-terminal kinase (JNK). Moreover, NAC attenuated the CA-induced phosphorylation of p38. Silencing of p38 by siRNA gene knockdown reduced the CA-induced activation of caspase-3. In conclusion, ROS-mediated p38 MAPK activation plays a critical role in CA-induced apoptosis in IMR-32 cells.  相似文献   

18.
Neurotrophins promote multiple actions on neuronal cells including cell survival and differentiation. The best-studied neurotrophin, nerve growth factor (NGF), is a major survival factor in sympathetic and sensory neurons and promotes differentiation in a well-studied model system, PC12 cells. To mediate these actions, NGF binds to the TrkA receptor to trigger intracellular signaling cascades. Two kinases whose activities mediate these processes include the mitogen-activated protein (MAP) kinase (or extracellular signal-regulated kinase [ERK]) and phosphoinositide 3-kinase (PI3-K). To examine potential interactions between the ERK and PI3-K pathways, we studied the requirement of PI3-K for NGF activation of the ERK signaling cascade in dorsal root ganglion cells and PC12 cells. We show that PI3-K is required for TrkA internalization and participates in NGF signaling to ERKs via distinct actions on the small G proteins Ras and Rap1. In PC12 cells, NGF activates Ras and Rap1 to elicit the rapid and sustained activation of ERKs respectively. We show here that Rap1 activation requires both TrkA internalization and PI3-K, whereas Ras activation requires neither TrkA internalization nor PI3-K. Both inhibitors of PI3-K and inhibitors of endocytosis prevent GTP loading of Rap1 and block sustained ERK activation by NGF. PI3-K and endocytosis may also regulate ERK signaling at a second site downstream of Ras, since both rapid ERK activation and the Ras-dependent activation of the MAP kinase kinase kinase B-Raf are blocked by inhibition of either PI3-K or endocytosis. The results of this study suggest that PI3-K may be required for the signals initiated by TrkA internalization and demonstrate that specific endocytic events may distinguish ERK signaling via Rap1 and Ras.  相似文献   

19.
Invasion of brain microvascular endothelial cells (BMEC) is a prerequisite for successful crossing of the blood-brain barrier by Escherichia coli K1. We have previously demonstrated the requirement of cytoskeletal rearrangements and activation of focal adhesion kinase (FAK) in E. coli K1 invasion of human BMEC (HBMEC). The current study investigated the role of phosphatidylinositol 3-kinase (PI3K) activation and PI3K interaction with FAK in E. coli invasion of HBMEC. PI3K inhibitor LY294002 blocked E. coli K1 invasion of HBMEC in a dose-dependent manner, whereas an inactive analogue LY303511 had no such effect. In HBMEC, E. coli K1 increased phosphorylation of Akt, a downstream effector of PI3K, which was completely blocked by LY294002. In contrast, non-invasive E. coli failed to activate PI3K. Overexpression of PI3K mutants Deltap85 and catalytically inactive p110 in HBMEC significantly inhibited both PI3K/Akt activation and E. coli K1 invasion of HBMEC. Stimulation of HBMEC with E. coli K1 increased PI3K association with FAK. Furthermore, PI3K/Akt activation was blocked in HBMEC-overexpressing FAK dominant-negative mutants (FRNK and Phe397FAK). These results demonstrated the involvement of PI3K signaling in E. coli K1 invasion of HBMEC and identified a novel role for PI3K interaction with FAK in the pathogenesis of E. coli meningitis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号