首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To better understand the general distribution of glycoproteins and the distribution of specific glycoprotein-bound sugar residues in Paramecium, a survey of the binding pattern of selected lectins was carried out in P. tetraurelia, P. caudatum, and P. multimicronucleatum. Lectins studied were concanavalin A (Con A), Griffonia simplicifolia agglutinins I and II (GS I and GS II), wheat germ agglutinin (WGA), Ulex europaeus (UEA I), peanut agglutinin (PNA), Ricinis communis toxin (RCA60) and agglutinin (RCA120), soybean agglutinin (SBA), Bauhinia purpurea agglutinin (BPA), Dolichos biflorus agglutinin (DBA), and Maclura pomifera agglutinin (MPA). Those giving the most distinctive patterns were Con A, GS II, WGA, UEA I, and PNA. No significant differences were found between the three species. Concanavalin A, a mannose/glucose-binding lectin, diffusely labeled the cell surface and cytoplasm and, unexpectedly, the nuclear envelopes. Events of nuclear division, and nuclear size and number were thus revealed. Both WGA and GS II, which are N-acetylglucosamine-binding lectins, labeled trichocyst tips, the cell surface, and the oral region, revealing stages of stomatogenesis. The lectin WGA, in addition, labeled the compartments of the phagosome-lysosome system. The lectin PNA, an N-acetyl galactosamine/galactose-binding protein, was very specific for digestive vacuoles. Finally, UEA I, a fucose-binding lectin, brightly labeled trichocysts, both their tips and body outlines. We conclude that a judicious choice of lectins can be used to localize glycoproteins and specific sugar residues as well as to study certain events of nuclear division, cellular morphogenesis, trichocyst discharge, and events in the digestive cycle of Paramecium.  相似文献   

2.
Lectin histochemistry of human skeletal muscle   总被引:3,自引:0,他引:3  
Biotinyl derivatives of seven plant lectins-concanavalin A (Con A), peanut agglutinin (PNA), Ricinus communis agglutinin I (RCA I), Ulex europeus agglutinin I (UEA I), soybean agglutinin (SBA), Dolichos biflorus agglutinin (DBA), and wheat germ agglutinin (WGA)-were bound to cryostat sections of biopsied normal human muscle and visualized with avidin-horseradish peroxidase conjugates. A distinct staining pattern was observed with each lectin. The most general staining was observed with Con A, RCA I, and WGA, which permitted strong visualization of the plasmalemma-basement membrane unit, tubular profiles in the interior of muscle fibers, blood vessels, and connective tissue. PNA gave virtually no intracellular staining, while SBA and UEA I selectively stained blood vessels. DBA was unique in providing good visualization of myonuclei. In each case, lectin staining could be blocked by appropriate sugar inhibitors. Neuraminidase pretreatment of the cryostat sections altered the pattern of staining by all lectins except UEA I and Con A; staining with RCA I became stronger and that with WGA became less intense, while staining with PNA, SBA and DBA became stronger and more generalized, resembling that of RCA I. These effects of neuraminidase pretreatment are in conformity with the known structure of the oligosaccharide chains of membrane glycoproteins and specificities of the lectins involved.  相似文献   

3.
The ability of seven lectins to bind to newt epidermal cells and influence their motility was examined. Of the seven fluoresceinated lectins applied to frozen sections containing intact newt skin and migrating epidermis (wound epithelium), only Con A (concanavalin A), WGA (wheat germ agglutinin), and PNA (peanut agglutinin) produced detectable epidermal fluorescence. Con A and WGA each heavily labeled all layers of intact epidermis, but PNA bound only to the more superficial layers. In contrast to a single population of labeled cells in migrating epidermal sheets after treatment with Con A, there were both labeled and unlabeled cells after exposure to either WGA or PNA. The wound bed was labeled by both Con A and WGA, but not by PNA. DBA (Dolichos bifloris agglutinin), RCA I (Ricinus communis agglutinin), and UEA (Ulex europaeus agglutinin), did not produce significant fluorescence with either migrating or intact epidermis. In general, inhibitory effects on epidermal motility correlated with the binding studies. Thus, Con A, WGA, and PNA, the lectins which clearly bound to the epidermis, all produced a concentration-dependent depression in the rate of epidermal wound closure. RCA was somewhat paradoxical in that it was moderately inhibitory despite showing essentially no binding. The effects of SBA and UEA were equivocal. DBA had no effect. These results indicate that the inhibition of motility produced by Con A that we have described previously is not peculiar to this mannose-binding lectin, but is shared by at least one lectin with an affinity for D-GlcNAc (WGA), and one with an affinity for B-D-Gal(1-3)-D-GalNAc (PNA).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Summary The binding of a panel of eight different fluorescein-conjugated lectins to rat spermatogenic cells was investigated. Particular attention was paid to the effects of different fixation methods and proteolytic enzyme digestion on the staining pattern.Concanavalin A (Con A), wheatgerm agglutinin (WGA), succinylated WGA (s-WGA) and agglutinin from gorse (UEA I) stained the cytoplasm of most germ cells as well as the spermatid acrosome. In contrast, peanut agglutinin (PNA), castor bean agglutinin (RCAI) and soy bean agglutinin (SBA) mainly stained the acrosome. The staining pattern varied depending on the fixation method used. PNA was particularly sensitive to formalin fixation, while SBA, DBA and UEA I showed decreased binding and Con A, WGA, s-WGA and RCA I were insensitive to this type of fixation. Pepsin treatment of the sections before lectin staining caused marked changes in the staining pattern; staining with PNA in formalin-fixed tissue sections was particularly improved but there was also enhanced staining with SBA and horse gram agglutinin (DBA). On the other hand, in Bouin- and particularly in acetone-fixed tissue sections, pepsin treatment decreased the staining with several of the lectins, for example WGA and UEA I.  相似文献   

5.
We studied the effects of different lectins on the adhesive properties of baby hamster kidney (BHK) cells. The purpose of these studies was to learn more about the cell surface receptors involved in cell adhesion. Three adhesive phenomena were analyzed: 1) the adhesion of BHK cells to lectin-coated substrata; 2) the effects of lectins on the adhesion of cells to substrata coated by plasma fibronectin (pFN); and 3) the effects of lectins on the binding of pFN-coated beads to cells. Initial experiments with fluorescein-conjugated lectins indicated that concanavalin A (Con A), ricinus communis agglutinin I (RCA I), and wheat germ agglutinin (WGA) bound to BHK cells but peanut agglutinin (PNA), soybean agglutinin (SBA), and ulex europaeus agglutinin I (UEA I) dod not bind. All three of the lectins which bound to the cells promoted cell spreading on lectin substrata, and the morphology of the spread cells was similar to that observed with cells spread on pFN substrata. Protease treatment of the cells, however, was found to inhibit cell spreading on pFN substrata or WGA substrata more than on Con A substrata or RCA I substrata. In the experiment of cells with Con A or WGA inhibited cell spreading on pFN substrata, but RCA I treatment had no effect. Finally, treatment of cells with WGA inhibited binding to cells of pFN beads, but neither Con A nor RCA I affected this interaction. These results indicate that the lectins modify cellular adhesion in different ways, probably by interacting with different surface receptors. The possibility that the pFN receptor is a WGA receptor is discussed.  相似文献   

6.
 Lectins with different sugar specificities and binding to phagosome-lysosome systems as well as cell surface constituents were used to study glycoconjugate variation throughout culture and clonal life in Paramecium primaurelia, particularly during the transition period from logarithmic to stationary growth phase and in relation to clonal decline, respectively. These lectins include Griffonia simplicifolia agglutinin II (GS II), Ricinus communis agglutinin (RCA120), Arachis hypogea agglutinin (PNA), succinyl concanavalin A (succinyl-con A), and Triticum vulgaris agglutinin (WGA). The labeling obtained varies both according to the lectin used and to the culture and clonal age of the cells. Negative results were obtained in logarithmic growth phase cells and in clonal young cells by using lectin GS II. Conversely, lectins RCA120 and PNA bind to the cell surface, the oral region as well as cilia, and do not undergo modifications with culture or clonal age and after permeabilization. WGA binds to constituents of the cell surface, trichocyst tips, food vacuoles, the oral region, and cilia but the extent of labeling decreases as culture age increases; during clonal decline, cells show the same labeling pattern as starved cells. Finally, the lectin succinyl-con A shows a large amount of binding sites on the cell surface, on trichocyst tips, and in the oral region of logarithmic-phase cells, whereas the number of sites decreases in late stationary phase. The data obtained partly differ from those reported in the literature and the differences can be attributed to the culture conditions and species examined. Nevertheless, the assumption that a rearrangement of some glycoconjugates of membrane throughout culture and clonal life of Paramecium is confirmed. Accepted: 25 November 1996  相似文献   

7.
Bloodstream trypomastigote and culture procyclic (insect midgut) forms of a cloned T. rhodesiense variant (WRAT at 1) were tested for agglutination with the lectins concanavalin A (Con A), phytohemagglutinin P (PP), soybean agglutinin (SBA), fucose binding protein (FBP), wheat germ agglutinin (WGA), and castor bean lectin (RCA). Fluorescence-microscopic localization of lectin binding to both formalin-fixed trypomastigotes and red cells was determined with fluorescein isothiocyanate (FITC)-conjugated Con A, SBA, FBP, WGA, RCA, PNA (peanut agglutinin), DBA (Dolichos bifloris), and UEA (Ulex europaeus) lectins. Electron microscopic localization of lectin binding sites on bloodstream trypomastigotes was accomplished by the Con A-horseradish peroxidase-diamino-benzidine (HRP-DAB) technique, and by a Con A-biotin/avidin-ferritin method. Trypomastigotes, isolated by centrifugation or filtration through DEAE-cellulose or thawed after cryopreservation, were agglutinated by the lectins Con A and PP with agglutination strength scored as Con A greater than PP. No agglutination was observed in control preparations or with the lectins WGA, FBA or SBA. Red cells were agglutinated by all the lectins tested. Formalin-fixed bloodstream trypomastigotes bound FITC-Con A and FITC-RCA but not FITC-WAG, -SBA, -PNA, -UEA or -DBA lectins. All FITC-labeled lectins bound to red cells. Con A receptors, visualized by Con A-HRP-DAB and Con A-biotin/avidin-ferritin techniques, were distributed uniformly on T. rhodesiense bloodstream forms. No lectin receptors were visualized on control preparations. Culture procyclics lacked a cell surface coat and were agglutinated by Con A and WGA but not RCA, SBA, PP and FBP. Procyclics were not agglutinated by lectins in the presence of competing sugar at 0.25 M.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Summary Lectins ofBauhinia purpurea (BPA),Canavalin ensiformis (Con A),Griffonia simplicifolia I (GS I),Griffonia simplicifolia II (GS II),Maclura pomifera (MPA),Arachis hypogaea (PNA),Glycine max (SBA),Ulex europaeus I (UEA I) andTriticum vulgaris (WGA) were used to evaluate cell surface carbohydrates in formalin-fixed paraffin-embedded tissue sections of normal human cervix uteri. Consistent patterns of staining of the squamous epithelium were obtained in all 30 cases with BPA, GS II, MPA, PNA, SBA and WGA. A variable distribution of lectin binding was seen in squamous epithelium with Con A, GS I and UEA I. The patterns of GS I and GS II binding reflected squamous epithelial maturation. Columnar epithelium did not stain with GS II, stained variably with Con A, and stained consistently with the remaining seven lectins in all cases. No association between lectin binding and blood group or phase of the menstrual cycle was found. These findings may be used as a baseline for evaluation of lectin binding in both preinvasive and invasive lesions of the cervix uteri.  相似文献   

9.
Biotinylated lectins were used to investigate the expression of carbohydrate residues on columnar and squamous epithelium of the uterine cervix. Con A, WGA, RCA I, PNA, UEA I, DBA and SBA were used. In the native exocervical and in metaplastic squamous epithelium of the transformation zone, one group of lectins (Con A, WGA, RCA I and PNA) stained the cell periphery of all epithelial layers. A second group (UEA I, DBA and SBA) colored the cell periphery of the suprabasal cells. The basal layer was always negative. All lectins labeled the apical border and occasionally the cytoplasm of the endocervical columnar epithelium. Lectin-binding of metaplastic and native squamous epithelium could possibly be used as a marker of epithelial differentiation in normal and abnormal conditions.  相似文献   

10.
Bloodstream trypomastigote and culture procyclic (insect midgut) forms of a cloned T. rhodesiense variant (WRATat 1) were tested for agglutination with the lectins concanavalin A (Con A), phytohemagglutinin P (PP), soybean agglutinin (SBA), fucose binding protein (FBP), wheat germ agglutinin (WGA), and castor bean lectin (RCA). Fluorescence-microscopic localization of lectin binding to both formalin-fixed trypomastigotes and red cells was determined with fluorescein isothiocyanate (FITC)-conjugated Con A, SBA, FBP, WGA, RCA, PNA (peanut agglutinin), DBA (Dolichos bifloris), and UEA (Ulex europaeus) lectins. Electron microscopic localization of lectin binding sites on bloodstream trypomastigotes was accomplished by the Con A-horseradish peroxidase-diaminobenzidine (HRP-DAB) technique, and by a Con A-biotin/avidin-ferritin method. Trypomastigotes, isolated by centrifugation or filtration through DEAE-cellulose or thawed after cryopreservation, were agglutinated by the lectins Con A and PP with agglutination strength scored as Con A < PP. No agglutination was observed in control preparations or with the lectins WGA, FBA or SBA. Red cells were agglutinated by all the lectins tested. Formalin-fixed bloodstream trypomastigotes bound FITC-Con A and FITC-RCA but not FITC-WGA, -SBA, -PNA, -UEA or -DBA lectins. All FITC-labeled lectins bound to red cells. Con A receptors, visualized by Con A-HRP-DAB and Con A-biotin/avidin-ferritin techniques, were distributed uniformly on T. rhodesiense bloodstream forms. No lectin receptors were visualized on control preparations. Culture procyclics lacked a cell surface coat and were agglutinated by Con A and WGA but not RCA, SBA, PP and FBP. Procyclics were not agglutinated by lectins in the presence of competing sugar at 0.25 M. The expression of lectin binding cell surface saccharides of T. rhodesiense WRATat 1 is related to the parasite stage. Sugars resembling α-D-mannose are on the surface of bloodstream trypomastigotes and culture procyclics; n-acetyl-D-galactosamine and D-galactose residues are on bloodstream forms; and n-acetyl-D-glucosamine-like sugars are on procyclic stages.  相似文献   

11.
Labeled lectins with binding specificity to the hexose components of mucus glycoproteins (HPA, RCA I, PNA, Con A, WGA, and UEA I) were used to demonstrate structural differences in the glycoprotein composition of various cell types of the normal, benign and malignant gastrointestinal mucosa. While in the RCA I, UEA I, and WGA binding of normal mucus secreting cell types only quantitative differences were observed, the mucus in the surface epithelial cells of gastric mucosa and in the colonic goblet cells was characterized by the absence of PNA, Con A, and PNA, HPA binding sites, respectively. These lectins, however, showed a strong binding to the supranuclear, Golgi-region in the undifferentiated or activated forms of these cells. Even the staining intensity of the luminal membrane surfaces of the non mucinous parietal and chief cells was often stronger by PNA, HPA, and RCA I lectins than that of the mucus secretions in the highly differentiated mucus cells. These results indicate the existence of either heterogeneous glycoprotein components or mucus molecules with variations in the degree of glycosylation of their oligosaccharide chains in the different cells. The latter seems more likely since in benign and malignant alterations lectin binding sites appear in great density, which were found to be characteristic of the undifferentiated mucus cells or for the non mucinous cells of the normal gastric mucosa. Similarly in some gastric cancers which do not stain with the periodic acid-Schiff reaction at all, large amount of free or neuraminic acid substituted PNA binding sites can be detected.  相似文献   

12.
Summary Two different receptor sites, located on the cell surface ofAmoeba proteus were detected by using fluorescent analog cytochemistry (FAC) and electron microscopy (EM). Bovine serum albumin labeled with fluoresceine-isothiocyanate (FITC-BSA) and unlabeled ferritin bind, in a pH-dependent manner, as cations at the outer filaments of the mucous layer. The anionic receptor sites show a high affinity for Ca-ions which suppress the binding capacity of FITC-BSA and ferritin at low pH-values. The cation receptors obviously play an important role in the initiation of pinocytosis as demonstrated by the internalization, intracellular translocation and sequestration of the FITC-BSA. FITC- or ferritin-labeled concanavalin A (FITC-Con A, ferritin-Con A) bind predominantly in a pH-independent manner at the tips of the outer filaments and the basal zone of the mucous layer. The binding capacity of FITC-Con A is not influenced by external Ca-ions. Other lectins such asDolichos bifloris agglutinin (DBA), peanut agglutinin (PNA),Ricinus communis agglutinin I (RCA I), soybean agglutinin (SBA),Ulex europaeus agglutinin I (UEA I) and wheat germ agglutinin (WGA) are not specifically bound to the cell surface. So far, no experimental evidence has been gathered for the definitive function of a Con-A receptor in the mucos layer ofAmoeba proteus.Abbreviations BSA bovine serum albumin - Con A concanavalin A - CTC chlorotetracycline - DBA Dolichos bifloris agglutinin - DTE dithioeritritol - FITC fluorosceine-isothiocyanate - IEP iso electric point - PIPES 1-4-piperazine-diethane sulfonic acid - PNA peanut agglutinin - RCA I Ricinus communis agglutinin I - SBA soybean agglutinin - Uac uranylacetat - UEA I Ulex europaeus agglutinin I - WGA wheat germ agglutinin  相似文献   

13.
Summary Fluorochrome conjugated lectins were used to observe cell surface changes in the corneal endothelium during wound repair in the adult rat and during normal fetal development. Fluorescence microscopy of non-injured adult corneal endothelia incubated in wheat-germ agglutinin (WGA), Concanavalin A (Con A), and Ricinus communis agglutinin I (RCA), revealed that these lectins bound to cell surfaces. Conversely, binding was not observed for either Griffonia simplicifolia I (GS-I), soybean agglutinin (SBA) or Ulex europaeus agglutinin (UEA). Twenty-four hours after a circular freeze injury, endothelial cells surrounding the wound demonstrated decreased binding for WGA and Con A, whereas, RCA binding appeared reduced but centrally clustered on the apical cell surface. Furthermore, SBA now bound to endothelial cells adjacent to the wound area, but not to cells near the tissue periphery. Neither GS-I nor UEA exhibited any binding to injured tissue. By 48 h post-injury, the wound area repopulates and endothelial cells begin reestablishing the monolayer. These cells now exhibit increased binding for WGA, especially along regions of cell-to-cell contact, whereas, Con A, RCA and SBA binding patterns remain unchanged. Seventy-two hours after injury, the monolayer is well organized with WGA, Con A and RCA binding patterns becoming similar to those observed for non-injured tissue. However, at this time, SBA binding decreases dramatically. By 1 week post-injury, binding patterns for WGA, ConA and RCA closely resemble their non-injured counterparts while SBA continues to demonstrate low levels of binding. In early stages of its development, the endothelium actively proliferates and morphologically resembles adult tissue during wound repair. The 16-day fetal tissue is mitotically active, does not exhibit a well defined monolayer, and demonstrates weak fluorescence binding for WGA, Con A and RCA. Conversely, SBA binding is readily detected on many cell surfaces. By 19 days in utero, the endothelial monolayers becomes organized and cell proliferation greatly diminishes. WGA, Con A and RCA now exhibit binding similar to that seen in the adult tissue. SBA binding is not detected at this time. Thus, changes in lectin binding during wound repair of the adult rat corneal endothelium mimic changes in lectin binding seen during the development of the tissue.Supported by grant EY-06435 from The National Institutes of Health  相似文献   

14.
Fluorochrome conjugated lectins were used to observe cell surface changes in the corneal endothelium during wound repair in the adult rat and during normal fetal development. Fluorescence microscopy of non-injured adult corneal endothelia incubated in wheat-germ agglutinin (WGA), Concanavalin A (Con A), and Ricinus communis agglutinin I (RCA), revealed that these lectins bound to cell surfaces. Conversely, binding was not observed for either Griffonia simplicifolia I (GS-I), soybean agglutinin (SBA) or Ulex europaeus agglutinin (UEA). Twenty-four hours after a circular freeze injury, endothelial cells surrounding the wound demonstrated decreased binding for WGA and Con A, whereas, RCA binding appeared reduced but centrally clustered on the apical cell surface. Furthermore, SBA now bound to endothelial cells adjacent to the wound area, but not to cells near the tissue periphery. Neither GS-I nor UEA exhibited any binding to injured tissue. By 48 h post-injury, the wound area repopulates and endothelial cells begin reestablishing the monolayer. These cells now exhibit increased binding for WGA, especially along regions of cell-to-cell contact, whereas, Con A, RCA and SBA binding patterns remain unchanged. Seventy-two hours after injury, the monolayer is well organized with WGA, Con A and RCA binding patterns becoming similar to those observed for non-injured tissue. However, at this time, SBA binding decreases dramatically. By 1 week post-injury, binding patterns for WGA, ConA and RCA closely resemble their non-injured counterparts while SBA continues to demonstrate low levels of binding. In early stages of its development, the endothelium actively proliferates and morphologically resembles adult tissue during wound repair.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Summary In the present study unstimulated and stimulated human blood monocytes, untreated and phorbol ester treated U-937 cells, as well as human peritoneal and alveolar macrophages were studied with respect to their surface membrane properties. Binding of different lectins and electrophoretic patterns of tritium labeled surface glycoproteins were compared. The analysis of surface glycoproteins could be interpreted as evidence for a common origin of the analysed cell populations. Furthermore, banding patterns of glycoproteins might be useful to define certain activation states within monocyte/macrophage differentiation. In contrast, lectin binding pattern did not clearly discriminate macrophage subpopulations.Abbreviations AM alveolar macrophage - BM blood monocyte - PM peritoneal macrophage - PBS phosphate buffered saline - IPA 12-O-tetradecanoylphorbol-13-acetate - Con A Concanavalin A - HPA Helix pomatia agglutinin - LPA Limulus polyphemus agglutinin - PHA Phaseolus vulgaris agglutinin - SBA Soy bean agglutinin - UEA I Ulex europaeus agglutinin I - WGA Wheat-germ agglutinin  相似文献   

16.
Carbohydrates of the zona pellucida (ZP) in mammals are believed to have a role in sperm-egg interaction. We have characterized the biochemical nature and distribution of the carbohydrate residues of rat ZP at the light (LM) and electron microscope (EM) levels, using lectins as probes. Immature female rats were induced to superovulate and cumulus-oocyte complexes were isolated from the oviduct, fixed with glutaraldehyde, and embedded in araldite for LM and LR-Gold for EM histochemistry. For examination of follicular oocytes, rat ovaries were fixed with glutaraldehyde and embedded in paraffin. The araldite or paraffin sections were deresined or deparaffinized, respectively, labeled with biotin-tagged lectins as probes, and avidin-biotin-peroxidase complex as visualant. For EM examination, thin LR-Gold sections were labeled with RCA-I colloidal gold complex (RCA/G) and stained with uranyl acetate. LM analyses indicate that in ovulated oocytes the ZP intensely binds peanut agglutinin (PNA); succinylated wheat germ agglutinin, (S-WGA), Griffonia simplisifolia agglutinin-I (GS-I) and soybean agglutinin (SBA), and to a lesser extent, lectins from Ricinus communis (RCA-I), Concanavaia ensiformis (Con A), Ulex europoeus (UEA-I), and wheat germ agglutinin (WGA). The neighboring cumulus cells are considerably less reactive and exhibit membrane staining only with Con A, WGA, and PNA. EM analysis of RCA/G binding revealed intensive binding to the inner layer region of the ZP and moderate binding to cytoplasmic vesicles of the cumulus cells. The ZP of follicular oocytes exhibits a different lectin binding pattern, expressed in staining strongly with PNA and S-WGA, and in a tendency of the lectin receptors to occur in the outer portion of the ZP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Lectin binding to collagen strands in histologic tissue sections   总被引:1,自引:0,他引:1  
Histologic sections from human skin and uterine ligaments were stained with the following FITC conjugated lectins: Con A, WGA, s-WGA, SBA, DBA, UEA I, PNA, RCA I, BPA, GSA I, GSA II, MPA and LPA. The staining of the connective tissue was similar in the dermis and the uterine ligaments and it was most intense in the extracellular matrix containing collagen strands whereas the fibrocytes remained unstained. The staining was clear with glucose or N-acetylglucosamine binding lectins like Con A, WGA, s-WGA and GSA II, which may be related to the presence of glucose residues in collagenous hydroxylysine. The staining with some of the galactose or N-acetylgalactosamine binding lectins like RCA I, DBA, and BPA was less intense. This may reflect the presence of terminal galactose sugars in the hydroxylysine of collagen. No staining was found with SBA, UEA I, PNA, GSAI, MPA or LPA. The results show that different particularly glucose specific lectins bind to the extracellular matrix and especially to collagenous strands in connective tissue. It is suggested that this might be used in histochemical studies of connective tissue and particularly concerning the changes that may occur in different disease states.  相似文献   

18.
A comparative study of membrane carbohydrate characteristics of pathogenic and non-pathogenic trophozoites and cysts of free-living Acanthamoeba castellanii, Naegleria fowleri and A. astronyxis, respectively from sewage sludge in India was carried out by means of fluorescein-conjugated lectin binding using eight lectins. Two lectins, viz. Concanavalin A and Phytohaemagglutinin P, could bind all free-living amoebae at different concentrations. The most notable feature of the study is that peanut agglutinin (PNA) and wheatgerm agglutinin (WGA) can differentiate between the pathogenic A. castellanii and non-pathogenic A. astronyxis strain, respectively. However, Ulex agglutinin I (UEA I) was the only lectin positive to both pathogenic A. castellanii and N. fowleri. During in vitro conversion from trophozoites to cysts, A. castellanii and N. fowleri cysts gained WGA-specific saccharide whereas A. castellanii; A. astronyxis and N. fowleri lost or reduced Dolichos biflorus agglutinin, PNA; WGA and ConA, and UEA I-specific saccharides, respectively. Neuraminidase could not alter the fluorescein-lectin binding to WGA and PNA. These demonstrated that only two lectins can recognize the factors giving Acanthamoeba their pathogenic (PNA-specific) and non-pathogenic (WGA-specific) status. More interestingly, UEA I can only differentiate between pathogenic and non-pathogenic amoebae. It is also suggested that during stage conversion the surface of the organism exhibited replacement of saccharides.  相似文献   

19.
Fluorescein-isothiocyanate (FITC) labeled lectins were used to study the distribution pattern of specific binding-sites in histological sections of normal and osteoarthrotic articular cartilage from the mouse knee joint. Male inbred mice of the STR/1N-strain develop spontaneous arthrotic articular cartilage lesions on the medial condyle of tibia and femur. The varus-deformity of the knee joint leads to a recurrent medial patellar luxation with osteoarthrotic defects on the medial part of the facies patellaris femoris. It was demonstrated that the lectin staining pattern of osteoarthrotic articular cartilage, especially on the facies patellaris femoris, was different from that of normal articular cartilage. The differences in lectin staining corresponded to those observed between normal and fibrillated articular cartilage from human patellae. The normal articular cartilage of the mouse knee joint possessed lectin binding-sites for Concanavalin A (ConA) and wheat germ agglutinin (WGA), but not for Ulex europaeus agglutinin (UEA), soy bean agglutinin (SBA) and peanut agglutinin (PNA). In addition to the completely changed distribution pattern of ConA and WGA in osteoarthrotic cartilage, SBA, PNA and UEA developed distinct staining patterns particular to the fibrillated areas of arthrotic cartilage. The increased lectin-binding to arthrotic articular cartilage may be due to unmasking of sugars in the course of bondage breakdown in fibrillated cartilage or the production of pathological glycoproteins. It is evident that lectins can demonstrate minute differences between normal and arthrotic cartilage and it is concluded, therefore, that lectins are sensitive and specific tools for the study of degenerative joint diseases.  相似文献   

20.
Summary The testes from three months old Spague-Dawley rats were fixed in Bouin's fluid or neutral buffered 10% formalin, embedded in paraffin, sectioned and after deparaffination stained with the following fluorescein isothiocyanate coupled lectins: PNA, WGA, Con A, RCA, SBA, DBA and UEA. The results show that there are considerable differences in the staining pattern of various spermatogenic cells between different lectins. The fixation in Bouin's fluid enhanced the staining of all the lectins compared to formalin fixation in which only a weak staining could be seen in the acrosomes of spermatids after WGA or PNA staining. PNA and WGA stained specifically the acrosome of the developing spermatids, which was seen from the beginning of the acrosome formation and lasted up to late spermiogenesis. However, the staining with PNA decreased in the late spermatids whereas the intensity of the staining remained unchanged with WGA. Con A did not stain the acrosome but stained unspecifically the cytoplasm of all spermatogenic cells. RCA stained faintly the acrosome throughout the spermatid differentiation. DBA and UEA stained specifically the chromosomes of B spermatogonia. DBA also faintly stained the cell membranes of early spermatids. SBA did not show any specific staining of the spermatogenic cells. Based on this it is suggested that the carbohydrates and glycoproteins which are known to be present in the acrosome are formed already in the beginning of the acrosome formation. The decrease in the PNA staining in late spermatids possibly reflects the fact that the receptor molecules are not synthesized in late spermatids but are formed in earlier developmental stages and are thereafter preserved in the acrosome. The enhancement of lectin binding caused by Bouin's fixative might also be applied to other tissues where previous experiments with formalin fixed tissue have failed to show any staining.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号