首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Lee YH  Nath SK 《Human genetics》2005,118(3-4):434-443
To date, several susceptibility loci for systemic lupus erythematosus (SLE) have been identified by individual genome-wide scans, but many of these loci have shown inconsistent results across studies. Additionally, many individual studies are at the lower limit of acceptable power recommended for declaring significant linkage. The genome search meta-analysis (GSMA) has been proposed as a valid and robust method for combining several genome scan results. The aim of this study is to investigate whether there is any consistent evidence of linkage across multiple studies, and to identify novel SLE susceptibility loci by using GSMA method. Twelve genome scan results generated from nine independent studies have been used for the present GSMA. All together, the data consists of 605 families with 1,355 SLE affected individuals from three self-reported ethnicities; Caucasian, African-American, and Hispanic. For each study, the genome was divided into 120 bins (30 cM) and ranked according to the maximum evidence of linkage within each bin. The ranks were summed and averaged across studies following which the significance was assessed by the permutation tests. The present study identified two genomic locations at 6p22.3–6p21.1 and 16p12.3–16q12.2 that met genome-wide significance (p<0.000417). The identified region at 6p22.3–6p21.1 contains the HLA region. The combined p-values using Fisher’s method also supported the significance in these regions. Clustering of significant adjacent bins was observed for chromosomes 6 and 16. Additionally, there are 12 other bins with two point-wise p-values (Psumrnk and Pord) <0.05, suggesting that these bin regions are highly likely to contain SLE susceptibility loci. Among them, present GSMA also identified two novel regions at 4q32.1–4q34.3 and 13q13.2–13q22.2. However, separate analysis using only Caucasian populations identified the strongest evidence for linkage at chromosome 6p21.1–6q15 (Psumrnk=0.00021). One interesting novel region suggests that 3q22.1–3q25.33 (Psumrnk=0.01376) may be an ethnicity-specific SLE linkage. In summary, the present GSMA have identified two statistically significant genomic regions that reconfirmed the SLE linkage at chromosomes 6 and 16.  相似文献   

2.
Schizophrenia is a common disorder with high heritability and a 10-fold increase in risk to siblings of probands. Replication has been inconsistent for reports of significant genetic linkage. To assess evidence for linkage across studies, rank-based genome scan meta-analysis (GSMA) was applied to data from 20 schizophrenia genome scans. Each marker for each scan was assigned to 1 of 120 30-cM bins, with the bins ranked by linkage scores (1 = most significant) and the ranks averaged across studies (R(avg)) and then weighted for sample size (N(sqrt)[affected casess]). A permutation test was used to compute the probability of observing, by chance, each bin's average rank (P(AvgRnk)) or of observing it for a bin with the same place (first, second, etc.) in the order of average ranks in each permutation (P(ord)). The GSMA produced significant genomewide evidence for linkage on chromosome 2q (PAvgRnk<.000417). Two aggregate criteria for linkage were also met (clusters of nominally significant P values that did not occur in 1,000 replicates of the entire data set with no linkage present): 12 consecutive bins with both P(AvgRnk) and P(ord)<.05, including regions of chromosomes 5q, 3p, 11q, 6p, 1q, 22q, 8p, 20q, and 14p, and 19 consecutive bins with P(ord)<.05, additionally including regions of chromosomes 16q, 18q, 10p, 15q, 6q, and 17q. There is greater consistency of linkage results across studies than has been previously recognized. The results suggest that some or all of these regions contain loci that increase susceptibility to schizophrenia in diverse populations.  相似文献   

3.
Psoriasis is a common chronic inflammatory skin disease with a strong genetic component. Few psoriasis-susceptibility loci have been reported, and only two have been confirmed in independent data sets. This article reports results of a genomewide scan that was performed, using 370 microsatellite markers, for psoriasis-susceptibility loci in 32 German extended families, comprising 162 affected and 195 unaffected individuals. Nonparametric linkage analysis of all families provided strong evidence for a novel psoriasis-susceptibility locus on chromosome 19p (Zlr=3.50; P=.0002). Parametric analysis revealed a heterogeneity LOD score of 4.06, corresponding to a genomewide significance level of.037, under the assumption of a recessive model with high disease-allele frequency and 66% as the proportion of linked families. This study confirms linkage of psoriasis to the HLA region on chromosome 6p and suggests additional regions on chromosomes 8q and 21q for further investigations.  相似文献   

4.
Autosomal recessive congenital ichthyosis (ARCI) comprises a group of severe disorders of keratinization, characterized by variable erythema and skin scaling. It is known for its high degree of genetic and clinical heterogeneity. Mutations in the gene for keratinocyte transglutaminase (TGM1) on chromosome 14q11 were shown in patients with ARCI, and a second locus was described, on chromosome 2q, in families from northern Africa. Three other loci for ARCI, on chromosomes 3p and 19p, were identified recently. We have embarked on a whole-genome scan for further loci for ARCI in four families from Germany, Turkey, and the United Arab Emirates. A novel ARCI locus was identified on chromosome 17p, between the markers at D17S938 and D17S1856, with a maximum LOD score of 3.38, at maximum recombination fraction 0.00, at D17S945, under heterogeneity. This locus is linked to the disease in the Turkish family and in the German family. Extensive genealogical studies revealed that the parents of the German patients with ARCI were eighth cousins. By homozygosity mapping, the localization of the gene could then be refined to the 8.4-cM interval between D17S938 and D17S1879. It could be shown, however, that ARCI in the two Arab families is linked neither to the new locus on chromosome 17p nor to one of the five loci known previously. Our findings give evidence of further genetic heterogeneity that is not linked to distinctive phenotypes.  相似文献   

5.
Objective: The objective was to provide an overall assessment of genetic linkage data of BMI and BMI‐defined obesity using a nonparametric genome scan meta‐analysis. Research Methods and Procedures: We identified 37 published studies containing data on over 31,000 individuals from more than >10,000 families and obtained genome‐wide logarithm of the odds (LOD) scores, non‐parametric linkage (NPL) scores, or maximum likelihood scores (MLS). BMI was analyzed in a pooled set of all studies, as a subgroup of 10 studies that used BMI‐defined obesity, and for subgroups ascertained through type 2 diabetes, hypertension, or subjects of European ancestry. Results: Bins at chromosome 13q13.2‐ q33.1, 12q23‐q24.3 achieved suggestive evidence of linkage to BMI in the pooled analysis and samples ascertained for hypertension. Nominal evidence of linkage to these regions and suggestive evidence for 11q13.3‐22.3 were also observed for BMI‐defined obesity. The FTO obesity gene locus at 16q12.2 also showed nominal evidence for linkage. However, overall distribution of summed rank p values <0.05 is not different from that expected by chance. The strongest evidence was obtained in the families ascertained for hypertension at 9q31.1‐qter and 12p11.21‐q23 (p < 0.01). Conclusion: Despite having substantial statistical power, we did not unequivocally implicate specific loci for BMI or obesity. This may be because genes influencing adiposity are of very small effect, with substantial genetic heterogeneity and variable dependence on environmental factors. However, the observation that the FTO gene maps to one of the highest ranking bins for obesity is interesting and, while not a validation of this approach, indicates that other potential loci identified in this study should be investigated further.  相似文献   

6.
Hereditary spastic paraplegia (HSP) is a clinically and genetically heterogeneous group of disorders characterized by insidiously progressive spastic weakness in the legs. Genetic loci for autosomal dominant HSP exist on chromosomes 2p, 14q, and 15q. These loci are excluded in 45% of autosomal dominant HSP kindreds, indicating the presence of additional loci for autosomal dominant HSP. We analyzed a Caucasian kindred with autosomal dominant HSP and identified tight linkage between the disorder and microsatellite markers on chromosome 8q (maximum two-point LOD score 5.51 at recombination fraction 0). Our results clearly establish the existence of a locus for autosomal dominant HSP on chromosome 8q23-24. Currently this locus spans 6.2 cM between D8S1804 and D8S1774 and includes several potential candidate genes. Identifying this novel HSP locus on chromosome 8q23-24 will facilitate discovery of this HSP gene, improve genetic counseling for families with linkage to this locus, and extend our ability to correlate clinical features with different HSP loci.  相似文献   

7.
High plasma apolipoprotein B (apoB) and LDL cholesterol levels increase cardiovascular disease risk. These highly correlated measures may be partially controlled by common genetic polymorphisms. To identify chromosomal regions that contain genes causing low plasma levels of one or both parameters in Caucasian families ascertained for familial hypobetalipoproteinemia (FHBL), we conducted a whole-genome scan using 443 microsatellite markers typed in nine multigenerational families with at least two members with FHBL. Both variance components and regression-based linkage methods were used to identify regions of interest. Common linkage regions were identified for both measures on chromosomes 10q25.1-10q26.11 [maximum log of the odds (LOD) = 4.2 for LDL and 3.5 for apoB] and 6q24.3 (maximum LOD = 1.46 for LDL and 1.84 for apoB). There was also evidence for linkage to apoB on chromosome 13q13.2 (LOD = 1.97) and to LDL on chromosome 3p14.1 at 94 centimorgan (LOD = 1.52). Bivariate linkage analysis provided further evidence for loci contributing to both traits (6q24.3, LOD = 1.43; 10q25.1, LOD = 1.74). We evaluated single nucleotide polymorphisms (SNPs) in genes within our linkage regions to identify variants associated with apoB or LDL levels. The most significant finding was for rs2277205 in the 5' untranslated region of acyl-coenzyme A dehydrogenase short/branched chain and LDL (P = 10(-7)). Three additional SNPs were associated with apoB and/or LDL (P < 0.01). Although only the linkage signal on chromosome 10 reached genome-wide statistical significance, there are likely multiple chromosomal regions with variants that contribute to low levels of apoB and LDL and that may protect against coronary heart disease.  相似文献   

8.
Coronary artery disease (CAD) is the leading cause of death worldwide. Recent genome-wide association studies (GWAS) identified >50 common variants associated with CAD or its complication myocardial infarction (MI), but collectively they account for <20% of heritability, generating a phenomena of “missing heritability”. Rare variants with large effects may account for a large portion of missing heritability. Genome-wide linkage studies of large families and follow-up fine mapping and deep sequencing are particularly effective in identifying rare variants with large effects. Here we show results from a genome-wide linkage scan for CAD in multiplex GeneQuest families with early onset CAD and MI. Whole genome genotyping was carried out with 408 markers that span the human genome by every 10 cM and linkage analyses were performed using the affected relative pair analysis implemented in GENEHUNTER. Affected only nonparametric linkage (NPL) analysis identified two novel CAD loci with highly significant evidence of linkage on chromosome 3p25.1 (peak NPL  = 5.49) and 3q29 (NPL  = 6.84). We also identified four loci with suggestive linkage on 9q22.33, 9q34.11, 17p12, and 21q22.3 (NPL  = 3.18–4.07). These results identify novel loci for CAD and provide a framework for fine mapping and deep sequencing to identify new susceptibility genes and novel variants associated with risk of CAD.  相似文献   

9.
In order to detect linkage of the simulated complex disease Kofendrerd Personality Disorder across studies from multiple populations, we performed a genome scan meta-analysis (GSMA). Using the 7-cM microsatellite map, nonparametric multipoint linkage analyses were performed separately on each of the four simulated populations independently to determine p-values. The genome of each population was divided into 20-cM bin regions, and each bin was rank-ordered based on the most significant linkage p-value for that population in that region. The bin ranks were then averaged across all four studies to determine the most significant 20-cM regions over all studies. Statistical significance of the averaged bin ranks was determined from a normal distribution of randomly assigned rank averages. To narrow the region of interest for fine-mapping, the meta-analysis was repeated two additional times, with each of the 20-cM bins offset by 7 cM and 13 cM, respectively, creating regions of overlap with the original method. The 6-7 cM shared regions, where the highest averaged 20-cM bins from each of the three offsets overlap, designated the minimum region of maximum significance (MRMS). Application of the GSMA-MRMS method revealed genome wide significance (p-values refer to the average rank assigned to the bin) at regions including or adjacent to all of the simulated disease loci: chromosome 1 (p < 0.0001 for 160-167 cM, including D1), chromosome 3 (p-value < 0.0000001 for 287-294 cM, including D2), chromosome 5 (p-value < 0.001 for 0-7 cM, including D3), and chromosome 9 (p-value < 0.05 for 7-14 cM, the region adjacent to D4). This GSMA analysis approach demonstrates the power of linkage meta-analysis to detect multiple genes simultaneously for a complex disorder. The MRMS method enhances this powerful tool to focus on more localized regions of linkage.  相似文献   

10.
Atopic dermatitis (AD) is a common, itchy skin disease of complex inheritance characterized by dermal and epidermal inflammation. The heritability is considerable and well documented. To date, four genome scans have examined the AD phenotype, showing replicated linkage at 3p26-22, 3q13-21 and 18q11-21. Our previous AD scan showed evidence of linkage to loci at 3p and 18q, and furthermore at 4p15-14. In order to further investigate the genetic basis of AD, we collected and analysed a new Danish family sample consisting of 130 AD sib pair families (555 individuals including 295 children with AD). AD was diagnosed after clinical examination, AD severity was scored and specific IgE was determined. A linkage scan of chromosome 3, 4 and 18 was performed using 91 microsatellite markers. Linkage analyses were performed of dichotomous phenotypes and semi-quantitative traits including the AD severity score. We analysed the novel AD sample alone and together with the previously examined sample. AD severity showed a maximum Z-score of 3.7 at 4q22.1 suggesting the localization of a novel gene for AD severity. A maximum MOD score of 4.6 was obtained at 3p24 for the AD phenotype, providing the first significant linkage of AD at this locus. A maximum MLS score of 3.3 was obtained at 3q21 for IgE-associated AD, and evidence of linkage was also obtained at 3p22.2-21.31, 3q13, 4q35, and 18q12. The results presented should provide a firm basis for gene-targeting studies of AD and related disorders.  相似文献   

11.
Type 1 diabetes (T1D) is a genetically complex disorder of glucose homeostasis that results from the autoimmune destruction of the insulin-secreting cells of the pancreas. Two previous whole-genome scans for linkage to T1D in 187 and 356 families containing affected sib pairs (ASPs) yielded apparently conflicting results, despite partial overlap in the families analyzed. However, each of these studies individually lacked power to detect loci with locus-specific disease prevalence/sib-risk ratios (lambda(s)) <1.4. In the present study, a third genome scan was performed using a new collection of 225 multiplex families with T1D, and the data from all three of these genome scans were merged and analyzed jointly. The combined sample of 831 ASPs, all with both parents genotyped, provided 90% power to detect linkage for loci with lambda(s) = 1.3 at P=7.4x10(-4). Three chromosome regions were identified that showed significant evidence of linkage (P<2.2x10(-5); LOD scores >4), 6p21 (IDDM1), 11p15 (IDDM2), 16q22-q24, and four more that showed suggestive evidence (P<7.4x10(-4), LOD scores > or =2.2), 10p11 (IDDM10), 2q31 (IDDM7, IDDM12, and IDDM13), 6q21 (IDDM15), and 1q42. Exploratory analyses, taking into account the presence of specific high-risk HLA genotypes or affected sibs' ages at disease onset, provided evidence of linkage at several additional sites, including the putative IDDM8 locus on chromosome 6q27. Our results indicate that much of the difficulty in mapping T1D susceptibility genes results from inadequate sample sizes, and the results point to the value of future international collaborations to assemble and analyze much larger data sets for linkage in complex diseases.  相似文献   

12.
Ankylosing spondylitis (AS) is a common inflammatory arthritis predominantly affecting the axial skeleton. Susceptibility to the disease is thought to be oligogenic. To identify the genes involved, we have performed a genomewide scan in 185 families containing 255 affected sibling pairs. Two-point and multipoint nonparametric linkage analysis was performed. Regions were identified showing "suggestive" or stronger linkage with the disease on chromosomes 1p, 2q, 6p, 9q, 10q, 16q, and 19q. The MHC locus was identified as encoding the greatest component of susceptibility, with an overall LOD score of 15.6. The strongest non-MHC linkage lies on chromosome 16q (overall LOD score 4.7). These results strongly support the presence of non-MHC genetic-susceptibility factors in AS and point to their likely locations.  相似文献   

13.
Asthma is a complex genetic disorder with a heterogeneous phenotype, largely attributed to the interactions among many genes and between these genes and the environment. Numerous loci and candidate genes have been reported to show linkage and association to asthma and atopy. Although some studies reporting these observations are compelling, no gene has been mapped that confers a sufficiently high risk of asthma to meet the stringent criteria for genomewide significance. Using 175 extended Icelandic families that included 596 patients with asthma, we performed a genomewide scan with 976 microsatellite markers. The families were identified by cross-matching a list of patients with asthma from the Department of Allergy/Pulmonary Medicine of the National University Hospital of Iceland with a genealogy database of the entire Icelandic nation. We detected linkage of asthma to chromosome 14q24, with an allele-sharing LOD score of 2.66. After we increased the marker density within the locus to an average of one microsatellite every 0.2 cM, the LOD score rose to 4.00. We designate this locus "asthma locus one" (AS1). Taken together, these results provide evidence of a novel susceptibility gene for asthma on chromosome 14q24.  相似文献   

14.
We conducted a genome-wide scan using variance components linkage analysis to localize quantitative-trait loci (QTLs) influencing triglyceride (TG), high density lipoprotein-cholesterol (HDL-C), low density lipoprotein-cholesterol, and total cholesterol (TC) levels in 3,071 subjects from 459 families with atherogenic dyslipidemia. The most significant evidence for linkage to TG levels was found in a subset of Turkish families at 11q22 [logarithm of the odds ratio (LOD)=3.34] and at 17q12 (LOD=3.44). We performed sequential oligogenic linkage analysis to examine whether multiple QTLs jointly influence TG levels in the Turkish families. These analyses revealed loci at 20q13 that showed strong epistatic effects with 11q22 (conditional LOD=3.15) and at 7q36 that showed strong epistatic effects with 17q12 (conditional LOD=3.21). We also found linkage on the 8p21 region for TG in the entire group of families (LOD=3.08). For HDL-C levels, evidence of linkage was identified on chromosome 15 in the Turkish families (LOD=3.05) and on chromosome 5 in the entire group of families (LOD=2.83). Linkage to QTLs for TC was found at 8p23 in the entire group of families (LOD=4.05) and at 5q13 in a subset of Turkish and Mediterranean families (LOD=3.72). These QTLs provide important clues for the further investigation of genes responsible for these complex lipid phenotypes. These data also indicate that a large proportion of the variance of TG levels in the Turkish population is explained by the interaction of multiple genetic loci.  相似文献   

15.
Genome scans of bipolar disorder (BPD) have not produced consistent evidence for linkage. The rank-based genome scan meta-analysis (GSMA) method was applied to 18 BPD genome scan data sets in an effort to identify regions with significant support for linkage in the combined data. The two primary analyses considered available linkage data for “very narrow” (i.e., BP-I and schizoaffective disorder–BP) and “narrow” (i.e., adding BP-II disorder) disease models, with the ranks weighted for sample size. A “broad” model (i.e., adding recurrent major depression) and unweighted analyses were also performed. No region achieved genomewide statistical significance by several simulation-based criteria. The most significant P values (<.01) were observed on chromosomes 9p22.3-21.1 (very narrow), 10q11.21-22.1 (very narrow), and 14q24.1-32.12 (narrow). Nominally significant P values were observed in adjacent bins on chromosomes 9p and 18p-q, across all three disease models on chromosomes 14q and 18p-q, and across two models on chromosome 8q. Relatively few BPD pedigrees have been studied under narrow disease models relative to the schizophrenia GSMA data set, which produced more significant results. There was no overlap of the highest-ranked regions for the two disorders. The present results for the very narrow model are promising but suggest that more and larger data sets are needed. Alternatively, linkage might be detected in certain populations or subsets of pedigrees. The narrow and broad data sets had considerable power, according to simulation studies, but did not produce more highly significant evidence for linkage. We note that meta-analysis can sometimes provide support for linkage but cannot disprove linkage in any candidate region.  相似文献   

16.
Sarcoidosis, a systemic granulomatous disease, likely results from both environmental agents and genetic susceptibility. Sarcoidosis is more prevalent in women and, in the United States, African Americans are both more commonly and more severely affected than Caucasians. We report a follow up of the first genome scan for sarcoidosis susceptibility genes in African Americans. Both the genome scan and the present study comprise 229 African American nuclear families ascertained through two or more sibs with sarcoidosis. Regions studied included those which reached a significance in the genome scan of 0.01 (2p25, 5q11, 5q35, 9q34, 11p15 and 20q13), 0.05 (3p25 and 5p15–13) or which replicated previous findings (3p14–11). We performed genotyping with additional markers in the same families used in the genome scan. We examined multi-locus models for epistasis and performed model-based linkage analysis on subsets of the most linked families to characterize the underlying genetic model. The strongest signal was at marker D5S407 (P=0.005) on 5q11.2, using both full and half sibling pairs. Our results support, in an African American population, a sarcoidosis susceptibility gene on chromosome 5q11.2, and a gene protective for sarcoidosis on 5p15.2. These fine mapping results further prioritize the importance of candidate regions on chromosomes 2p25, 3p25, 5q35, 9q34, 11p15 and 20q13 for African Americans. Additionally, our results suggest joint action of the effects of putative genes on chromosome 3p14–11 and 5p15.2. We conclude that multiple susceptibility loci for sarcoidosis exist in African Americans and that some may have interdependent effects on disease pathogenesis.  相似文献   

17.
We performed a genomewide scan for genes that predispose to low serum HDL cholesterol (HDL-C) in 25 well-defined Finnish families that were ascertained for familial low HDL-C and premature coronary heart disease. The potential loci for low HDL-C that were identified initially were tested in an independent sample group of 29 Finnish families that were ascertained for familial combined hyperlipidemia (FCHL), expressing low HDL-C as one component trait. The data from the previous genome scan were also reanalyzed for this trait. We found evidence for linkage between the low-HDL-C trait and three loci, in a pooled data analysis of families with low HDL-C and FCHL. The strongest statistical evidence was obtained at a locus on chromosome 8q23, with a two-point LOD score of 4.7 under a recessive mode of inheritance and a multipoint LOD score of 3.3. Evidence for linkage also emerged for loci on chromosomes 16q24.1-24.2 and 20q13.11, the latter representing a recently characterized region for type 2 diabetes. Besides these three loci, loci on chromosomes 2p and 3p showed linkage in the families with low HDL-C and a locus on 2ptel in the families with FCHL.  相似文献   

18.
Linkage studies have led to the identification of several chromosome regions that may contain susceptibility loci to type I diabetes (IDDM), in addition to the HLA and INS loci. These include two on chromosome 6q, denoted IDDM5 and IDDM8, that are not linked to HLA. In a previous study, we noticed that the evidence for linkage to IDDM susceptibility around the HLA locus extended over a total distance of 100 cM, which suggested to us that another susceptibility locus could reside near HLA. We developed a statistical method to test this hypothesis in a panel of 523 multiplex families from France, the United States, and Denmark (a total of 667 affected sib pairs, 536 with both parents genotyped), and here present evidence (P = .00003) of a susceptibility locus for IDDM located 32 cM from HLA in males but not linked to HLA in females and distinct from IDDM5 and IDDM8. A new statistical method to test for the presence of a second susceptibility locus linked to a known first susceptibility locus (here HLA) is presented. In addition, we analyzed our current family panel with markers for IDDM5 and IDDM8 on chromosome 6 and found suggestions of linkage for both of these loci (P = .002 and .004, respectively, on the complete family panel). When cumulated with previously published results, with overlapping families removed, the affected-sib-pair tests had a significance of P = .0001 for IDDM5 and P = .00004 for IDDM8.  相似文献   

19.
To identify genetic loci for autism-spectrum disorders, we have performed a two-stage genomewide scan in 38 Finnish families. The detailed clinical examination of all family members revealed infantile autism, but also Asperger syndrome (AS) and developmental dysphasia, in the same set of families. The most significant evidence for linkage was found on chromosome 3q25-27, with a maximum two-point LOD score of 4.31 (Z(max )(dom)) for D3S3037, using infantile autism and AS as an affection status. Six markers flanking over a 5-cM region on 3q gave Z(max dom) >3, and a maximum parametric multipoint LOD score (MLS) of 4.81 was obtained in the vicinity of D3S3715 and D3S3037. Association, linkage disequilibrium, and haplotype analyses provided some evidence for shared ancestor alleles on this chromosomal region among affected individuals, especially in the regional subisolate. Additional potential susceptibility loci with two-point LOD scores >2 were observed on chromosomes 1q21-22 and 7q. The region on 1q21-22 overlaps with the previously reported candidate region for infantile autism and schizophrenia, whereas the region on chromosome 7q provided evidence for linkage 58 cM distally from the previously described autism susceptibility locus (AUTS1).  相似文献   

20.
Restless legs syndrome (RLS) is a common neurological condition with three loci (12q, 14q, and 9p) described so far, although none of these genes has yet been identified. We report a genomewide linkage scan of patients with RLS (n=37) assessed in a population isolate (n=530) of South Tyrol (Italy). Using both nonparametric and parametric analyses, we initially obtained suggestive evidence of a novel locus on chromosome 2q, with nominal evidence of linkage on chromosomes 5p and 17p. Follow-up genotyping yielded significant evidence of linkage (nonparametric LOD score 5.5, P相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号