首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
After metamorphosing from the last larval stage to the transitional megalopal stage in the marine plankton, the hermit crab Coenobita compressus moves ashore where it undergoes a second metamorphosis to the first juvenile instar on land. In two experiments using laboratory-reared crabs, I moved megalopae from water to land after different amounts of time at this stage and investigated the impact of this manipulation on the timing of and survival through the second metamorphosis. In the Involuntary Settlement experiment, megalopae were moved to land when they were 3, 6, 9, 12, or 15 days old. None of those moved between the ages of 3 and 6 days survived through metamorphosis, but the majority of 9-day-old megalopae survived, as did most 12- and 15-day-old megalopae. This suggests that developmental changes early in the megalopal stage prepare C. compressus for terrestrial life. Once on land, megalopae that had been moved to land at 9 days spent about nine additional days there before metamorphosing, while 12- and 15-day-old megalopae metamorphosed after spending about 5 and 4 days, respectively, on land. In the Voluntary Settlement experiment, megalopae were given access to land when they were 1, 5, 10, or 15 days old, but were not forced to make the transition. Those given access to land after 1 day voluntarily left their dishes for the first time after an average of 7 days in water. Those given access when they were 5 days old remained in water about 4 days longer, while those given access when they were 10 and 15 days old left after less than a day. In both experiments, the timing of metamorphosis relative to settlement (i.e., transition to land) showed that these events are dissociated to a degree and revealed the presence of a metamorphic clock. I discuss why the dissociation of settlement and metamorphosis may have been favored in the land hermit crab and in another anomuran crab.  相似文献   

2.
The ability to identify chemical cues in the environment is essential to most animals. Apart from marine larval stages, anomuran land hermit crabs (Coenobita) have evolved different degrees of terrestriality, and thus represent an excellent opportunity to investigate adaptations of the olfactory system needed for a successful transition from aquatic to terrestrial life. Although superb processing capacities of the central olfactory system have been indicated in Coenobita and their olfactory system evidently is functional on land, virtually nothing was known about what type of odourants are detected. Here, we used electroantennogram (EAG) recordings in Coenobita clypeatus and established the olfactory response spectrum. Interestingly, different chemical groups elicited EAG responses of opposite polarity, which also appeared for Coenobita compressus and the closely related marine hermit crab Pagurus bernhardus. Furthermore, in a two-choice bioassay with C. clypeatus, we found that water vapour was critical for natural and synthetic odourants to induce attraction or repulsion. Strikingly, also the physiological response was found much greater at higher humidity in C. clypeatus, whereas no such effect appeared in the terrestrial vinegar fly Drosophila melanogaster. In conclusion, our results reveal that the Coenobita olfactory system is restricted to a limited number of water-soluble odourants, and that high humidity is most critical for its function.  相似文献   

3.
All living organisms must eventually die, though in some cases their death can bring life‐giving opportunities. Few studies, however, have experimentally tested how animals capitalize on conspecific death and why this specialization would evolve. Here, we conducted experiments on the phylogenetically most closely‐related marine and terrestrial hermit crabs to investigate the evolution of responses to death during the sea‐to‐land transition. In the sea, death of both conspecifics and heterospecifics generates unremodeled shells needed by marine hermit crabs. In contrast, on land, terrestrial hermit crabs are specialized to live in architecturally remodeled shells, and the sole opportunity to acquire these essential resources is conspecific death. We experimentally tested these different species’ responsiveness to the scent of conspecific versus heterospecific death, predicting that conspecific death would have special attractive value for the terrestrial species. We found the terrestrial species was overwhelmingly attracted to conspecific death, rapidly approaching and forming social groupings around conspecific death sites that dwarfed those around heterospecific death sites. This differential responsiveness to conspecific versus heterospecific death was absent in marine species. Our results thus reveal that on land a reliance on resources associated exclusively with conspecifics has favored the evolution of an extreme collective attraction to conspecific death.  相似文献   

4.
The moss Physcomitrella patens , a model system for basal land plants, tolerates several abiotic stresses, including dehydration. We previously reported that Physcomitrella patens survives equilibrium dehydration to ?13 MPa in a closed system at 91% RH. Tolerance of desiccation to water potentials below ?100 MPa was only achieved by pretreatment with exogenous abscisic acid (ABA). We report here that gametophores, but not protonemata, can survive desiccation below ?100 MPa after a gradual drying regime in an open system, without exogenous ABA. In contrast, faster equilibrium drying at 90% RH for 3–5 days did not induce desiccation tolerance in either tissue. Endogenous ABA accumulated in protonemata and gametophores under both drying regimes, so did not correlate directly with desiccation tolerance. Gametophores of a Ppabi3a/b/c triple knock out transgenic line also survived the gradual dehydration regime, despite impaired ABA signaling. Our results suggest that the initial drying rate, and not the amount of endogenous ABA, may be critical in the acquisition of desiccation tolerance. Results from this work will provide insight into ongoing studies to uncover the role of ABA in the dehydration response and the underlying mechanisms of desiccation tolerance in this bryophyte.  相似文献   

5.
Certain decapod crustaceans can catabolize internal reservesto undergo partial or full larval development. This featureis termed secondary lecithotrophy, if energy used results fromplankton derived organic matter accumulated by earlier larvalstages. The present work reports the ability of Lysmata seticaudatamegalopa to molt to the first juvenile stage in the absenceof food. Unlike previous records of secondary lecithotrophydisplayed by non-feeding last larval stages of hermit crabsand spiny lobsters, the megalopa of L. seticaudata retains itsfeeding capacity. This is the first time such a feature hasbeen reported in decapods, and the term facultative secondarylecithotrophy is proposed. The build up of energy reserves continuesduring the last zoeal stage of L. seticaudata, with starvedzoea IX failing to molt to megalopa. Energy reserves that enablestarved megalopa to molt to juvenile seem to be partially depleted,with starved juveniles produced either from starved or fed megalopaebeing unable to molt to the next juvenile stage. The longerresistance of starved juveniles produced from fed megalopae(nine days), compared to that of starved juveniles producedfrom starved megalopae (five days), indicates that some energyreserves may pass to the juvenile, not being totally depletedat metamorphosis.  相似文献   

6.
Hermit crabs are critically dependent upon gastropod shells for their survival and reproductive fitness. While anecdotal reports have suggested that hermit crabs may be capable of removing live gastropods from their shells to access the essential shell resource, no systematic experiments have been conducted to investigate this possibility. This paper reports experiments on both marine (Pagurus bernhardus) and terrestrial (Coenobita compressus) hermit crabs in which crabs were paired in the laboratory with the gastropods whose shells they inhabit in the field. Pairings included both shelled and naked crabs and spanned the full range of the gastropod life cycle. Neither marine nor terrestrial hermit crabs were successful at removing live gastropods from their shells. Furthermore, only a small fraction of the crabs (5.7%) were capable of accessing shells in which the gastropod had been killed in advance, with its body left intact inside the shell. Finally, although hermit crabs readily entered empty shells positioned on the surface, few crabs (14.3%) were able to access empty shells that were buried just centimeters beneath them. These results suggest that hermit crabs are constrained consumers, with the shells they seek only being accessible during a narrow time window, which begins following natural gastropod death and bodily decomposition and which typically ends when the gastropod's remnant shell has been buried by tidal forces. Further experiments are needed on more species of hermit crabs as well as fine-grained measurements of (i) the mechanical force required to pull a gastropod body from its shell and (ii) the maximum corresponding force that can be generated by different hermit crab species' chelipeds.  相似文献   

7.
Examination of modern gastropod associations from the low intertidal zone of Isla Santa Cruz suggests that fossil rocky intertidal deposits from this tropical locality will be taphonomically compromised in three ways: (1) Marine hermit crabs, by their use of empty gastropod shells, will mix the shells from varying tidal heights and habitats, thus facilitating mixed associations of such shells in the fossil record, (2) encrusting organisms on crab-inhabited shells are abundant, while boring organisms are almost non-existent, indicating possible differences in postmortem shell retention, and (3) intertidal shells are further taphonomically altered by terrestrial hermit crabs, which transport the shells onto land as well as physically modify the shells. Gastropod fossils from beach and terrace deposits on Isla Santa Fe are interpreted to be a mixed assemblage of rocky intertidal assemblage with few shells indicating influence from marine hermit crabs. Modification of the shell by marine and terrestrial hermit crabs was also evident. A unique polish to the shells at one locality is attributed to the marine iguanas and is only found in the terrace site biologically bulldozed by egg-laying iguanas. Few studies exist on modern rocky intertidal associations in the Galápagos, and the fossil record of rocky shores may provide a baseline for future studies in how community structure has changed over since the advent of humans. Galapagos, C oenobita C ompressus , gastropods, humans, Gulf of California, bionts, nutrients.
Sally E. Walker, Department of Geology, The University of Georgia, Athens, Georgia, USA; 8th September, 1994; revised 28th June, 1995.  相似文献   

8.
Invasion of the land has been a considerable challenge for aquatic organismal lineages, primarily because of desiccation and lack of physical support in air. Gastropod molluscs are among the most successful animals in this habitat shift because of their hard exoskeleton, whereas land slugs, regarded as descendants of land snails, gradually lost their shells in sheltered, moist environments. We present solid evidence of terrestrial invasion by a lineage of sea slugs; this invasion is represented by a newly discovered species, Aiteng marefugitus (Panpulmonata: Acochlidia), from a humid tropical rainforest on a small island in the Republic of Palau, western Pacific. The slug lineage seems to have invaded the forest habitat directly from the upper littoral zone in the Cenozoic.  相似文献   

9.
Summary A review is given of the adaptations of arthropods to life on land. The terrestrial Arthropoda are divided ecologically into two main groups. The first of these includes woodlice, centipedes, miilipedes and their allies which lose water rapidly in dry air and consequently are restricted to damp, dark habitats which they leave only at night when the temperature falls and the relative humidity of the air rises. The second group includes most insects and Arachnida: these are comparatively independent of moist surroundings because their integument possesses an impervious layer of wax which prevents desiccation.  相似文献   

10.
Terrestrial hermit crabs in the family Coenobitidae (genera Coenobita and Birgus) must migrate onto land after completing a pelagic larval stage in the ocean. Better knowledge of emigration behavior would assist in the conservation and management of coenobitid populations by helping identify and protect the habitats they need to complete their life cycles. We cultured laboratory‐born individuals of five coenobitid species (Coenobita cavipes, C. purpureus, C. rugosus, C. violascens, and Birgus latro) from megalopae to early juveniles (first, second, and/or third crabs) in vessels containing seawater and a hard substrate, and analyzed their behavior and molting in conjunction with our published data for C. brevimanus. Our results confirm that the coenobitids migrated from sea to land at the megalopal stage. Megalopae and early juveniles tended to select shells based on their body size. Inland‐dwelling coenobitids, such as C. brevimanus, C. cavipes, and B. latro, had a longer duration from landing to first molt and had a prolonged first crab intermolt period compared with those of the beach‐dwelling coenobitids C. purpureus, C. rugosus, and C. violascens, probably because of the adaptive traits for migrating to inland habitats. Little burrowing behavior was observed by megalopae of B. latro, but they had a strong tendency to be cryptic under shelters. Additionally, megalopae and early juveniles of Coenobita spp. created and utilized burrows somewhat differently. Our results suggest that coenobitids require specific microhabitats for completing their early life stages in the wild. In particular, megalopae of B. latro may need structurally complex refuges to migrate from the sea.  相似文献   

11.
Most hermit crabs depend on empty gastropod shells for shelter; competition for appropriate shells is often severe. This study determined whether shells that have been drilled by naticid gastropods are suitable for occupancy by the hermit crab Pagurus longicarpus. Differences in the characteristics of empty shells and those occupied by hermit crabs were assessed at two adjacent field sites in Nahant, Massachusetts. Drilling damage was far more frequent in empty gastropod shells than in shells occupied by hermit crabs, suggesting that individuals of P. longicarpus avoid drilled shells. They did not appear to avoid shells with other forms of damage. Laboratory experiments confirmed that these hermit crabs preferentially chose intact shells over drilled shells, even when the intact shells offered were most suitable for crabs half the weight of those tested. Final shell choices were generally made within 1 h. The hermit crabs apparently discriminated between intact and drilled shells based on tactile cues, since crabs kept in the dark showed the same preference for intact shells. The hermit crabs strongly avoided, to nearly the same extent, artificially drilled shells, naturally drilled shells, and shells with holes artificially drilled on the opposite side of the shell from where they would normally be located. Possible selective forces causing P. longicarpus to show such strong behavioral avoidance of drilled shells include increased vulnerability of crabs in drilled shells to osmotic stress, predation, and eviction by conspecifics.  相似文献   

12.
Both the "true" crabs (Brachyura) and hermit crabs (Anomura)include species that show numerous behavioral, morphological,and physiological specializations permitting terrestrial life.This paper examines respiratory and circulatory adaptationsfor air breathing in these land crabs. Respiratory specializationsinclude modification of gas exchange structures for air breathing(gills and elaborated branchial chamber linings), ventilatorymechanisms permitting effective air pumping, an elevated hemolymphoxygen capacity, and a primarily CO2- rather than O2- sensitiveventilatory control system. The qualitative aspects of hemolymphoxygen transport and metabolic rate are apparently unchangedfrom that of marine crabs. While the basic cardiovascular morphologyof land crabs appears similar to that of marine forms, thereis considerable elaboration of the vasculature of the branchialchamber lining, which in some species includes a unique doubleportal system. Cardiac output is lower in land crabs (probablyrelated to their higher hemolymph O2 capacity), but insufficientdata on hemolymph pressures prevent comparisons with marineforms. In general, land crabs have modified (sometimes extensively)existing structures and processes found in their marine relativesrather than evolving structures for terrestrial life de novo.Accordingly, land crabs present a useful model for the evolutionof terrestriality, showing that even subtle anatomical changescan result in the large changes in physiological function necessaryfor the terrestrial invasion.  相似文献   

13.
A series of experiments at two tropical locations tested the ability of land hermit crabs Coenobita perlatus (H. Milne Edwards) and Coenobita compressas (H. Milne Edwards) to detect and respond to odors of dead conspecifics. An attraction array compared numbers of crabs attending hidden food odors and dead conspecific odors. Pit experiments tested crab shell-acquisition behaviors at different hidden odors. Bucket experiments confined crabs collected from various categories (feeding crabs, wandering crabs and crabs aggregated at dead conspecific odors) and tested behavioral responses to odors and an empty shell. Land hermit crab behavior at both sites was similar. Crabs were attracted to dead conspecific odors up to 10 times more than to food odors. Crabs attracted to dead conspecifics displayed significantly more shell-acquisition behaviors: touching other crab's shells in an exploratory manner and switching shells if an empty shell was available. In buckets, crabs from each category switched into shells. Results are compared to previous reports of similar shell-seeking behaviors by marine hermit crabs in response to dead conspecific odors. It is suggested that responding to dead conspecific odors for shell source location is an evolutionarily conserved behavior developed before hermit crabs became terrestrial.  相似文献   

14.
The availability of water is recognized as the most important determinant of the distribution and activity of terrestrial organisms within the maritime Antarctic. Within this environment, arthropods may be challenged by drought stress during both the austral summer, due to increased temperature, wind, insolation, and extended periods of reduced precipitation, and the winter, as a result of vapor pressure gradients between the surrounding icy environment and the body fluids. The purpose of the present study was to assess the desiccation tolerance of the Antarctic springtail, Cryptopygus antarcticus, under ecologically-relevant conditions characteristic of both summer and winter along the Antarctic Peninsula. In addition, this study examined the physiological changes and effects of mild drought acclimation on the subsequent desiccation tolerance of C. antarcticus. The collembolans possessed little resistance to water loss under dry air, as the rate of water loss was >20% h(-1) at 0% relative humidity (RH) and 4 degrees C. Even under ecologically-relevant desiccating conditions, the springtails lost water at all relative humidities below saturation (100% RH). However, slow dehydration at high RH dramatically increased the desiccation tolerance of C. antarcticus, as the springtails tolerated a greater loss of body water. Relative to animals maintained at 100% RH, a mild drought acclimation at 98.2% RH significantly increased subsequent desiccation tolerance. Drought acclimation was accompanied by the synthesis and accumulation of several sugars and polyols that could function to stabilize membranes and proteins during dehydration. Drought acclimation may permit C. antarcticus to maintain activity and thereby allow sufficient time to utilize behavioral strategies to reduce water loss during periods of reduced moisture availability. The springtails were also susceptible to desiccation at subzero temperatures in equilibrium with the vapor pressure of ice; they lost approximately 40% of their total body water over 28 d when cooled to -3.0 degrees C. The concentration of solutes in the remaining body fluids as a result of dehydration, together with the synthesis of several osmolytes, dramatically increased the body fluid osmotic pressure. This increase corresponded to a depression of the melting point to approximately -2.2 degrees C, and may therefore allow C. antarcticus to survive much of the Antarctic winter in a cryoprotectively dehydrated state.  相似文献   

15.
Plants produced at high relative air humidity (RH) show poor control of water loss after transferring to low RH, a phenomenon which is thought to be due to their stomatal behaviour. The stomatal anatomy and responses of moderate (55%) and high (90%) RH grown Tradescantia virginiana plants to treatments that normally induce stomatal closure, i.e. desiccation, abscisic acid (ABA) application and exposure to darkness were studied using attached or detached young, fully expanded leaves. Compared with plants grown at moderate RH the transpiration rate, stomatal conductance and aperture of high RH grown plants measured at the same condition (40% RH) were, respectively, 112, 139 and 132% in light and 141, 188 and 370% in darkness. Besides the differences in stomatal size (guard cell length was 56.7 and 73.3 µm for moderate and high RH grown plants, respectively), there was a clear difference in stomatal behaviour. The stomata responded to desiccation, ABA and darkness in both moderate and high RH grown plants, but the high variability of stomatal closure in high RH grown plants was striking. Some stomata developed at high RH closed in response to darkness or to a decrease in relative water content to the same extent as did stomata from moderate RH grown plants, whereas others closed only partly or did not close at all. Evidently, some as yet unidentified physiological or anatomical changes during development disrupt the normal functioning of some stomata in leaves grown at high RH. The failure of some stomata to close fully in response to ABA suggests that ABA deficiency was not responsible for the lack of stomatal closure in response to desiccation.  相似文献   

16.
A flexible body image is required by animals if they are to adapt to body changes and move effectively within a structurally complex environment. Here, we show that terrestrial hermit crabs, Coenobita rugosus, which frequently change shells, can modify walking behaviour, dependent on the shape of the shell. Hermit crabs walked along a corridor that had alternating left and right corners; if it was narrow at the corner, crabs rotated their bodies to avoid the wall, indicating an awareness of environmental obstacles. This rotation increased when a plastic plate was attached to the shell. We suggest that the shell, when extended by the plate, becomes assimilated to the hermit crab's own body. While there are cases of a tool being assimilated with the body, our result is the first example of the habitat where an animal lives and/or carries being part of a virtual body.  相似文献   

17.
Aim To examine patterns of abundance, density, size and shell use in land hermit crabs, Coenobita clypeatus (Herbst), occurring on three groups of small islands, and to determine how these variables change among islands. Location Small islands in the Central Exuma Cays and near Great Exuma, Bahamas. Methods Land hermit crabs were captured in baited pitfall traps and were separately attracted to baits. A mark–recapture technique was used in conjunction with some pitfall traps monitored for three consecutive days. The size of each crab and the type of adopted gastropod shell were recorded, along with physical island variables such as total island area, vegetated area, island perimeter, elevation and distance to the nearest mainland island. Results Relative abundances, densities and sizes of crabs differed significantly among the three island groups. Densities of land hermit crabs were as high as 46 m−2 of vegetated island area. In simple and multiple linear regressions, the only variable that was a significant predictor of the abundance of hermit crabs was the perimeter to area ratio of the island. Patterns of gastropod shell use varied significantly among the island groups, and the vast majority of adopted shells originated from gastropod species that inhabit the high intertidal and supratidal shorelines of the islands. Main conclusions Although densities of land hermit crabs varied, they were relatively high on many islands, and land hermit crabs may play an important role in these insular food webs. Patterns of shell use may be strongly restricted by island geomorphology: irregular shorelines provide relatively more habitat for the gastropod species that account for the majority of adopted shells and the steep sides of the islands prevent the accumulation of marine gastropod shells. The size of adult hermit crabs appears to be limited by the relatively small gastropod shells available, while the abundance of hermit crabs may be limited by the number of shells available.  相似文献   

18.
The stabilization of living microbial agents for use as biological control agents is often accomplished through desiccation. Our air-drying studies with the entomopathogenic fungus Paecilomyces fumosoroseus have shown that the relative humidity (RH) of the drying air significantly affects the desiccation tolerance and the storage stability of blastospores. Drying air with a RH of more than 40% supported significantly higher rates of initial blastospore survival (68-82%) after drying compared to drying with lower relative humidity air. Drying air with a RH above 50% improved the shelf-life of the air-dried blastospore preparations. Adjustment of the pH or replacement of the spent medium with deionized water (d-H2O) in the blastospore suspension had no significant impact on blastospore desiccation tolerance or storage stability. We have developed and describe a lab-scale, air-drying chamber that delivers air flow over the sample and that can be operated at controlled relative humidity.  相似文献   

19.
The Asian shore crab, Hemigrapsus sanguineus, is one of the most abundant invasive crabs along the east coast of the United States. Larval stages are generally planktonic, but the megalopa stage settles to the substratum near the time of metamorphosis. Reducing the time to metamorphosis may result in higher recruitment and survival. Previous work has shown that a water-soluble cue produced by adult H. sanguineus can induce metamorphosis of conspecific megalopae. Here we report the results of experiments in which megalopae were exposed to cues produced by different life stages of H. sanguineus. We also provide data from experiments that investigated the temporal stability, detection threshold, and chemical classification of the cue. Our results indicate that an active cue is produced by juveniles as well as adults. The cue is proteinaceous and begins to degrade within 2 days of production. The threshold for detection of the cue by megalopae lies between 0.1 and 0.01 µg of protein per ml.  相似文献   

20.
Vacancy chain theory describes a unique mechanism for the sequential distribution of animal resources across multiple individuals. This theory applies to any resources, such as shelters or nest sites, that are discrete, reusable, and limited in use to single individuals or groups at one time. Hermit crabs rely on gastropod shells for shelter, and a single vacant shell can initiate a chain of sequential shell switches that distributes new resources across many individuals. Using the terrestrial hermit crab Coenobita clypeatus , we examined the previously untested theoretical prediction that this process will yield trickle-down resource benefits to vacancy chain participants (aggregate benefits). In laboratory experiments, we measured improvements in shell quality when a single vacant shell was provided to groups of eight crabs. We found that crabs participating in vacancy chains (averaging 3.2 individuals) gained significant reductions in their shell crowding. In addition, vacancy chains terminated early when experimental groups included a single crab occupying a damaged shell, because damaged vacancies always remained unoccupied. Hermit crabs in damaged shells were more likely to win resource contests for high quality shells against size-matched hermit crabs in crowded shells. Finally, field additions of many new shells to an island population of C. clypeatus hermit crabs reduced average shell crowding for crabs of all sizes, possibly from propagation of benefits through vacancy chains. These results provide empirical support for the theoretical prediction that vacancy chains should provide benefits distributed across many vacancy chain participants. Since shelter-based vacancy chains likely occur in other animals, additional studies of vacancy chain processes should provide new insights into resource acquisition behaviors in diverse animal groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号