首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
多年生黑麦草成熟胚再生体系的建立及基因枪转化   总被引:4,自引:0,他引:4  
目的:建立以多年生黑麦草成熟胚为起始材料的再生体系,用于基因枪转化。方法:多年生黑麦草成熟种子在附加 5mg L 2,4 D的MS培养基上诱导愈伤组织,转至新继代培养基上产生胚性愈伤组织。分化培养基为无激素MS培养基。再生植株在培养基成分减半的无激素MS培养基生根,之后移栽至土壤。基于这一再生体系,用含有水稻几丁质酶基因RC2 4的质粒pARN6和含有草丁膦乙酰转移酶基因Bar的质粒pDB1,通过基因枪轰击胚性愈伤组织。用附加PPT的继代培养基进行转化植株的抗性筛选。结果:共获得 2 4 3株再生植株。通过PCR进行检测,获得1 8株整合有RC2 4基因的植株,1 5株整合有Bar基因的植株,同时转入 2个基因的植株 2株。  相似文献   

2.
We developed an efficient gene transfer method mediated by Agrobacterium tumefaciens for introgression of new rice for Africa (NERICA) cultivars, which are derivatives of interspecific hybrids between Oryza glaberrima Steud. and O. sativa L. Freshly isolated immature embryos were inoculated with A. tumefaciens LBA4404 that harbored binary vector pBIG-ubi::GUS or pIG121Hm, which each carried a hygromycin-resistance gene and a GUS gene. Growth medium supplemented with 500 mg/l cefotaxime and 20 mg/l hygromycin was suitable for elimination of bacteria and selection of transformed cells. Shoots regenerated from the selected cells on MS medium containing 20 g/l sucrose, 30 g/l sorbitol, 2 g/l casamino acids, 0.25 mg/l naphthaleneacetic acid, 2.5 mg/l kinetin, 250 mg/l cefotaxime, and 20 mg/l hygromycin. The shoots developed roots on hormone-free MS medium containing 30 mg/l hygromycin. Integration and expression of the transgenes were confirmed by PCR, Southern blot analysis, and histochemical GUS assay. Stable integration, expression, inheritance, and segregation of the transgenes were demonstrated by molecular and genetic analyses in the T0 and T1 generations. Most plants were normal in morphology and fertile. The transformation protocol produced stable transformants from 16 NERICA cultivars. We also obtained transformed plants by inoculation of calluses derived from mature seeds, but the frequency of transformation was lower and sterility was more frequent.  相似文献   

3.
4.
A protocol for efficient direct gene transfer by using particle gun bombardment was developed for mothbeanVigna aconitifolia L. Jacq. Marechal. Hypocotyl explants from 2 cultivars of mothbean were transformed with 3 plasmids: pBI121, pHS101, and pHS102. Stable transformants were regenerated on MS medium supplemented with benzyladenine, α-naphthaleneacetic acid, and kanamycin. The helium pressure, plasmid type, and cultivar that were used determined the stable transformation frequency. Complete plants were regenerated and transferred to soil. The integration of the stable transgenes and reporter genes in plant genomes was shown by means of PCR amplification of these genes from plant genomic DNA and Southern blot hybridization with gene-specific probes. This method allows high-efficiency production of transgenic plants in mothbean. Suchita Kamble and Hari S. Misra contributed equally to this work.  相似文献   

5.
An efficient method for in vitro micro propagation and genetic transformation of plants are crucial for both basic and applied research. Maize is one of the most important cereal crops around the world. Regeneration from immature embryo is hampered due to its unavailability round the year. On the contrary mature embryo especially tropical maize is recalcitrant toward tissue culture. Here we report a highly efficient regeneration (90%) system for maize by using 2 different approaches i.e., embryogenic and organogenic callus cultures. Seeds were germinated on MS medium supplemented with 5 mg/l 2,4-D and 3 mg/l BAP. Nodal regions of 2 wks old seedlings were longitudinally split upon isolation and subsequently placed on callus initiation medium. The maximum frequency of embryogenic callus formation (90%) was obtained on MS medium supplemented with 2 mg/l 2,4-D and 1 mg/l BAP in the dark conditions. The compact granular organogenic callus formation (85% frequency) was obtained on MS medium supplemented with 2.5 mg/l 2,4-D and 1.5 mg/l BAP at light conditions. MS medium supplemented with 2 mg/l BAP, 1 mg/l Kinetin and 0.5 mg/l NAA promoted the highest frequency of shoot induction. The highest frequency of root formation was observed when shoots were grown on MS medium. The regenerated plants were successfully hardened in earthen pots after adequate acclimatization. The important advantage of this improved method is shortening of regeneration time by providing an efficient and rapid regeneration tool for obtaining more stable transformants from mature seeds of Indian tropical maize cultivar (HQPM-1).  相似文献   

6.
Gao C  Long D  Lenk I  Nielsen KK 《Plant cell reports》2008,27(10):1601-1609
Agrobacterium-mediated transformation and particle bombardment are the two most widely used methods for genetically modifying grasses. Here, these two systems are compared for transformation efficiency, transgene integration and transgene expression when used to transform tall fescue (Festuca arundinacea Schreb.). The bar gene was used as a selectable marker and selection during tissue culture was performed using 2 mg/l bialaphos in both callus induction and regeneration media. Average transformation efficiency across the four callus lines used in the experiments was 10.5% for Agrobacterium-mediated transformation and 11.5% for particle bombardment. Similar transgene integration patterns and co-integration frequencies of bar and uidA were observed in both gene transfer systems. However, while GUS activity was detected in leaves of 53% of the Agrobacterium transformed lines, only 20% of the bombarded lines showed GUS activity. Thus, Agrobacterium-mediated transformation appears to be the preferred method for producing transgenic tall fescue plants.  相似文献   

7.
Immature, mature and endosperm-supported mature embryos of six triticale cultivars (BDMT-98-8S, Melez-2001, Mikham-2002, Presto, Tacettin Bey and Tatlicak-97) were cultured in vitro to compare the levels of callus induction and plant regeneration. Immature embryos, 15-18 days after anthesis, were aseptically excised and placed with the scutellum upwards on a callus culture medium consisting of Murashige and Skoog (MS) mineral salts supplemented with 2 mg l(-1) 2,4-dichlorophenoxyacetic acid (2,4-D). Mature embryos were aseptically excised from the imbibed seeds and placed scutellum up on MS medium supplement with 2 mg l(-1) 2,4-D. Endosperm-supported mature embryos were moved slightly in the imbibed mature seeds. The seeds with moved embryos were placed furrow downwards in dishes containing 8 mg l(-1) 2,4-D for callus induction. The developed calli and regenerated plants were maintained on hormone-free MS medium. Variability among the genotypes was observed for all the types of embryo culture. Immature embryos from "Presto" and endosperm-supported mature embryos from "Mikham 2002" had excellent regeneration capacities (92.0% and 97.3%, respectively) and the highest number of plants regenerated growing in soil (9 and 13, respectively). A comparison of the responses of the three explants used indicated that the endosperm-supported mature embryo was the most useful explant for plant regeneration in triticale.  相似文献   

8.
The basidiomycete Lyophyllum decastes was transformed by means of particle bombardment. We isolated five transformants under twelve conditions differing in the two parameters of target distance and helium pressure. The transformation frequency was one transformant/μg DNA. In the transformants, plasmid DNAs were integrated into the genomic DNA and stably maintained. This is the first report on transformation of L. decastes by particle bombardment.  相似文献   

9.
A protocol was developed for biolistic transformation of hybrid bermudagrass cv. TifEagle using the bar gene. TifEagle is an ultradwarf used exclusively on golf greens. Herbicide resistance should serve as a useful management tool, especially if methyl-bromide is unavailable for fumigation prior to plant establishment. Hybrid bermudagrass is completely sterile, which should limit the chance of gene escape via out-crossing. Sliced nodes were used to initiate embryogenic tissue cultures on MS medium supplemented with 1 mg/l 2,4-dichlorophenoxyacetic acid (2,4-D) and 0.01 mg/l 6-benzylaminopurine (BA). Embryogenic tissue was bombarded with the bar gene, and herbicide-resistant tissue was selected in the dark on medium supplemented with 0.75 mg/l 2,4-D, 0.01 mg/l BA and 5–15 mg/l phosphinothricin (PPT). Resistant somatic embryos were induced to germinate in the light on MS medium supplemented with 0.13 mg/l 2,4-D and 0.5 mg/l BA. Plants were transferred to the greenhouse after rooting in the presence of 10–15 mg/l PPT and testing positive in a chlorophenol red assay. A total of 89 herbicide-resistant plants were recovered from at least nine independent events from six separate bombardments, although the number of independent transformation events was not confirmed for the entire group. Flow cytometry indicated that most of the plants (82/89) were hexaploid and that the remaining seven plants were triploid. The hexaploid plants were a darker green than the triploids or TifEagle control. Other variation, present only in the hexaploids, included an increased leaf width and length. Southern blot hybridization confirmed genomic integration of the bar gene in triploid and a subset of hexaploid herbicide-resistant plants. AFLP analysis did not indicate changes in DNA profiles using [33P] and a sample of 32 hexaploid plants recovered from a single bombardment. DNA profiles were very similar to that of the TifEagle control with a semi-automated fluorescence-based AFLP.Abbreviations BA: 6-Benzylaminopurine - 2,4-D: 2,4-Dichlorophenoxyacetic acid - GFP: Green fluorescent protein - GUS: -Glucuronidase - PAT: Phosphinothricin acetyl transferase - PPM: Plant preservative mixture - PPT: Phosphinothricin Communicated by M.E. Horn  相似文献   

10.
Somatic embryogenesis was obtained from cotyledon and mature zygotic embryo callus cultures of Terminalia chebula Retz. Callus cultures of cotyledon and mature zygotic embryo were initiated on induction medium containing Murashige and Skoog (MS) nutrients with 1.0 mg/l 2,4-dichlorophenoxyacetic acid (2,4-D) either 0.01 or 0.1 mg/l Kinetin and 30 g/l sucrose. Induction of somatic embryogenesis, proliferation and development was obtained through different culture passages. Embryogenic cotyledon callus with globular somatic embryos was obtained on MS basal medium supplemented with 50 g/l sucrose. Globular somatic embryos were observed from mature zygotic embryo callus on induction medium. Different stages of somatic embryo development from cotyledon and mature zygotic embryo calluses were observed on MS basal medium supplemented with 50 g/l sucrose after 4 weeks of culture. Histological studies have revealed the developmental stages of somatic embryos. A maximum of 40.3±1.45 cotyledonary somatic embryos/callus was obtained from mature zygotic embryo compared to 7.70±0.37 cotyledonary somatic embryos/callus initiated from cotyledons. Germination of somatic embryos and conversion to plants were achieved. Highest frequency of germination (46.66±0.88) of somatic embryos was obtained on MS basal medium containing benzyladenine (0.5 mg/l) with 30 g/l sucrose.  相似文献   

11.
An efficient variety-independent method for producing transgenic eggplant (Solanum melongena L.) via Agrobacterium tumefaciens-mediated genetic transformation was developed. Root explants were transformed by co-cultivation with Agrobacterium tumefaciens strain LBA4404 harbouring a binary vector pBAL2 carrying the reporter gene beta-glucuronidase intron (GUS-INT) and the marker gene neomycin phosphotransferase (NPTII). Transgenic calli were induced in media containing 0.1 mg l(-1) thidiazuron (TDZ), 3.0 mg l(-1) N(6)-benzylaminopurine, 100 mg l(-1) kanamycin and 500 mg l(-1) cefotaxime. The putative transgenic shoot buds elongated on basal selection medium and rooted efficiently on Soilrite irrigated with water containing 100 mg l(-1) kanamycin sulphate. Transgenic plants were raised in pots and seeds subsequently collected from mature fruits. Histochemical GUS assay and polymerase chain reaction analysis of field-established transgenic plants and their offsprings confirmed the presence of the GUS and NPTII genes, respectively. Integration of T-DNA into the genome of putative transgenics was further confirmed by Southern blot analysis. Progeny analysis of these plants showed a pattern of classical Mendelian inheritance for both the NPTII and GUS genes.  相似文献   

12.
Genetic transformation of two species of orchid by biolistic bombardment   总被引:5,自引:0,他引:5  
Men S  Ming X  Wang Y  Liu R  Wei C  Li Y 《Plant cell reports》2003,21(6):592-598
We report here the transformation of two species of orchid, Dendrobium phalaenopsis and D. nobile,by biolistic bombardment. Calli or protocorm-like bodies (PLBs) were used as target explants. Gold particles (1.0 microm) coated with plasmid DNA (pCAMBIA1301) encoding an intron-containing beta-glucuronidase gene (gus-int) and a hygromycin phosphotransferase (hpt) gene were introduced into the PLBs or calli using the Bio-Rad PDS-1000/He Biolistic Particle Delivery System. Calli and PLBs were then chopped up and pre-cultured in 1/2-strength MS medium supplemented with 0.4 M mannitol for a 1-h osmoticum treatment before bombardment. Immediately after bombardment, the calli and PLBs were transferred to 1/2-strength MS medium without mannitol for recovery. Putatively transformed plantlets were obtained by selection and regeneration on medium supplemented with 30 mg/l hygromycin. The highest efficiency of transformation was obtained when selection was conducted at 2 days post-bombardment. For D. phalaenopsis and D. nobile, respectively, about 12% and 2% of the bombarded calli or PLBs produced independent transgenic plants. Integration and expression of the transgenes were confirmed by Southern hybridization and Northern hybridization. No nontransformed plants were regenerated, indicating a tight selection scheme. However, separate incorporation of the gus gene and the hpt gene was observed, and in one transgenic line the gus gene was integrated into the genome of the transgenic plant, but not expressed.  相似文献   

13.
Tissue culture is one of the tools necessary for genetic engineering and many other breeding programs. Moreover, selection of high regenerating rice varieties is a pre-requisite for success in rice biotechnology. In this report we established a reproducible plant regeneration system through somatic embryogenesis. The explants used for regeneration were embryogenic calli derived from mature seeds cultured on callus induction media. For callus induction mature seeds were cultured on MS medium containing 30 g/l sucrose combined with 560 mg/l proline and 1.5-3.5 mg/l 2,4-D and 0.5-1.5 mg/l Kin. For plant regeneration, embryogenic calli were transferred to MS medium containing 30 g/l sucrose, supplemented with 1.0-3.0 mg/l BAP, 0.5-1.5 mg/l Kin and 0.5-1.5 mg/l NAA. The highest frequency of callus induction (44.4%) was observed on the MS medium supplemented with 2.5 mg/l 2,4-D, 0.5 mg/l Kin, 560 mg/l proline and 30 g/l sucrose. The highest frequency of shoot regeneration (42.5%) was observed on the MS medium supplemented with 2.0 mg/l BAP, 0.5 mg/l NAA and 0.5 mg/l Kin. The plantlets were hardened and transferred to soil in earthen pots. The developed method was highly reproducible. The in vitro developed plants showed normal growth and flowering under glasshouse conditions.  相似文献   

14.
We utilized gene transfer technology for genetic perennial ryegrass improvement, efficient regeneration, and Agrobacterium-mediated transformation of phosphinothricin acetyltransferase gene (bar). Four growth regulator combinations were compared and intact seeds of six turf-type cultivars as mature embryo sources were tested to optimize the regeneration conditions. Callus formation and regeneration were observed in all seeds. The highest callus formation frequency was observed in the seeds cultured on MS medium supplemented with 9 mg/l 2,4-D, without benzyladenine. Cv. TopGun revealed the highest callus induction and regeneration frequencies of 96 and 48.9%, respectively. By using an optimized regeneration system, embryogenic calli were transformed by an Agrobacterium strain LBA4404 containing the plasmid pCAMBIA3301. After the selection of the potentially transgenic calli with phosphinothricin, a herbicide, 22 transgenic resistant plants were regenerated. With PCR, Southern-blot hybridizations, and GUS expression techniques, we confirmed that some regenerants were transgenic. Two of the tested transgenic plants showed herbicide resistance. Our results indicated that embryogenic calli from mature seeds can be directly used for perennial ryegrass efficient regeneration and transformation and this protocol is applicable for genetic engineering of herbicide-resistant plants. Published in Russian in Fiziologiya Rastenii, 2007, Vol. 54, No. 4, pp. 590–596. The text was submitted by the authors in English.  相似文献   

15.
A reproducible plant regeneration and an Agrobacterium tumefaciens-mediated genetic transformation protocol were developed for Perilla frutescens (perilla). The largest number of adventitious shoots were induced directly without an intervening callus phase from hypocotyl explants on MS medium supplemented with 3.0 mg/l 6-benzylaminopurine (BA). The effects of preculture and extent of cocultivation were examined by assaying -glucuronidase (GUS) activity in explants infected with A. tumefaciens strain EHA105 harboring the plasmid pIG121-Hm. The highest number of GUS-positive explants were obtained from hypocotyl explants cocultured for 3 days with Agrobacterium without precultivation. Transgenic perilla plants were regenerated and selected on MS basal medium supplemented with 3.0 mg/l BA, 125 mg/l kanamycin, and 500 mg/l carbenicillin. The transformants were confirmed by PCR of the neomycin phosphotransferase II gene and genomic Southern hybridization analysis of the hygromycin phosphotransferase gene. The frequency of transformation from hypocotyls was about 1.4%, and the transformants showed normal growth and sexual compatibility by producing progenies.  相似文献   

16.
We have established a reproducible procedure for transformation of shoot apices and regeneration of transgenic plants for two indica rice cultivars, white ponni (WP) and Pusa Basmathi 1 (PB 1). Four-day-old shoot apex explants were transformed by cocultivation with Agrobacterium tumefaciens strain EHA 101 harbouring a binary plasmid pRIT1. The vector contained an improved hygromycin phosphotransferase (hpt) gene for hygromycin resistance driven by actin 1 promoter and the reporter gene beta-glucuronidase intron (INT-GUS) controlled by CaMV 35S promoter. Rice shoots were induced on media containing 0.1 mg/l napthalene acetic acid (NAA), 1.0 mg/l kinetin (kn), 1.0 mg/l N(6)-benzyleaminopurin (BAP), 300 mg/l casaminoacid, 500 mg/l proline, 50 mg/l hygromycin and 500 mg/l cefotaxime. Transgenic plants were raised in pots and seeds were collected. Histochemical and polymerase chain reaction (PCR) analyses of field established transgenic rice plants and their offsprings confirmed the presence of GUS gene. Integration of T-DNA into the genome of putative transgenics was further confirmed by southern analysis. The transformation efficiency of WP was found to be ranging from 5.6 to 6.2% whereas in the case of PB1, it was from 7 to 8%. Progeny analysis of these plants showed a pattern of classical Mendelian inheritance for both hpt and GUS gene.  相似文献   

17.
We have produced transgenic plants of the tropical forage crop Brachiaria ruziziensis (ruzigrass) by particle bombardment-mediated transformation of multiple-shoot clumps and embryogenic calli. Cultures of multiple-shoot clumps and embryogenic calli were induced on solidified MS medium supplemented with 0.5mg/L 2,4-dichlorophenoxyacetic acid (2,4-D) and 2mg/L 6-benzylaminopurine (BAP) or 4mg/L 2,4-D and 0.2mg/L BAP, respectively. Both cultures were bombarded with a vector containing an herbicide resistance gene (bar) as a selectable marker and the β-glucuronidase (GUS) reporter gene. Sixteen hours after bombardment, embryogenic calli showed a significantly higher number of transient GUS expression spots per plate and callus than multiple-shoot clumps, suggesting that embryogenic callus is the more suitable target tissue. Following bombardment and selection with 10mg/L bialaphos, herbicide-resistant embryogenic calli regenerated shoots and roots in vitro, and mature transgenic plants have been raised in the greenhouse. Polymerase chain reaction (PCR) and DNA gel blot analysis verified that the GUS gene was integrated into the genome of the two regenerated lines. In SacI digests, the two transgenic lines showed two or five copies of GUS gene fragments, respectively, and integration at different sites. Histochemical analysis revealed stable expression in roots, shoots and inflorescences. Transgenic plants derived from diploid target callus turned out to be sterile, while transgenics from colchicine-tetraploidized callus were fertile.  相似文献   

18.
19.
Agrobacterium-mediated transformation of seedling-derived maize callus   总被引:6,自引:0,他引:6  
Efficient production of seedling-derived Type I callus was demonstrated for several corn genotypes including commercial inbred lines. Seeds were germinated on MS-based medium containing 10 mg l(-1) picloram and 3 mg l(-1) 6-benzylaminopurine, which induced the development of axillary buds in the area of coleoptilar node. Nodal sections of 7-10-day old seedlings were isolated, split longitudinally, and placed on callus induction medium supplemented with 2.2 mg l(-1) picloram and 0.5 mg l(-1) 2,4-dichlorophenoxyacetic acid. For lines L4 and L9 the frequency of embryogenic callus induction was 38-42% based on calli per split nodal section. Frequency of callus induction from split nodal sections of seeds germinated on media without growth regulators was 0-3%. Seedling-derived callus of five genotypes was used for Agrobacterium-mediated transformation. Two constructs containing the green fluorescence protein gene and genes for either neomycin phosphotransferase II or glyphosate selection were used in transformation experiments. Transformation frequency varied from 2 to 11% and about 60% of the T(0) plants had 1-2 copies of transgenes.  相似文献   

20.
A shoot multiplication system derived from internode explants was investigated with the aim of improving genetic characteristics of watercress (Nasturtium officinale R. Br.). Internodes of ca. 1 cm excised from in vitro stock shoot culture were placed on half-strength Murashige and Skoog (MS) medium supplemented with 3 μM 2,4-dichlorophenoxyacetic acid as a pre-treatment. Laser scanning microscopy indicated clearly that the first sign of meristematic cell division could be seen after 1–2 days of pre-culture, and meristematic tissues multiplied along the vascular cambium of the internode segment during 7 days of culture. Multiple shoots could be obtained from more than 90% of the pre-treated explants when they were subsequently transferred to MS medium supplemented with 1 μM thidiazuron for 3 weeks. These findings indicate that pre-treatment of the internodes for 7 days promoted their capacity for organogenesis. Using this pre-treatment, frequent generation of transgenic watercress plants was achieved by adapting particle bombardment and Agrobacterium-mediated transformation techniques with a construct expressing a synthetic green florescent protein gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号