首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cross-regulation from the stimulatory (Gs alpha)-mediated) to the inhibitory (Gi alpha-mediated) pathways controlling adenylylcyclase has been described (Hadcock, J. R., Ros, M., Watkins, D. C., and Malbon, C. C. (1990) J. Biol. Chem. 265, 14784-14790). The extent to which cross-regulation occurs from inhibitory to stimulatory pathways for adenylylcyclase was explored. Persistent activation of the inhibitory pathway of adenylylcyclase by the A1-adenosine receptor agonist (-)-N6 (R-phenylisopropyl) adenosine (PIA) in hamster smooth muscle DDT1 MF-2 cells enhanced the stimulatory pathway of adenylylcyclase and its activation by the beta 2-adrenergic receptor agonist isoproterenol. PIA treatment (48 h) of cells increased isoproterenol-stimulated adenylylcyclase by 2-fold. In addition, the ED50 for stimulation of adenylylcyclase by isoproterenol decreased 50-fold to approximately 1 nM. Persistent activation of cells with PIA increased beta 2-adrenergic receptor number in a time- and dose-dependent manner. The steady-state levels of beta 2-adrenergic receptors (radioligand binding and immunoblotting) and receptor mRNA levels increased by more than 70%, while the half-life of the receptor (24 h) was unaltered. Both A1-adenosine receptor binding and Gi alpha 2 levels declined by half in cells persistently activated with PIA. Although Gi alpha 2 mRNA levels and the relative rate of synthesis of Gi alpha 2 protein upon persistent activation of the inhibitory pathway were found to increase, a decrease in the half-life of Gi alpha 2 from approximately 75 h in naive cells to approximately 40 in cells provides the basis for the decline in Gi alpha 2 levels. The steady-state level of mRNA and half-life of Gs alpha protein were unaltered in persistently activated cells. Thus, activation of the inhibitory pathway of adenylylcyclase cross-regulates the stimulatory, hormone-sensitive adenylylcyclase system by: (i) up-regulating beta 2-adrenergic receptors and enhancing the activation of the stimulatory adenylylcyclase pathway and (ii) down-regulating elements of the inhibitory adenylylcyclase pathway (Gi alpha 2 and A1-adenosine receptor binding).  相似文献   

2.
Cross-regulation from the stimulatory to the inhibitory adenylylcyclase pathways has been described (Hadcock, J. R., Ros, M., Watkins, D. C., and Malbon, C. C. (1990) J. Biol. Chem. 265, 14784-14790). More recently, persistent activation (48 h) of the inhibitory adenylylcyclase pathway has been shown to cross-regulate the stimulatory pathway (i) enhancing the maximal response of beta-adrenergic agonits, (ii) increasing the expression of beta-adrenergic receptor, and (iii) reducing the ED50 for the isoproterenol-stimulated response by 50-fold (Hadcock, J. R., Port, J. D., and Malbon, C. C. (1991) J. Biol. Chem. 266, 11915-11922). Here, we report that short term activation (60 min) of the inhibitory adenylylcyclase pathway of hamster smooth muscle DDT1MF-2 cells with the A1-adenosine receptor agonist N6-phenylisopropyladenosine (PIA) likewise enhances the stimulatory adenylylcyclase response to the beta-adrenergic agonist isoproterenol. The PIA effect was exerted at the level of the receptor, i.e., the beta-adrenergic receptor-mediated response was enhanced, whereas the guanosine 5'-O-(thiotriphosphate)- and forskolin-stimulated adenylylcyclase activities were largely unaffected. In contrast to longer term persistent activation of the inhibitory pathway, receptor number and affinity for 125I-labeled cyanopindolol were unaffected. Metabolic labeling of cells with [32P]orthophosphate and immuneprecipitation of beta-adrenergic receptors detected phosphorylation of the receptor in unstimulated cells and marked phosphorylation in cells challenged with epinephrine. When cells were challenged short term with PIA, the basal state of beta-adrenergic receptor phosphorylation was reduced by 75%. Treating cells with PIA in combination with the cAMP analog 8-(4-chlorophenylthio)adenosine cyclic AMP attenuated the enhanced receptor-mediated adenylylcyclase response observed in cells treated with PIA alone. These data suggest that short term cross-regulation from the inhibitory to stimulatory adenylylcyclase pathways results in the following: (i) decreased intracellular cAMP levels and protein kinase A activity, (ii) reduced phosphorylation of the beta 2-adrenergic receptor in the "basal" (i.e. unstimulated) state, and (iii) enhanced receptor-mediated activation of Gs.  相似文献   

3.
The stimulatory effect of Mn2+ (1.5-fold), forskolin (1.6-fold) and low (1 microM) concentrations of GTP (1.9-fold) on the adenylyl cyclase of adipocyte membranes from obese, diabetic CBA/Ca mice was markedly enhanced compared to that seen using membranes prepared from their lean littermates. In contrast, receptor-mediated stimulation, achieved with either isoprenaline or secretin was reduced and that by glucagon abolished in membranes from diabetic animals. The levels of expression of alpha-subunits of Gi-1, Gi-2 and Gi-3 were reduced to some 49, 76 and 54%, respectively, in membranes from diabetic animals compared with those from normal animals. Levels of G-protein beta-subunits and Gs alpha-subunits were similar. Receptor-mediated inhibition of adenylate activity elicited by either nicotinic acid or prostaglandin E1 (PGE1) was of a similar magnitude in membranes from normal and diabetic animals but the inhibitory action of N6-(L-2-phenylisopropyl)adenosine (PIA) was greater in membranes from diabetic animals by about 30%. Gi function was similarly evident in membranes from both lean and diabetic animals, as assessed using low concentrations of guanylyl 5'-imidodiphosphate to inhibit forskolin-stimulated adenylyl cyclase activity. However, assessing Gi function using GTP showed marked dissimilarities in that the elevated GTP concentrations expected to occur physiologically were incapable of reversing the stimulation achieved at low concentrations of GTP in membranes from diabetic but not normal animals. The adipocytes of CBA/Ca mice, as do other animal models of insulin resistance, show lesions in adenylyl cyclase regulation, Gi function and G-protein expression.  相似文献   

4.
Stimulation of DDT1 MF-2 vas deferens cells with epinephrine resulted in a time- and dose-dependent loss of alpha 1-adrenergic receptor-specific ligand binding. Regulation of alpha 1-adrenergic receptor mRNA was characterized. In monolayer culture, cells displayed 0.7 +/- 0.05 amol of alpha 1-adrenergic receptor mRNA/microgram of total cellular RNA. Epinephrine, which acts at both alpha 1- and beta 2-adrenergic receptors of DDT1 MF-2 cells, induced a short term (2-8 h) increase (50-70%) in the abundance of alpha 1-adrenergic receptor mRNA. Propranolol, a beta 2-adrenergic receptor antagonist, attenuated the epinephrine-mediated increase in alpha 1-adrenergic receptor mRNA but did not affect the decrease in alpha 1-adrenergic receptor-specific ligand binding. Phentolamine, an alpha 1-adrenergic receptor antagonist, did not attenuate the epinephrine-mediated increase in alpha 1-adrenergic receptor mRNA at 4 h but did block the decrease in alpha 1-adrenergic receptor-specific ligand binding. The half-life of the alpha 1-adrenergic receptor mRNA was approximately 7 h in untreated cells as well as in cells challenged with epinephrine. The epinephrine-promoted increase in alpha 1-adrenergic receptor mRNA was found to result from cross-regulation via beta 2-adrenergic receptors. Cholera toxin, forskolin, as well as the cyclic AMP analog CPT cAMP (8-(4-chlorophenylthio)adenosine 3':5'-cyclic monophosphate) increased the alpha 1-adrenergic receptor mRNA at 4 h, as did epinephrine in the presence of alpha 1-antagonists but not in the presence of a beta-adrenergic antagonist. This is the first report of heterologous up-regulation of mRNA levels of adrenergic receptors. Cross-regulation between alpha 1- and beta 2-adrenergic receptor-mediated pathways at 4 h occurs at the level of mRNA whereas later down-regulation of alpha 1-receptor mRNA and binding proceed via agonist activation of alpha 1-adrenergic receptors.  相似文献   

5.
Adenylyl cyclase, the enzyme that converts ATP to cAMP, is regulated by its stimulatory and inhibitory GTP-binding proteins, G(s) and G(i), respectively. Recently, we demonstrated that besides catalyzing the synthesis of cAMP, type V adenylyl cyclase (ACV) can act as a GTPase-activating protein for Galpha(s) and also enhance the ability of activated receptors to stimulate GTP-GDP exchange on heterotrimeric G(s) (Scholich, K., Mullenix, J. B., Wittpoth, C., Poppleton, H. M., Pierre, S. C., Lindorfer, M. A., Garrison, J. C., and Patel, T. B. (1999) Science 283, 1328-1331). This latter action of ACV would facilitate the rapid onset of signaling via G(s). Because the C1 region of ACV interacts with the inhibitory GTP-binding protein Galpha(i), we investigated whether the receptor-mediated activation of heterotrimeric G(i) was also regulated by ACV and its subdomains. Our data show that ACV and its C1 domain increased the ability of a muscarinic receptor mimetic peptide (MIII-4) to enhance activation of heterotrimeric G(i) such that the amount of peptide required to stimulate G(i) in steady-state GTPase activity assays was 3-4 orders of magnitude less than without the C1 domain. Additionally, the MIII-4-mediated binding of guanosine 5'-(gamma-thio)triphosphate (GTPgammaS) to G(i) was also markedly increased in the presence of ACV or its C1 domain. In contrast, the C2 domain of ACV was not able to alter either the GTPase activity or the GTPgammaS binding to G(i) in the presence of MIII-4. Furthermore, in adenylyl cyclase assays employing S49 cyc(-) cell membranes, the C1 (but not the C2) domain of ACV enhanced the ability of peptide MIII-4 as well as endogenous somatostatin receptors to activate endogenous G(i) and to inhibit adenylyl cyclase activity. These data demonstrate that adenylyl cyclase and its C1 domain facilitate receptor-mediated activation of G(i).  相似文献   

6.
A two-allele polymorphism of the human gene encoding for the alpha subunit of the guanine nucleotide-binding protein is described.  相似文献   

7.
We have recently shown that the nitric oxide (NO) donor, SNAP, decreased the expression of Giα proteins and associated functions in vascular smooth muscle cells. Because NO stimulates soluble guanylyl cyclase and increases the levels of guanosine 3′,5′-cyclic monophosphate (cGMP), the present studies were undertaken to investigate whether cGMP can also modulate the expression of Gi proteins and associated adenylyl cyclase signaling. A10 vascular smooth muscle cells (VSMCs) and primary cultured cells from aorta of Sprague Dawley rats were used for these studies. The cells were treated with 8-bromoguanosine 3′,5′-cyclic monophosphate (8Br-cGMP) for 24 h and the expression of Giα proteins was determined by immunobloting techniques. Adenylyl cyclase activity was determined by measuring [32P]cAMP formation for [α-32P]ATP. Treatment of cells with 8-Br-cGMP (0.5 mM) decreased the expression of Giα-2 and Giα-3 by about 30–45%, which was restored towards control levels by KT5823, an inhibitor of protein kinase G. On the other and hand, the levels of Gsα protein were not altered by this treatment. The decreased expression of Giα proteins by 8Br-cGMP treatment was reflected in decreased Gi functions. For example, the inhibition of forskolin (FSK)-stimulated adenylyl cyclase activity by low concentrations of GTPγS (receptor-independent Gi functions) was significantly decreased by 8Br-cGMP treatment. In addition, exposure of the cells to 8Br-cGMP also resulted in the attenuation of angiotensin (Ang) II- and C-ANP4–23 (a ring-deleted analog of atrial natriuretic peptide [ANP]-mediated inhibition of adenylyl cyclase activity (receptor-dependent functions of Gi). On the other hand, Gsα-mediated stimulations of adenylyl cyclase by GTPγS, isoproterenol and FSK were significantly augmented in 8Br-cGMP-treated cells. These results indicated the 8Br-cGMP decreased the expression of Giα proteins and associated functions in VSMCs. From these studies, it can be suggested that 8Br-cGMP-induced decreased levels of Gi proteins and resultant increased levels of cAMP may be an additional mechanism through which cGMP regulates vascular tone and thereby blood pressure.  相似文献   

8.
Rat white adipocytes express three distinct 'Gi-like' guanine-nucleotide-binding proteins (G-proteins) [Mitchell, Griffiths, Saggerson, Houslay, Knowler & Milligan (1989) Biochem. J. 262, 403-408]. We have previously noted elevated levels of Gi in membranes of adipocytes from hypothyroid rats [Milligan, Spiegel, Unson & Saggerson (1987) Biochem. J. 247, 223-227]. Using a series of anti-peptide antisera able to discriminate between the individual gene products we have examined levels of each Gi-like G-protein in adipocyte membranes of hypothyroid rats compared with euthyroid controls. We demonstrate that up-regulation of Gi in adipocytes of hypothyroid rats is not restricted to a single subtype of Gi but that each of Gi1 alpha, Gi2 alpha and Gi3 alpha is present at markedly higher levels compared with euthyroid animals. In contrast, levels of both the 45 and 42 kDa forms of Gs alpha were not altered substantially in the hypothyroid state.  相似文献   

9.
The effect of Gi/o protein-coupled receptors on adenylyl cyclase type 2 (AC2) has been studied in Sf9 insect cells. Stimulation of cells expressing AC2 with the phorbol ester 12-O-tetradecanoyl phorbol-13-acetate (TPA) led to a twofold stimulation of cAMP synthesis that could be blocked with the protein kinase C inhibitor GF109203X. Activation of a coexpressed alpha2A-adrenoceptor or muscarinic M4 receptor inhibited the stimulation by TPA almost completely in a pertussis toxin-sensitive manner. Activation of Gs proteins switched the response of the alpha2A-adrenoceptor to potentiation of prestimulated AC2 activity. The potentiation, but not the inhibition, could be blocked by a Gbetagamma scavenger. A novel methodological approach, whereby signalling through endogenous G proteins was ablated, was used to assess specific G protein species in the signal pathway. Expression of Go proteins (alphao1 + beta1gamma2) restored both the inhibition and the potentiation, whereas expression of Gi proteins (alphai1 + beta1gamma2) resulted in a potentiation of both the TPA- and the Gs-stimulated AC2 activity. The data presented supports the view of AC2 as a molecular switch and implicates this isoform as a target for Go protein-linked signalling.  相似文献   

10.
Platelet agonists initiate aggregation and secretion by activating receptors coupled to the G-protein G(q), thereby raising cytosolic Ca(2+), [Ca(2+)](i). The rise in [Ca(2+)](i) is facilitated via inhibition of cAMP formation by the inhibitory G-protein of adenylyl cyclase, G(i). Since insulin attenuates platelet activation, we investigated whether insulin interferes with cAMP regulation. Here we report that insulin (0.5-200 nmol/liter) interferes with agonist-induced increases in [Ca(2+)](i) (ADP, thrombin), cAMP suppression (thrombin), and aggregation (ADP). The effects of insulin are as follows: (i) independent of the P2Y(12) receptor, which mediates ADP-induced cAMP lowering; (ii) not observed during G(s)-mediated cAMP formation; (iii) unaffected by treatments that affect phosphodiesterases (3-isobutyl-1-methylxanthine); and (iv) not changed by interfering with NO-mediated regulation of cAMP degradation (N(G)-monomethyl-l-arginine). Hence, insulin might interfere with G(i). Indeed, insulin induces the following: (i) tyrosine phosphorylation of the insulin receptor, the insulin receptor substrate-1 (IRS-1) and G(i)alpha(2); (ii) co-precipitation of IRS-1 with G(i)alpha(2) but not with other G alpha subunits. Despite persistent receptor activation, the association of IRS-1 with G(i)alpha(2) is transient, being optimal at 5 min and 1 nmol/liter insulin, which is sufficient to suppress Ca(2+) signaling by ADP, and at 10 min and 100 nmol/liter insulin, which is required to suppress Ca(2+) signaling by thrombin. Epinephrine, a known platelet sensitizer and antagonist of insulin, abolishes the effect of insulin on [Ca(2+)](i), tyrosine phosphorylation of G(i)alpha(2), and aggregation by interfering with the phosphorylation of the insulin receptor beta subunit. We conclude that insulin attenuates platelet functions by interfering with cAMP suppression through IRS-1 and G(i).  相似文献   

11.
E J Choi  Z Xia  D R Storm 《Biochemistry》1992,31(28):6492-6498
Characterization of adenylyl cyclases has been facilitated by the isolation of cDNA clones for distinct adenylyl cyclases including the type I and type III enzymes. Expression of type I adenylyl cyclase activity in animal cells has established that this enzyme is stimulated by calmodulin and Ca2+. Type III adenylyl cyclase is enriched in olfactory neurons and is regulated by stimulatory G proteins. The sensitivity of the type III adenylyl cyclase to Ca2+ and calmodulin has not been reported. In this study, type III adenylyl cyclase was expressed in human kidney 293 cells to determine if the enzyme is stimulated by Ca2+ and calmodulin. The type III enzyme was not stimulated by Ca2+ and calmodulin in the absence of other effectors. It was, however, stimulated by Ca2+ through calmodulin when the enzyme was concomitantly activated by either GppNHp or forskolin. The concentrations of free Ca2+ for half-maximal stimulation of type I and type III adenylyl cyclases were 0.05 and 5.0 microM Ca2+, respectively. These data suggest that the type III adenylyl cyclase is stimulated by Ca2+ when the enzyme is activated by G-protein-coupled receptors and that increases in free Ca2+ accompanying receptor activation may amplify the primary cyclic AMP signal.  相似文献   

12.
Inositol hexakisphosphate (InsP6) is a most abundant inositol polyphosphate that changes simultaneously with inositol 1,4,5-trisphosphate in depolarized neurons. However, the role of InsP6 in neuronal signaling is unknown. Mass assay reveals that the basal levels of InsP6 in several brain regions tested are similar. InsP6 mass is significantly elevated in activated brain neurons and lowered by inhibition of neuronal activity. Furthermore, the hippocampus is most sensitive to electrical challenge with regard to percentage accumulation of InsP6. In hippocampal neurons, InsP6 stimulates adenylyl cyclase (AC) without influencing cAMP phosphodiesterases, resulting in activation of protein kinase A (PKA) and thereby selective enhancement of voltage-gated L-type Ca2+ channel activity. This enhancement was abolished by preincubation with PKA and AC inhibitors. These data suggest that InsP6 increases L-type Ca2+ channel activity by facilitating phosphorylation of PKA phosphorylation sites. Thus, in hippocampal neurons, InsP6 serves as an important signal in modulation of voltage-gated L-type Ca2+ channel activity.  相似文献   

13.
We have investigated the possibility that adenylyl cyclase (AC) activity and membrane protein levels of the -subunits of the stimulatory and inhibitory G-proteins of AC (Gs and Gi−2) in cultured prolactin-producing rat pituitary adenoma cells (GH3 cells) are modulated by phospholipase C (PLC)-generated second messengers. Pretreatment of cells (6–48 h) with ionomycin (1 μM) or 1-oleoyl-2-acetylglycerol (OAG; 1μM) showed that ionomycin regulated Gs levels in a time-dependent, biphasic manner; a two-fold increase followed a 40% initial reduction, while OAG lowered Gs levels by more than 50% at all time-points. Gi−2 levels remained unchanged by both pretreatments. OAG, but not ionomycin, increased basal AC activity without increasing enzyme protein levels. Alterations in AC responsiveness to peptide hormones (e.g. thyroliberin and vasoactive intestinal peptide) correlated to membrane Gs protein -subunit content. These results demonstrate the involvement of G-protein translation regulation as one mechanism of ‘cross-talk’ between the PLC- and AC-dependent signalling pathways.  相似文献   

14.
We have previously reported that angiotensin II (ANG II) treatment of A10 vascular smooth muscle cells (VSMCs) increased inhibitory G proteins (G(i) protein) expression and associated adenylyl cyclase signaling which was attributed to the enhanced MAP kinase activity. Since ANG II has been shown to increase oxidative stress, we investigated the role of oxidative stress in ANG II-induced enhanced expression of G(i)alpha proteins and examined the effects of antioxidants on ANG II-induced enhanced expression of G(i)alpha proteins and associated adenylyl cyclase signaling in A10 VSMCs. ANG II treatment of A10 VSMCs enhanced the production of O(2)(-) and the expression of Nox4 and P47(phox), different subunits of NADPH oxidase, which were attenuated toward control levels by diphenyleneiodonium (DPI). In addition, ANG II augmented the expression of G(i)alpha-2 and G(i)alpha-3 proteins in a concentration- and time-dependent manner; the maximal increase in the expression of G(i)alpha was observed at 1 to 2 h and at 0.1-1.0 microM. The enhanced expression of G(i)alpha-2 and G(i)alpha-3 proteins was restored to control levels by antioxidants such as N-acetyl-L-cysteine, alpha-tocopherol, DPI, and apocynin. In addition, ANG II also enhanced the ERK1/2 phosphorylation that was restored to control levels by DPI. Furthermore, the inhibition of forskolin-stimulated adenylyl cyclase activity by low concentrations of 5'-O-(3-triotriphosphate) (receptor-independent G(i) functions) and ANG II-, des(Glu(18),Ser(19),Glu(20),Leu(21),Gly(22))atrial natriuretic peptide(4-23)-NH(2) (natriuretic peptide receptor-C agonist), and oxotremorine-mediated inhibitions of adenylyl cyclase (receptor-dependent functions) that were augmented in ANG II-treated VSMCs was also restored to control levels by antioxidant treatments. In addition, G(s)alpha-mediated diminished stimulation of adenylyl cyclase by stimulatory hormones in ANG II-treated cells was also restored to control levels by DPI. These results suggest that ANG II-induced enhanced levels of G(i)alpha proteins and associated functions in VSMCs may be attributed to the ANG II-induced enhanced oxidative stress, which exerts its effects through mitogen-activated protein kinase signaling pathway.  相似文献   

15.
16.
Preadipocytes of rats were obtained from the stromal-vascular fraction of collagenase-digested perirenal fat pads and grown in serum-containing medium. By day 8 of culture the cells reached confluence and by 12 days were lipid-laden. The adenylyl cyclase of the plasma membranes was compared to that of mature fat cells. Unlike the membranes from adipocytes, the preadipocytes showed adenylyl cyclase activity that was stimulated by GTP. Stimulation of preadipocyte membranes by Gpp(NH)p, NaF, and forskolin was comparable to that of membranes from adipocytes, but the response to epinephrine and isoproterenol was minimal (approximately 1.5-fold for preadipocytes vs. 4-5-fold for adipocytes). In contrast, GTP-dependent stimulation of adenylyl cyclase of preadipocytes by PGE1 was nearly 8-fold. Stimulation occurred even in the presence of both GTP and 140 mM NaCl, a condition that leads to inhibition by PGE1 of adenylyl cyclase in membranes of adipocytes. Other characteristics of the adenylyl cyclase of preadipocyte membranes that differ from those of adipocytes include lack of inhibition by GTP of forskolin-activated activity, and, following treatment with pertussis toxin, enhanced stimulation by PGE1. ADP-ribosylation of Gi and Gs with pertussis and cholera toxins, respectively, indicated that the membranes of preadipocytes contained only 5-11% of the Gi of adipocytes and a much lower ratio of Gi:Gs. These findings suggest that cultured preadipocytes have an incompletely developed Gi pathway that may account for the stimulatory effect of prostaglandins on the adenylyl cyclase of these cells as opposed to the inhibitory action of PG in mature fat cells.  相似文献   

17.
The sweeteners saccharin, D-tryptophan, and neohesperidin dihydrochalcone (NHD) and the bitter tastant cyclo(Leu-Trp) stimulated concentration-dependent pigment aggregation in a Xenopus laevis melanophore cell line similar to melatonin. Like melatonin, these tastants inhibited (by 45-92%) cAMP formation in melanophores; pertussis toxin pretreatment almost completely abolished the tastant-induced cAMP inhibition, suggesting the involvement of the inhibitory pathway (Gi) of adenylyl cyclase. The presence of luzindole (melatonin receptor antagonist) almost completely abolished the inhibition of cAMP formation induced by saccharin, D-tryptophan, and cyclo(Leu-Trp) but only slightly affected the inhibitory effect of NHD. In contrast, the presence of an alpha2-adrenergic receptor antagonist, yohimbine, almost completely abolished the inhibition of cAMP formation induced by NHD but had only a minor effect on that induced by the other tastants. Thus saccharin, D-tryptophan, and cyclo(Leu-Trp) are melatonin receptor agonists whereas NHD is an alpha2-adrenergic receptor agonist, but both pathways lead to the same transduction output and cellular response. Formation of D-myo-inositol 1,4,5-trisphosphate (IP3) in melanophores was reduced (15-58%, no concentration dependence) by saccharin, D-tryptophan, and cyclo(Leu-Trp) stimulation but increased by NHD stimulation. Tastant stimulation did not affect cGMP. Although some of the above tastants were found to be membrane permeant, their direct activation of downstream transduction components in this experimental system is questionable. MT1 and MT2 melatonin receptor mRNAs were identified in rat circumvallate papilla taste buds and nonsensory epithelium, suggesting the occurrence of MT1 and MT2 receptors in these tissues. Melatonin stimulation reduced the cellular content of cAMP in taste cells, which may or may not be related to taste sensation.  相似文献   

18.
To analyze the effect of bombesin on the somatostatin (SS) mechanism of action in the exocrine pancreas, male Wistar rats (250-270 g) were injected intraperitoneally with bombesin (10 microg/kg) three times daily at 8-h intervals for 7 or 14 days. Bombesin attenuated the ability of SS to inhibit forskolin-stimulated adenylyl cyclase activity in pancreatic acinar membranes. However, it did not decrease the ability of forskolin to stimulate the adenylyl cyclase catalytic subunit. The ability of 5'-guanylylimidodiphosphate [Gpp(NH)p] (a nonhydrolyzable GTP analog) to inhibit forskolin-stimulated adenylyl cyclase activity was diminished in pancreatic acinar cell membranes from bombesin-treated rats. Bombesin administration did not affect the ADP-ribosylation of a 41-kDa G protein catalyzed by pertussis toxin. The maximal SS binding capacity of pancreatic acinar membranes from bombesin-treated rats was decreased when compared with controls at the two time periods studied. The bombesin/gastrin-releasing peptide antagonist [D-Tpi6,Leu13psi(CH2NH)Leu14]bombesin (6-14) (RC-3095) (10 microg/kg i.p.), injected three times daily at 8-h intervals for 7 or 14 days, had a similar effect to that of bombesin on the SS mechanism of action. The combined administration of bombesin and its antagonist RC-3095 had a greater effect on the SS receptor-effector system than when administered separately. The present study indicates that the pancreatic SS receptor-effector system may be regulated by bombesin in vivo.  相似文献   

19.
Platelet responses at sites of vascular injury are regulated by intracellular cAMP levels, which rise rapidly when prostacyclin (PGI(2)) is released from endothelial cells. Platelet agonists such as ADP and epinephrine suppress PGI(2)-stimulated cAMP formation by activating receptors coupled to G(i) family members, four of which are present in platelets. To address questions about the specificity of receptor:G protein coupling, the regulation of cAMP formation in vivo and the contribution of G(i)-mediated pathways that do not involve adenylyl cyclase, we studied platelets from mice that lacked the alpha subunits of one or more of the three most abundantly expressed G(i) family members and compared the results with platelets from mice that lacked the PGI(2) receptor, IP. As reported previously, loss of G(i2)alpha or G(z)alpha inhibited aggregation in response to ADP and epinephrine, respectively, producing defects that could not be reversed by adding an adenylyl cyclase inhibitor. Platelets that lacked both G(i2)alpha and G(z)alpha showed impaired responses to both agonists, but the impairment was no greater than in the individual knockouts. Loss of G(i3)alpha had no effect either alone or in combination with G(z)alpha. Loss of either G(z)alpha or G(i2)alpha impaired the ability of ADP and epinephrine to inhibit PGI(2)-stimulated adenylyl cyclase activity and caused a 40%-50% rise in basal cAMP levels, whereas loss of G(i3)alpha did not. Conversely, deletion of IP abolished responses to PGI(2) and caused cAMP levels to fall by 30%, effects that did not translate into enhanced responsiveness to agonists ex vivo. From these results we conclude that 1) cAMP levels in circulating platelets reflect ongoing signaling through G(i2), G(z), and IP, but not G(i3); 2) platelet epinephrine (alpha(2A)-adrenergic) and ADP (P2Y12) receptors display strong preferences among G(i) family members with little evidence of redundancy; and 3) these receptor preferences do not extend to G(i3). Finally, the failure of ADP and epinephrine to inhibit basal, as opposed to PGI(2)-stimulated, cAMP formation highlights the need during platelet activation for G(i) signaling pathways that involve effectors other than adenylyl cyclase.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号