首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lee S  Kim K  Zhou ZJ 《Neuron》2010,68(6):1159-1172
Starburst amacrine cells (SACs) process complex visual signals in the retina using both acetylcholine (ACh) and gamma-aminobutyric acid (GABA), but the synaptic organization and function of ACh-GABA corelease remain unclear. Here, we show that SACs make cholinergic synapses onto On-Off direction-selective ganglion cells (DSGCs) from all directions but make GABAergic synapses onto DSGCs only from the null direction. ACh and GABA were released differentially in a Ca(2+) level-specific manner, suggesting the two transmitters were released from different vesicle populations. Despite the symmetric cholinergic connection, the light-evoked cholinergic input to a DSGC, detected at both light onset and offset, was motion- and direction-sensitive. This input was facilitated by two-spot apparent motion in the preferred direction but supressed in the null direction, presumably by a GABAergic mechanism. The results revealed a high level of synaptic intricacy in the starburst circuit and suggested differential, yet synergistic, roles of ACh-GABA cotransmission in motion sensitivity and direction selectivity.  相似文献   

2.
We have investigated the development of Ca2+-dependent gamma-[3H]aminobutyric acid [( 3H]GABA) release in superfused growth cone fractions isolated from rats between the postnatal ages of 1 and 11 days. We have compared this release with the overall morphology of the subcellular fractions, and identified those structures taking up [3H]GABA by electron microscopical autoradiography. In fractions isolated from rats between 1 and 5 days, K+-evoked [3H]GABA release was completely independent of extracellular Ca2+. After 5 days a Ca2+ dependency appeared, which increased with age, such that by 10 days approximately 50% of the K+-evoked release was Ca2+ dependent. Electron microscopical analysis showed that, at all ages, large numbers of GABAergic growth cones were present in the subcellular fractions. Up to postnatal day 5, the growth cones were synaptic vesicle sparse but, after this age, increasing numbers of synaptic vesicle-containing growth cones were seen. These results suggest that during maturation of GABAergic growth cones into synapses there is, initially, a mechanism for release that is independent of extracellular Ca2+ and that the appearance of a Ca2+-dependent [3H]GABA release from growth cones correlates with the appearance of synaptic vesicles.  相似文献   

3.
It is generally thought that transmitter release at mammalian central synapses is triggered by Ca2+ microdomains, implying loose coupling between presynaptic Ca2+ channels and Ca2+ sensors of exocytosis. Here we show that Ca2+ channel subunit immunoreactivity is highly concentrated in the active zone of GABAergic presynaptic terminals of putative parvalbumin-containing basket cells in the hippocampus. Paired recording combined with presynaptic patch pipette perfusion revealed that GABA release at basket cell-granule cell synapses is sensitive to millimolar concentrations of the fast Ca2+ chelator BAPTA but insensitive to the slow Ca2+ chelator EGTA. These results show that Ca2+ source and Ca2+ sensor are tightly coupled at this synapse, with distances in the range of 10-20 nm. Models of Ca2+ inflow-exocytosis coupling further reveal that the tightness of coupling increases efficacy, speed, and temporal precision of transmitter release. Thus, tight coupling contributes to fast feedforward and feedback inhibition in the hippocampal network.  相似文献   

4.
Functional neural circuit formation during development involves massive elimination of redundant synapses. In the cerebellum, one-to-one connection from excitatory climbing fiber (CF) to Purkinje cell (PC) is established by elimination of early-formed surplus CFs. This process depends on glutamatergic excitatory inputs, but contribution of GABAergic transmission remains unclear. Here, we demonstrate impaired CF synapse elimination in mouse models with diminished GABAergic transmission by mutation of a single allele for the GABA synthesizing enzyme GAD67, by conditional deletion of GAD67 from PCs and GABAergic interneurons or by pharmacological inhibition of cerebellar GAD activity. The impaired CF synapse elimination was rescued by enhancing GABA(A) receptor sensitivity in the cerebellum by locally applied diazepam. Our electrophysiological and Ca2+ imaging data suggest that GABA(A) receptor-mediated inhibition onto the PC soma from molecular layer interneurons influences CF-induced Ca2+ transients in the soma and regulates CF synapse elimination from postnatal day 10 (P10) to around P16.  相似文献   

5.
GABA (gamma-aminobutyric-acid), the main inhibitory neurotransmitter in the adult brain, exerts depolarizing (excitatory) actions during development and this GABAergic depolarization cooperates with NMDARs (N-methyl-D-aspartate receptors) to drive spontaneous synchronous activity (SSA) that is fundamentally important for developing neuronal networks. Although GABAergic depolarization is known to assist in the activation of NMDARs during development, the subcellular localization of NMDARs relative to GABAergic synapses is still unknown. Here, we investigated the subcellular distribution of NMDARs in association with GABAergic synapses at the developmental stage when SSA is most prominent in mice. Using multiple immunofluorescent labeling and confocal laser-scanning microscopy in the developing mouse hippocampus, we found that NMDARs were associated with both glutamatergic and GABAergic synapses at postnatal day 6-7 and we observed a direct colocalization of GABA(A)- and NMDA-receptor labeling in GABAergic synapses. Electron microscopy of pre-embedding immunogold-immunoperoxidase reactions confirmed that GluN1, GluN2A and GluN2B NMDAR subunits were all expressed in glutamatergic and GABAergic synapses postsynaptically. Finally, quantitative post-embedding immunogold labeling revealed that the density of NMDARs was 3 times higher in glutamatergic than in GABAergic synapses. Since GABAergic synapses were larger, there was little difference in the total number of NMDA receptors in the two types of synapses. In addition, receptor density in synapses was substantially higher than extrasynaptically. These data can provide the neuroanatomical basis of a new interpretation of previous physiological data regarding the GABA(A)R-NMDAR cooperation during early development. We suggest that during SSA, synaptic GABA(A)R-mediated depolarization assists NMDAR activation right inside GABAergic synapses and this effective spatial cooperation of receptors and local change of membrane potential will reach developing glutamatergic synapses with a higher probability and efficiency even further away on the dendrites. This additional level of cooperation that operates within the depolarizing GABAergic synapse, may also allow its own modification triggered by Ca(2+)-influx through the NMDA receptors.  相似文献   

6.
A kainate receptor increases the efficacy of GABAergic synapses   总被引:5,自引:0,他引:5  
Jiang L  Xu J  Nedergaard M  Kang J 《Neuron》2001,30(2):503-513
Brain functions are based on the dynamic interaction of excitatory and inhibitory inputs. Spillover of glutamate from excitatory synapses may diffuse to and modulate nearby inhibitory synapses. By recording unitary inhibitory postsynaptic currents (uIPSCs) from cell pairs in CA1 of the hippocampus, we demonstrated that low concentrations of Kainate receptor (KAR) agonists increased the success rate (P(s)) of uIPSCs, whereas high concentrations of KAR agonists depressed GABAergic synapses. Ambient glutamate released by basal activities or stimulation of the stratum radiatum increases the efficacy of GABAergic synapses by activating presynaptic KARs, which facilitate Ca(2+)-dependent GABA release. The results suggest that glutamate released from excitatory synapses may also function as an intermediary between excitatory and inhibitory synapses to protect overexcitation of local circuits.  相似文献   

7.
Ontogenetic development and Ca2+-dependence of the K+-stimulated release of [3H]γ-aminobutyric acid (GABA) were studied by two different methods using tissue slices in vitro. The results indicate that, in the developing rat cortex, the K+-stimulated release of [3H]GABA is initially very low but it develops rapidly during the second and third postnatal weeks. This supports an earlier study which concluded that, during the cortical ontogeny, the ratio of stimulated: resting release of [3H]GABA increased at the fastest rate about 9–12 days after the birth, thus preceding the formation of GABAergic synapses by about 10 days. Furthermore, most of the early postnatal release observed in the present experiments is Ca2+-independent. An important Ca2+-dependent component of the release appears at later developmental stages and it also seems to develop faster than the GABAergic synapses. The present study suggests that the stimulus-coupled release of GABA in the rat cortex profoundly changes during the ontogeny, both quantitatively (the period of rapid development) and qualitatively (with respect to Ca2+-dependence). These observations, possibly reflecting changes in the association of GABA release with different structures (e.g. initially axonal growth cones, then neuronal dendrites and only at later stages GABAergic synapses) may be important in the evaluation of the putative role of GABA in synaptogenesis.  相似文献   

8.
Lee S  Zhou ZJ 《Neuron》2006,51(6):787-799
Patch-clamp recordings revealed that distal processes of starburst amacrine cells (SACs) received largely excitatory synaptic input from the receptive field center and nearly purely inhibitory inputs from the surround during both stationary and moving light stimulations. The direct surround inhibition was mediated mainly by reciprocal GABA(A) synapses between opposing SACs, which provided leading and prolonged inhibition during centripetal stimulus motion. Simultaneous Ca(2+) imaging and current-clamp recording during apparent-motion stimulation further demonstrated the contributions of both centrifugal excitation and GABA(A/C)-receptor-mediated centripetal inhibition to the direction-selective Ca(2+) responses in SAC distal processes. Thus, by placing GABA release sites in electrotonically semi-isolated distal processes and endowing these sites with reciprocal GABA(A) synapses, SACs use a radial-symmetric center-surround receptive field structure to build a polar-asymmetric circuitry. This circuitry may integrate at least three levels of interactions--center excitation, surround inhibition, and reciprocal inhibitions that amplify the center--surround antagonism-to generate robust direction selectivity in the distal processes.  相似文献   

9.
Ethanol consumption during development affects the maturation of hippocampal circuits by mechanisms that are not fully understood. Ethanol acts as a depressant in the mature CNS and it has been assumed that this also applies to immature neurons. We investigated whether ethanol targets the neuronal network activity that is involved in the refinement of developing hippocampal synapses. This activity appears during the growth spurt period in the form of giant depolarizing potentials (GDPs). GDPs are generated by the excitatory actions of GABA and glutamate via a positive feedback circuit involving pyramidal neurons and interneurons. We found that ethanol potently increases GDP frequency in the CA3 hippocampal region of slices from neonatal rats. It also increased the frequency of GDP-driven Ca2+ transients in pyramidal neurons and increased the frequency of GABA(A) receptor-mediated spontaneous postsynaptic currents in CA3 pyramidal cells and interneurons. The ethanol-induced potentiation of GABAergic activity is probably the result of increased quantal GABA release at interneuronal synapses but not enhanced neuronal excitability. These findings demonstrate that ethanol is a potent stimulant of developing neuronal circuits, which might contribute to the abnormal hippocampal development associated with fetal alcohol syndrome and alcohol-related neurodevelopmental disorders.  相似文献   

10.
Two properties were found to distinguish neuronal from muscle nicotinic acetylcholine receptors (nAChRs). First, neuronal nAChRs have a greater Ca2+ permeability. The high Ca2+ flux through neuronal nAChRs activates a Ca(2+)-dependent Cl- conductance, and the Ca2+ to Cs+ permeability ratio (PCa/PCs) is 7 times greater for neuronal than for muscle nAChRs. A second difference between the receptor types is that neuronal nAChRs are potently modulated by physiological levels of external Ca2+. Neuronal nAChR currents are enhanced by external Ca2+ in a dose-dependent manner. The results indicate that changes in extracellular Ca2+ modulate neuronal nAChRs and may modulate cholinergic synapses in the CNS. Also, activation of neuronal nAChRs produces a significant influx of Ca2+ that could be an important intracellular signal.  相似文献   

11.
Synaptically driven spontaneous network activity (SNA) is observed in virtually all developing networks. Recurrently connected spinal circuits express SNA, which drives fetal movements during a period of development when GABA is depolarizing and excitatory. Blockade of nicotinic acetylcholine receptor (nAChR) activation impairs the expression of SNA and the development of the motor system. It is mechanistically unclear how nicotinic transmission influences SNA, and in this study we tested several mechanisms that could underlie the regulation of SNA by nAChRs. We find evidence that is consistent with our previous work suggesting that cholinergically driven Renshaw cells can initiate episodes of SNA. While Renshaw cells receive strong nicotinic synaptic input, we see very little evidence suggesting other spinal interneurons or motoneurons receive nicotinic input. Rather, we found that nAChR activation tonically enhanced evoked and spontaneous presynaptic release of GABA in the embryonic spinal cord. Enhanced spontaneous and/or evoked release could contribute to increased SNA frequency. Finally, our study suggests that blockade of nAChRs can reduce the frequency of SNA by reducing probability of GABAergic release. This result suggests that the baseline frequency of SNA is maintained through elevated GABA release driven by tonically active nAChRs. Nicotinic receptors regulate GABAergic transmission and SNA, which are critically important for the proper development of the embryonic network. Therefore, our results provide a better mechanistic framework for understanding the motor consequences of fetal nicotine exposure. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 298–312, 2016  相似文献   

12.
Gamma-aminobutyric acid (GABA)-mediated transmission in the medial preoptic area (MPOA) of the hypothalamus plays an important role in functions such as sex steroid hormone dynamics and control of body temperature. The action of allopregnanolone, the primary metabolite of progesterone, on GABAergic transmission was investigated by employing patch clamp whole cell recording on acutely dissociated rat MPOA neurons with the functional connection of presynaptic terminals. Allopregnanolone enhanced spontaneous GABA release on the MPOA neurons and induced prolonged decay of miniature GABAergic-inhibitory postsynaptic currents (mIPSCs). The facilitation of GABA release from the presynaptic terminals by allopregnanolone disappeared in Ca2+-free extracellular solution. The presynaptic action of this neurosteroid was also blocked by bumetanide, a blocker of cation-Cl- cotransporters, and by removal of extracellular Na+. The results suggest that allopregnanolone enhances GABAergic transmission at the MPOA neurons by pre- and postsynaptic mechanisms. The enhancement of GABA release by allopregnanolone might require a high Cl- concentration in the presynaptic terminal maintained by Na+-dependent, bumetanide-sensitive mechanisms (e.g., Na+-K+-Cl- cotransporter) and might be mediated by Ca2+ influx into presynaptic terminal.  相似文献   

13.
The distribution of GABAergic interneurons as well as terminal and synaptic networks in different layers of the rat sensorimotor neocortex were studied at different stages of the postnatal period under normal conditions and after exposure to perinatal hypoxia. In control animals, the architectonics of the inhibitory network in different layers of the sensorimotor neocortex was shown to display distinctive features at different stages of the postnatal development. At early postnatal stages, a significant portion of neurons in layers II–V are immunopositive for GAD-67, indicative of a high level of GABA expression, however, GABA transmission is extremely weak, thus supporting the presence in the neuropil of only sporadic GABAergic terminals and synapses. By the juvenile age, a dramatic drop in the number of GABAergic neurons and an increase in the density of the network of GABA-immunopositive processes and synaptic structures occur in the neuropil, suggesting a considerable increase in GABA transmission. A higher level of GABA transmission is revealed in layers IV and V, persisting over the prepubertal period. Our results demonstrate that acute perinatal hypoxia affects the state of the inhibitory GABAergic network in the rat sensorimotor neocortex during the postnatal period. GABA expression and transmission were shown to change virtually in all layers.  相似文献   

14.
In bovine adrenal chromaffin cells nicotinic stimulation or a depolarizing concentration of K+ caused a rapid, transient translocation to membranes of as much as 14% of the total cellular protein kinase C activity. The quantitative relationship between membrane-bound protein kinase C and Ca2+-dependent secretion was determined in cells rendered leaky by digitonin treatment. Intact cells were incubated with various concentrations of 12-O-tetradecanoylphorbol-13-acetate (TPA) to activate and cause translocation of protein kinase C to membrane before permeabilization in the presence of Ca2+. For the same amount of membrane-bound protein kinase C, a similar degree of enhancement of Ca2+-dependent secretion occurred in cells incubated for 1 or 30 min with TPA. Translocation of as little as 2-3% of the cellular protein kinase C to the membrane enhanced Ca2+-dependent secretion by 25-30%. Muscarinic agonists caused a 5% increase in membrane-bound protein kinase C at 2 s which rapidly reversed. Nicotinic and muscarinic receptor-mediated increases in membrane-bound protein kinase C were additive at 10 s and synergistic at 3 min. Muscarinic stimulation enhanced nicotinic receptor-dependent secretion. Prior incubation with TPA caused a similar enhancement of nicotinic-mediated secretion. The data indicate that protein kinase C which is translocated within seconds of stimulation of the cells with a nicotinic agonist or elevated K+ probably enhances the secretory response immediately or soon after exocytosis begins. In addition, the muscarinic receptor-mediated enhancement of nicotinic receptor-stimulated secretion may be due to newly activated protein kinase C.  相似文献   

15.
GABA excites immature neurons and inhibits adult ones, but whether this contributes to seizures in the developing brain is not known. We now report that in the developing, but not the adult, hippocampus, seizures beget seizures only if GABAergic synapses are functional. In the immature hippocampus, seizures generated with functional GABAergic synapses include fast oscillations that are required to transform a naive network to an epileptic one: blocking GABA receptors prevents the long-lasting sequels of seizures. In contrast, in adult neurons, full blockade of GABA(A) receptors generates epileptogenic high-frequency seizures. Therefore, purely glutamatergic seizures are not epileptogenic in the developing hippocampus. We suggest that the density of glutamatergic synapses is not sufficient for epileptogenesis in immature neurons; excitatory GABAergic synapses are required for that purpose. We suggest that the synergistic actions of GABA and NMDA receptors trigger the cascades involved in epileptogenesis in the developing hippocampus.  相似文献   

16.
Desensitization of catecholamine (CA) release from cultured bovine adrenal chromaffin cells was studied to characterize the phenomenon of desensitization and to attempt an elucidation of the mechanism(s) involved in this phenomenon at the level of the isolated chromaffin cell. Prior exposure of chromaffin cells to nicotinic cholinergic agonists [acetylcholine (ACh) or nicotine] caused a subsequent depression or desensitization of CA release during restimulation of the cells with the same agonists. Rates of development of and recovery from nicotinic desensitization were in the minute time range and the magnitude of nicotinic desensitization of CA release was greater at 37 degrees C than at 23 degrees C. ACh- (or nicotine)-induced desensitization was shown to be the result of two processes: (1) a Ca2+-dependent component of desensitization, possibly due to a depletion of intracellular CA stores and (2) a Ca2+-independent, depletion-independent component of desensitization. Prior exposure of cultured chromaffin cells to an elevated concentration of K+ also resulted in desensitization of K+-induced CA release in these cells. K+-induced desensitization was completely Ca2+-dependent and was shown to be the result, at least in part, of a mechanism that is independent of depletion of CA stores.  相似文献   

17.
The development of the action potential and responses to neurotransmitters have been described for a population of embryonic spinal neurons developing in vivo. A comparable pattern is seen for spinal neurons developing in dissociated cell culture. The impulse appears very early in this developmental sequence, and the action potential involves a large inward Ca2+ current. Since Ca2+ is a ubiquitous intracellular regulator, we questioned whether a large influx of Ca2+ is necessary for the subsequent differentiation of membrane properties. Embryonic Xenopus neurons grown in normal culture medium do not make Ca2+- or Na+-dependent action potentials in their cell bodies in a Ca2+-free saline containing tetrodotoxin (TTX). To achieve a chronic blockade of impulse activity, neurons were grown in a medium in which Ca2+ was replaced by Mg2+, and to which 1 mM EGTA was added. In some instances TTX was present. Neurons grown in these experimental culture media extend neurites more rapidly than controls. Action potentials cannot be elicited from neurons when examined in experimental medium. However, examination in saline reveals that the change in the ionic dependence of the impulse is indistinguishable from that observed in neurons grown in normal medium. Furthermore, the time of onset of responses to GABA is unaffected by this experimental treatment. Thus the expression of Ca2+- and Na+-dependent action potentials seems not to play a part in the early differentiation of these membrane properties. However, the later development of GABA sensitivity is reduced.  相似文献   

18.
High hydrostatic pressure has been shown to produce neurological changes in humans which manifest, in part, as tremor, myoclonic jerks, electroencephalographic changes, and convulsions. This clinical pattern has been termed high-pressure nervous syndrome (HPNS). These symptoms may represent an alteration in synaptic transmission in the central nervous system with the inhibitory neural pathways being affected in particular. Since gamma-aminobutyric acid (GABA) transmission has been implicated in other seizure disorders, it was of interest to study GABAergic function at high pressure. Isolated synaptosomes were used to follow GABA release at 67.7 ATA of pressure. The major observation was a 33% depression in total [3H]GABA efflux from depolarized cerebrocortical synaptosomes at 67.7 ATA. The Ca2+-dependent component of release was found to be completely blocked during the 1st min of [3H]GABA efflux with a slow rise over the subsequent 3 min. These findings lead us to conclude that high pressure interferes with the intraterminal cascade for Ca2+-dependent release of GABA.  相似文献   

19.
The gamma-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in vertebrate CNS. At GABAergic synapses, a high-affinity transporter exists, which is responsible for GABA reuptake and release during neurotransmission. GABA transporter activity depends on the phosphorylation/dephosphorylation state, being modulated by Ca(2+)/calmodulin-dependent protein phosphatase 2B (calcineurin). Aluminium is known to interfere with the Ca(2+)/calmodulin signalling pathway. In this work, we investigate the action of aluminium on GABA translocation mediated by the high-affinity transporter, using synaptic plasma membrane (SPM) vesicles and synaptosomes isolated from brain cortex. Aluminium completely relieved Ca(2+) downregulation of GABA transporter, when mediating uptake or release. Accordingly, aluminium inhibited Ca(2+)/calmodulin-dependent calcineurin activity present in SPM, in a concentration-dependent manner. The deleterious action of aluminium on the modulation of GABA transport was ascertained by comparative analysis of the aluminium effect on GABA uptake and release, under conditions favouring SPM dephosphorylation (presence of intracellular micromolar Ca(2+)) or phosphorylation (absence of Ca(2+) and/or presence of W-7, a selective calmodulin antagonist). In conclusion, aluminium-induced relief of Ca(2+) modulatory action on GABA transporter may contribute significantly to modify GABAergic signalling during neurotoxic events in response to aluminium exposure.  相似文献   

20.
In the present study, we have investigated the role of Ca2+ in the coupling of membrane depolarization to neurotransmitter secretion. We have measured (a) intracellular free Ca2+ concentration ([Ca2+]i) changes, (b) rapid 45Ca2+ uptake, and (c) Ca2+-dependent and -independent release of endogenous glutamate (Glu) and gamma-aminobutyric acid (GABA) as a function of stimulus intensity by elevating the extracellular [K+] to different levels in purified nerve terminals (synaptosomes) from rat hippocampus. During stimulation, Percoll-purified synaptosomes show an increased 45Ca2+ uptake, an elevated [Ca2+]i, and a Ca2+-dependent as well as a Ca2+-independent release of both Glu and GABA. With respect to both amino acids, synaptosomes respond on stimulation essentially in the same way, with maximally a fourfold increase in Ca2+-dependent (exocytotic) release. Ca2+-dependent transmitter release as well as [Ca2+]i elevations show maximal stimulation at moderate depolarizations (30 mM K+). A correlation exists between Ca2+-dependent release of both Glu and GABA and elevation of [Ca2+]i. Ca2+-dependent release is maximally stimulated with an elevation of [Ca2+]i of 60% above steady-state levels, corresponding with an intracellular concentration of approximately 400 nM, whereas elevations to 350 nM are ineffective in stimulating Ca2+-dependent release of both Glu and GABA. In contrast, Ca2+-independent release of both Glu and GABA shows roughly a linear rise with stimulus intensity up to 50 mM K+. 45Ca2+ uptake on stimulation also shows a continuous increase with stimulus intensity, although the relationship appears to be biphasic, with a plateau between 20 and 40 mM K+.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号