首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Surfactants are widely used in the purification and research of structure and function of the protein complexes in photosynthetic membrane. To elucidate the mechanism of interaction between surfactants and photosystem Ⅰ (PSⅠ), effects of two typical surfactants, Triton X-100 and sodium dodecyl sulfate (SDS) on PSⅠ, were studied at different concentrations. The results were: SDS led to the reduction of apparent absorption intensity and blue shift of absorption peaks; while Triton X-100 led to the decrease of apparent absorption intensity in red region and blue shift of the peak, but to the increase of apparent absorption intensity in blue region. The fourth derivative spectra show that the longwavelength (669 nm and 683 nm) absorbing chlorophyll a was affected greatly and their relative changes of absorbance were axially symmetrical. The presence of surfactant could make the long wavelength fluorescence emission decrease greatly and a new fluorescence peak appeared around 680 nm, it was obvious that the surfactant interceded the transfer of excitation energy from antenna pigments to reaction center. The surfactants might affect the microenvironment of proteins, even the structure of PSⅠ protein subunits and hence changed the binding status of pigments with protein subunits, or the pigments might be released from the subunits. All of these might affect the absorption and the transfer of excitation energy.  相似文献   

2.
We analyze the characteristics of protein–protein interfaces using the largest datasets available from the Protein Data Bank (PDB). We start with a comparison of interfaces with protein cores and non-interface surfaces. The results show that interfaces differ from protein cores and non-interface surfaces in residue composition, sequence entropy, and secondary structure. Since interfaces, protein cores, and non-interface surfaces have different solvent accessibilities, it is important to investigate whether the observed differences are due to the differences in solvent accessibility or differences in functionality. We separate out the effect of solvent accessibility by comparing interfaces with a set of residues having the same solvent accessibility as the interfaces. This strategy reveals residue distribution propensities that are not observable by comparing interfaces with protein cores and non-interface surfaces. Our conclusions are that there are larger numbers of hydrophobic residues, particularly aromatic residues, in interfaces, and the interactions apparently favored in interfaces include the opposite charge pairs and hydrophobic pairs. Surprisingly, Pro-Trp pairs are over represented in interfaces, presumably because of favorable geometries. The analysis is repeated using three datasets having different constraints on sequence similarity and structure quality. Consistent results are obtained across these datasets. We have also investigated separately the characteristics of heteromeric interfaces and homomeric interfaces.  相似文献   

3.
We studied fluorescent and absorption properties of the chloroplasts and pigment–protein complexes isolated by gel electrophoresis from the leaves of pea, the parent cultivar Torsdag and mutants chlorotica 2004 and 2014. Specific fluorescence peaks of chlorophyll forms in individual complexes have been determined from the absorption and fluorescence spectra of the chloroplast chlorophyll and their second derivatives at 23 and –196°C. The mutant chlorotica 2004 proved to have an increased intensity of a long-wave band of the light-harvesting complex I at both 23°C (745 nm) and –196°C (728 nm). At the same time, this mutant manifested a decreased accumulation of the chlorophyll forms making up the nearest-neighbor antenna of the PS I reaction center (at 690, 697, and 708 nm). No spectral differences have been revealed between chlorotica 2014 mutant and the parent cultivar. Gel electrophoresis revealed the synthesis of all chlorophyll–protein complexes in both mutants. At the same time, analysis of photochemical activity of PS I and PS II reaction centers and calculations of their number and the size of the light-harvesting antenna have shown that the number of reaction centers in the PS I of chlorotica 2004 mutant is reduced by a factor of 1.7 because its chlorophyll a–protein complex is disturbed by the mutation. The primary effect of chlorotica 2014 mutation remains unclear. The proportional changes in the content of photosystem complexes in this mutant suggest that they are secondary and result from a 50% decrease in chlorophyll content.  相似文献   

4.
It is shown that the apoproteins of core complexes (CC) I and II, the - and -subunits of CF1 ATP-synthase complexes, are present in seedlings grown under intermittent light (IML). The levels of light-harvesting complex (LHC) apoproteins in the 30- to 18-kD region increase rapidly upon exposure to continuous light (CL). The newly synthesized LHC apoproteins appear to be present predominantly in monomeric forms that later assemble into higher-order oligomeric forms. During the early stages of greening of wheat seedlings, polypeptides in the 20.5-19 and 17.5-15.5 kD regions (so-called early light-induced proteins (ELIP)) are observed, but they disappear fully after 6 h. As greening proceeds, the 727-nm band in low-temperature fluorescence spectra (77 K) gradually shifts to longer wavelength (740-742 nm), which clearly demonstrates the light-driven biogenesis of LHC I and its assembly with CC I.  相似文献   

5.
Rosenblum  I.  Dashevskaya  E.I.  Nikitin  E.E.  Oref  I. 《Molecular Engineering》1997,7(1-2):169-183
The effect of the initial partitioning of the molecular energy between vibrational and rotational modes of a triatomic molecule on the collisional energy transfer is studied for a model atom–triatomic molecule system. We considered the collisions of thermal bath Ar atoms with SO2 molecules, and used the trajectory calculations for determining the energy transfer for three different samplings of initial conditions of the molecule. The first sampling method generated the microcanonical distribution over all states, entering into the vibrational and rotational manifolds, while two others produced distributions with relatively lower values of the rotational energies. It is shown that both the average energy transfer per collision and the mechanism of the energy exchange are significantly affected by the vibrational/rotational energy partitioning before the collisions. Relative decrease in the rotational energy results in the decrease of the averaged energy transfer and progressively emphasizes the role of active rotation as the gateway for translation-vibration energy exchange.  相似文献   

6.
Femtosecond time-resolved transient absorption spectroscopy was performed on the chlorophyll a–chlorophyll c 2–peridinin-protein-complex (acpPC), a major light-harvesting complex of the coral symbiotic dinoflagellate Symbiodinium. The measurements were carried out on the protein as well on the isolated pigments in the visible and the near-infrared region at 77 K. The data were globally fit to establish inter-pigment energy transfer paths within the scaffold of the complex. In addition, microsecond flash photolysis analysis was applied to reveal photoprotective capabilities of carotenoids (peridinin and diadinoxanthin) in the complex, especially the ability to quench chlorophyll a triplet states. The results demonstrate that the majority of carotenoids and other accessory light absorbers such as chlorophyll c 2 are very well suited to support chlorophyll a in light harvesting. However, their performance in photoprotection in the acpPC is questionable. This is unusual among carotenoid-containing light-harvesting proteins and may explain the low resistance of the acpPC complex against photoinduced damage under even moderate light conditions.  相似文献   

7.
The PDZ domain mediated interaction between the NMDA receptor and its intracellular scaffolding protein, PSD-95, is a potential target for treatment of ischemic brain diseases. We have recently developed a number of peptide analogues with improved affinity for the PDZ domains of PSD-95 compared to the endogenous C-terminal peptide of the NMDA receptor, as evaluated by a cell-free protein–protein interaction assay. However, it is important to address both membrane permeability and effect in living cells. Therefore a bioluminescence resonance energy transfer (BRET) assay was established, where the C-terminal of the NMDA receptor and PDZ2 of PSD-95 were fused to green fluorescent protein (GFP) and Renilla luciferase (Rluc) and expressed in COS7 cells. A robust and specific BRET signal was obtained by expression of the appropriate partner proteins and subsequently, the assay was used to evaluate a Tat-conjugated peptide for its ability to disrupt the PSD-95/NMDA receptor interaction in living cells.  相似文献   

8.
Supramolecular organization of enzymes is proposed to orchestrate metabolic complexity and help channel intermediates in different pathways. Phenylpropanoid metabolism has to direct up to 30% of the carbon fixed by plants to the biosynthesis of lignin precursors. Effective coupling of the enzymes in the pathway thus seems to be required. Subcellular localization, mobility, protein–protein, and protein–membrane interactions of four consecutive enzymes around the main branch point leading to lignin precursors was investigated in leaf tissues of Nicotiana benthamiana and cells of Arabidopsis thaliana. CYP73A5 and CYP98A3, the two Arabidopsis cytochrome P450s (P450s) catalyzing para- and meta-hydroxylations of the phenolic ring of monolignols were found to colocalize in the endoplasmic reticulum (ER) and to form homo- and heteromers. They moved along with the fast remodeling plant ER, but their lateral diffusion on the ER surface was restricted, likely due to association with other ER proteins. The connecting soluble enzyme hydroxycinnamoyltransferase (HCT), was found partially associated with the ER. Both HCT and the 4-coumaroyl-CoA ligase relocalized closer to the membrane upon P450 expression. Fluorescence lifetime imaging microscopy supports P450 colocalization and interaction with the soluble proteins, enhanced by the expression of the partner proteins. Protein relocalization was further enhanced in tissues undergoing wound repair. CYP98A3 was the most effective in driving protein association.  相似文献   

9.
Molecular Biology - Huntingtin (HTT) occurs in the neuronal cytoplasm and can interact with structural elements of synapses. Huntington’s disease (HD) results from pathological expansion of a...  相似文献   

10.
The coding regions for the N-domain, and full length peridinin–chlorophyll a apoprotein (full length PCP), were expressed in Escherichia coli. The apoproteins formed inclusion bodies from which the peptides could be released by hot buffer. Both the above constructs were reconstituted by addition of a total pigment extract from native PCP. After purification by ion exchange chromatography, the absorbance, fluorescence excitation and CD spectra resembled those of the native PCP. Energy transfer from peridinin to Chl a was restored and a specific fluorescence activity calculated which was ~86% of that of native PCP. Size exclusion analysis and CD spectra showed that the N-domain PCP dimerized on reconstitution. Chl a could be replaced by Chl b, 3-acetyl Chl a, Chl d and Bchl using the N-domain apo protein. The specific fluorescence activity was the same for constructs with Chl a, 3-acetyl Chl a, and Chl d but significantly reduced for those made with Chl b. Reconstitutions with mixtures of chlorophylls were also made with eg Chl b and Chl d and energy transfer from the higher energy Qy band to the lower was demonstrated.  相似文献   

11.
In vitro studies of the carotenoid peridinin, which is the primary pigment from the peridinin chlorophyll-a protein (PCP) light harvesting complex, showed a strong dependence on the lifetime of the peridinin lowest singlet excited state on solvent polarity. This dependence was attributed to the presence of an intramolecular charge transfer (ICT) state in the peridinin excited state manifold. The ICT state was also suggested to be a crucial factor in efficient peridinin to Chl-a energy transfer in the PCP complex. Here we extend our studies of peridinin dynamics to reconstituted PCP complexes, in which Chl-a was replaced by different chlorophyll species (Chl-b, acetyl Chl-a, Chl-d and BChl-a). Reconstitution of PCP with different Chl species maintains the energy transfer pathways within the complex, but the efficiency depends on the chlorophyll species. In the native PCP complex, the peridinin S1/ICT state has a lifetime of 2.7 ps, whereas in reconstituted PCP complexes it is 5.9 ps (Chl-b) 2.9 ps (Chl-a), 2.2 ps (acetyl Chl-a), 1.9 ps (Chl-d), and 0.45 ps (BChl-a). Calculation of energy transfer rates using the Förster equation explains the differences in energy transfer efficiency in terms of changing spectral overlap between the peridinin emission and the absorption spectrum of the acceptor. It is proposed that the lowest excited state of peridinin is a strongly coupled S1/ICT state, which is the energy donor for the major energy transfer channel. The significant ICT character of the S1/ICT state in PCP enhances the transition dipole moment of the S1/ICT state, facilitating energy transfer to chlorophyll via the Förster mechanism. In addition to energy transfer via the S1/ICT, there is also energy transfer via the S2 and hot S1/ICT states to chlorophyll in all reconstituted PCP complexes.  相似文献   

12.
Gazdaru  D.M.  Iorga  B. 《Photosynthetica》2001,39(4):607-609
Carotenoids (Car) regulate energy flow in photosynthesis by a specific Car-chlorophyll (Chl) interaction in the singlet-excited states, leading to a reduction in Chl fluorescence. We studied quenching of Chl a-fluorescence in benzene by trans--carotene. Non-linear analysis of the quenching process enables to explain the possible molecular mechanism leading to the de-excitation of Chl a. The fluorescence intensity was measured at 670 nm for excitation wavelengths of 380, 430, 640, and 650 nm. The -carotene concentrations ranged from 4×10–5 M to 5×10–3 M. When the samples were excited at 640 and 650 nm, the Stern-Volmer plots showed that the quenching process has high rate constants, hence -carotene is a very efficient quencher. Two different types of quenching process could take place.  相似文献   

13.
Elevated plasma levels of apolipoprotein B (apoB)–containing lipoproteins constitute a major risk factor for the development of coronary heart disease. In the rare recessively inherited disorder abetalipoproteinemia (ABL) the production of apoB-containing lipoproteins is abolished, despite no abnormality of the apoB gene. In the current study we have characterized the gene encoding a microsomal triglyceride-transfer protein (MTP), localized to chromosome 4q22-24, and have identified a mutation of the MTP gene in both alleles of all individuals in a cohort of eight patients with classical ABL. Each mutant allele is predicted to encode a truncated form of MTP with a variable number of aberrant amino acids at its C-terminal end. Expression of genetically engineered forms of MTP in Cos-1 cells indicates that the C-terminal portion of MTP is necessary for triglyceride-transfer activity. Deletion of 20 amino acids from the carboxyl terminus of the 894-amino-acid protein and a missense mutation of cysteine 878 to serine both abolished activity. These results establish that defects of the MTP gene are the predominant, if not sole, cause of hereditary ABL and that an intact carboxyl terminus is necessary for activity.  相似文献   

14.
The recent demonstration of the plasmonic-enhanced Förster resonance energy transfer (FRET) between two molecules in the vicinity of planar graphene monolayers is further investigated using graphene-coated nanoparticles (GNP). Due to the flexibility of these nanostructures in terms of their geometric (size) and dielectric (e.g., core material) properties, greater tunability of the FRET enhancement can be achieved employing the localized surface plasmons. It is found that while the typical characteristic graphene plasmonic enhancements are manifested from using these GNPs, even higher enhancements can be possible via doping and manipulating the core materials. In addition, the broadband characteristics are further expanded by the closely spaced multipolar plasmon resonances of the GNPs.  相似文献   

15.
Pirh2 is a p53 inducible gene that encodes a RING-H2 domain and is proposed to be a main regulator of p53 protein, thus fine tuning the DNA damage response. Pirh2 interacts physically with p53 and promotes its MDM2-independent ubiquitination and subsequent degradation as well as participates in an auto-regulatory feedback loop that controls p53 function. Pirh2 also self-ubiquitinates. Interestingly, Pirh2 is overexpressed in a wide range of human tumors. In this study, we investigated the domains and residues essential for Pirh2 self-ubiquitination. Deletions were made in each of the three major domains of Pirh2: the N-terminal domain (NTD), Ring domain (RING), and C-terminal domain (CTD). The effects of these deletions on Pirh2 self-ubiquitination were then assessed using in vitro ubiquitination assays. Our results demonstrate that the RING domain is essential, but not sufficient, for Pirh2 self-ubiquitination and that residues 240–250 of the C-terminal domain are also essential. Our results demonstrate that Pirh2 mediated p53 polyubiquitination occurs mainly through the K48 residue of ubiquitin in vitro. Our data further our understanding of the mechanism of Pirh2 self-ubiquitination and may help identify valuable therapeutic targets that play roles in reducing the effects of the overexpression of Pirh2, thus maximizing p53''s response to DNA damage.  相似文献   

16.
The water-soluble peridinin–chlorophyll a-proteins (PCPs) are one of the major light harvesting complexes in photosynthetic dinoflagellates. PCP contains the carotenoid peridinin as its primary pigment. In this study, we identified and characterized the PCP protein and the PCP gene organization in Symbiodinium sp. CS-156. The protein molecular mass is 32.7 kDa, revealing that the PCP is of the monomeric form. The intronless PCP genes are organized in tandem arrays. The PCP gene cassette is composed of 1095-bp coding regions and spacers in between. Despite the heterogeneity of PCP gene tandem repeats, we identified a single form of PCP, the sequence of which exactly matches the deduced sequence of PCP gene clone 7 (JQ395030) by LC–MS/MS analysis of tryptic digested PCP, revealing the mature PCP apoprotein is 312 amino acids in length. Pigment analysis showed a peridinin-to-Chl a ratio of 4. The peridinin-to-Chl a Qy energy transfer efficiency is 95% in this complex.  相似文献   

17.
18.
We present a detailed theoretical analysis of the Förster energy transfer process when a pair of molecules (donor and acceptor) is located nearby a cluster of two metallic nanospheres (dimer). We consider the case in which plasmonic resonances are within the overlap between the donor emission and acceptor absorption spectra, as well as the case that excludes such resonances from the aforementioned spectral overlap. Moreover, we explore the dependence of the Förster energy transfer rate on different dimer configurations (size and separation of nanospheres) and several dipole orientations of molecules. The dimer perturbs strongly the Förster energy transfer rate when plasmons are excited, donor dipole is oriented along the longitudinal axis of the dimer, and the radii of nanospheres and the sphere-gap distance are on the order of a few nanometers. In case of plasmonic excitation, the Förster energy transfer rate is degraded as the sphere-gap distance and size of the nanoparticles increase due to the dephasing of electronic motion arising from ohmic losses of metal. Also, we study the Förster efficiency influenced by the dimer, finding that the high efficiency region (delimited by the Förster radius curve) is reduced as a consequence of significant enhancement of the direct donor decay rate. Our study could impact applications that involve Förster energy transfer.  相似文献   

19.
Russian Journal of Plant Physiology - Mechanisms of photosynthesis inhibition by vaporous naphthalene, its permeation into thylakoids, and interactions with chlorophyll–protein complexes were...  相似文献   

20.
Krasilnikov  P. M.  Lukashev  E. P.  Knox  P. P.  Seyfullina  N. Kh.  Rubin  A. B. 《Biophysics》2018,63(6):895-905
Biophysics - The temperature dependence of the efficiency of energy transfer from polymer coated CdSe/CdS/ZnS quantum dots bearing terminal carboxyl groups to the reaction centers of purple...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号