首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neural interactions between contralateral motor regions are thought to be instrumental in the successful preparation, and execution, of volitional movements. Here we investigated whether healthy ageing is associated with a change in functional connectivity, as indicated by the ability to modulate interhemispheric interactions during movement preparation in a manner that assists rapid movement responses. Thirteen young (mean age 22.2 years) and thirteen older (68.5 years) adults rapidly abducted their left index finger as soon as possible in response to a visual imperative signal, presented 500 ms after a visual warning signal.Interactions between left dorsal premotor cortex (LPMd) and right primary motor cortex (RM1) and between left primary motor cortex (LM1) and RM1 were investigated at six time points between the warning signal and the volitional response using paired-pulse transcranial magnetic stimulation. Relative to the inhibitory interactions measured at rest, both young and older adults released LM1-RM1 inhibition beginning 250 ms after the warning signal, with no significant differences between groups. LPMd-RM1 interactions became facilitatory (from the onset of the imperative signal onwards) in the older, but not the young, group. Regression analyses revealed that for the older adults, modulation of LPMd-RM1 interactions early in the preparation period was associated with faster responses, suggesting that specifically timed modulation of these pathways may be a compensatory mechanism to offset, at least in part, slowing of motor responses. The results suggest a greater reliance on premotor regions during the preparation of simple motor actions with advancing age.  相似文献   

2.
3.
Using graphic tests, preference of space parts and peculiarities of space depth reflection were studied in drawings of in-patients with depression, maniacal state, and paranoid schizophrenia. The examination was performed in the process of the course treatment with neuroleptics and antidepressants. Two opposite patterns of raster filling and space reflection were revealed in the drawings: (1) preference of the left part of space, reflection of objects in the nearest part of space; (2) preference of the right part of space, reflection of the distant part of space. It is suggested that a shift of interhemispheric activation balance towards the right hemisphere occurs in the depressive state, whereas a shift to the left is observed in the maniacal state and paranoid schizophrenia. Psychotropic drugs produce a lateralization effect on cerebral hemispheres: antidepressant amitryptyline leads to a decrease of pathological activation of the right hemisphere, while neuroleptic haloperidol, of pathologic activation of the left hemisphere.  相似文献   

4.
The patterns of visual attention allocation were investigated in healthy subjects (n = 43) and patients with focal brain lesions (n = 17) using the original method developed for eye tracking in patients while memorizing a series of stimulatory image triplets. Two processes were estimated: delayed reproduction and recognition of stimuli in a series of consecutive visually similar distractors. In healthy subjects both processes correlated to a great extent (r = 0.6; p = 0.00001). The most significant disorders of voluntary verbal reproduction were observed when the left hemisphere of the brain was affected. The overall effectiveness of recognition in the case of brain damage decreased without significant dependence on the lateralization of the focus. Some correlation was observed between realized and remembered information and the patterns of visual fixations (concentrated on the semantic parts of the image or chaotically distributed in the space of stimulus exposure). Ineffective patterns of visual fixation in patients were more often observed in the area contralateral to the lesion. These contralateral stimuli were reproduced and recognized less efficiently in comparison with the central and ipsilateral images. Complete ignoring of the contralateral image in the triplet was observed both in the absence of visual fixation and in combination with the diffuse pattern.  相似文献   

5.
Several investigations suggest that actual and mental actions trigger similar neural substrates. Yet, neurophysiological evidences on the nature of interhemispheric interactions during mental movements are still meagre. Here, we asked whether the content of mental images, investigated by task complexity, is finely represented in the inhibitory interactions between the two primary motor cortices (M1s). Subjects’ left M1 was stimulated by means of transcranial magnetic stimulation (TMS) while they were performing actual or mental movements of increasing complexity with their right hand and exerting a maximum isometric force with their left thumb and index. Thus, we simultaneously assessed the corticospinal excitability in the right opponent pollicis muscle (OP) and the ipsilateral silent period (iSP) in the left OP during actual and mental movements. Corticospinal excitability in right OP increased during actual and mental movements, but task complexity-dependent changes were only observed during actual movements. Interhemispheric motor inhibition in the left OP was similarly modulated by task complexity in both mental and actual movements. Precisely, the duration and the area of the iSP increased with task complexity in both movement conditions. Our findings suggest that mental and actual movements share similar inhibitory neural circuits between the two homologous primary motor cortex areas.  相似文献   

6.
7.
8.
The circadian petal movement rhythm of Kalanchoë flowers has been studied. The amplitude of the rhythm can be drastically reduced by an appropriate stimulus of a light pulse. It has also been shown that it is possible to stop the rhythm permanently by administering a single light pulse to the flowers. This is interpreted to indicate that the light pulse has sent the circadian rhythm into a stable state of singularity. The conditions which attenuate the rhythm have been investigated both theoretically (on the basis of a previously published model for circadian rhythms) and experimentally. 120 min red light of 230 μW · cm?2, starting briefly before the second petal closure about 30 h after transfer to constant safe light conditions is optimal in inducing rhythm-damping. Damping requires the same duration when the light is given at the corresponding phase during the third or fourth cycle of the rhythm. However, in the first cycle 240 min red light of 230 μW · cm?2 is required to get optimal damping of the rhythm. Conditions to achieve damping for other irradiances are investigated. Individual recordings are presented which show the behaviour of the rhythm when perturbed by light stimuli close to its singularity.  相似文献   

9.
10.
11.
Interactive behavior among humans is governed by the dynamics of movement synchronization in a variety of repetitive tasks. This requires the interaction partners to perform for example rhythmic limb swinging or even goal-directed arm movements. Inspired by that essential feature of human interaction, we present a novel concept and design methodology to synthesize goal-directed synchronization behavior for robotic agents in repetitive joint action tasks. The agents’ tasks are described by closed movement trajectories and interpreted as limit cycles, for which instantaneous phase variables are derived based on oscillator theory. Events segmenting the trajectories into multiple primitives are introduced as anchoring points for enhanced synchronization modes. Utilizing both continuous phases and discrete events in a unifying view, we design a continuous dynamical process synchronizing the derived modes. Inverse to the derivation of phases, we also address the generation of goal-directed movements from the behavioral dynamics. The developed concept is implemented to an anthropomorphic robot. For evaluation of the concept an experiment is designed and conducted in which the robot performs a prototypical pick-and-place task jointly with human partners. The effectiveness of the designed behavior is successfully evidenced by objective measures of phase and event synchronization. Feedback gathered from the participants of our exploratory study suggests a subjectively pleasant sense of interaction created by the interactive behavior. The results highlight potential applications of the synchronization concept both in motor coordination among robotic agents and in enhanced social interaction between humanoid agents and humans.  相似文献   

12.
13.
Dynamic clinical and EEG examinations (78 observations) were carried out in 17 patients suffering from severe craniocerebral injury during the course of their rehabilitation. Successful recovery of functions to the point of social and family readaptation was reached in 61% of patients (group I), and in 39% of patients the results were poor (group II). The complex of EEG coherence parameters (six rhythmic bands, mean coherence levels for 26 intrahemispheric and 8 interhemispheric derivation pairs, and the asymmetry coefficient of the EEG coherence) was analyzed in patients in comparison with normal values (20 right-handers). The rehabilitation was most efficient in cases when a certain dynamic sequence of patterns of interhemispheric relations of the EEG coherence was observed. First, a stable formation of right-hemispheric dominance was observed (most expressed in the centrofrontal areas in the range). This asymmetry pattern was phenomenologically associated with the recovery of the emotional sphere and positive dynamics in the motor and autonomic spheres. Later on, formation of the left-hemispheric dominance of the EEG coherence was observed (in the frontotemporal areas in the – ranges. This pattern was associated with complication of the cognitive functions. In the most severe forms of brain damage, the rehabilitation process was accompanied by changes in the interhemispheric EEG coherence with the elements of stealing from one of the hemispheres, which was correlated with clinical dynamics. Different types of the dynamics of reactive changes in the EEG coherence were revealed in patients of the two groups: successive formation of a generalized and then local modally specific reaction to afferent stimuli was observed in group I, while the generalized type of reactivity persisted in group II until the end of rehabilitation. It is suggested that the different sequence of formation of the interhemispheric EEG coherence reflects the involvement of different brain regulation systems in different orders into the integrative activity, i.e., some specific features of the rehabilitation process.  相似文献   

14.
15.
16.
Behavioral coordination and synchrony contribute to a common biological mechanism that maintains communication, cooperation and bonding within many social species, such as primates and birds. Similarly, human language and social systems may also be attuned to coordination to facilitate communication and the formation of relationships. Gross similarities in movement patterns and convergence in the acoustic properties of speech have already been demonstrated between interacting individuals. In the present studies, we investigated how coordinated movements contribute to observers’ perception of affiliation (friends vs. strangers) between two conversing individuals. We used novel computational methods to quantify motor coordination and demonstrated that individuals familiar with each other coordinated their movements more frequently. Observers used coordination to judge affiliation between conversing pairs but only when the perceptual stimuli were restricted to head and face regions. These results suggest that observed movement coordination in humans might contribute to perceptual decisions based on availability of information to perceivers.  相似文献   

17.
L Ma  R Ranganathan 《PloS one》2012,7(8):e42581
An oscillator consisting of KaiA, KaiB, and KaiC proteins comprises the core of cyanobacterial circadian clock. While one key reaction in this process-KaiC phosphorylation-has been extensively investigated and modeled, other key processes, such as the interactions among Kai proteins, are not understood well. Specifically, different experimental techniques have yielded inconsistent views about Kai A, B, and C interactions. Here, we first propose a mathematical model of cyanobacterial circadian clock that explains the recently observed dynamics of the four phospho-states of KaiC as well as the interactions among the three Kai proteins. Simulations of the model show that the interaction between KaiB and KaiC oscillates with the same period as the phosphorylation of KaiC, but displays a phase delay of ~8 hr relative to the total phosphorylated KaiC. Secondly, this prediction on KaiB-C interaction are evaluated using a novel FRET (Fluorescence Resonance Energy Transfer)-based assay by tagging fluorescent proteins Cerulean and Venus to KaiC and KaiB, respectively, and reconstituting fluorescent protein-labeled in vitro clock. The data show that the KaiB∶KaiC interaction indeed oscillates with ~24 hr periodicity and ~8 hr phase delay relative to KaiC phosphorylation, consistent with model prediction. Moreover, it is noteworthy that our model indicates that the interlinked positive and negative feedback loops are the underlying mechanism for oscillation, with the serine phosphorylated-state (the "S-state") of KaiC being a hub for the feedback loops. Because the kinetics of the KaiB-C interaction faithfully follows that of the S-state, the FRET measurement may provide an important real-time probe in quantitative study of the cyanobacterial circadian clock.  相似文献   

18.
The article presents empirical data on the possible use of transcranial Doppler sonography as a method for the identification of functional specialization of hemispheres. We investigated intrahemispheric differences in the increase in blood flow velocity indicators during the performance of cognitive tasks with verbal and nonverbal stimuli in 20 healthy right-handed participants and 20 right-handed patients with local unilateral vascular brain lesions. We observed interhemispheric and intrahemispheric differences in blood flow velocity indicators between arteries during the performance of cognitive tasks with different variants of verbal stimuli in all participants. It has been found that one of the hemispheres plays a dominant role in verbal and nonverbal stimulus processing.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号