首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Human PBMC were cultured in medium containing human rIL-2, and the supernatants and cell lysates were analyzed for IL-1 alpha and IL-1 beta using specific RIA. IL-2, but not the excipient detergents included in the rIL-2 preparation, induced the synthesis of both cytokines. The concentrations of IL-1 alpha and IL-1 beta in the cell lysates and supernatants depended on both the concentration of rIL-2 in the culture medium and the duration of the incubation. After 24 h of stimulation, IL-2-induced IL-1 alpha remained almost entirely cell-associated. In contrast, IL-1 beta was present in both cell lysates and supernatants and was more abundant in the latter. SDS-PAGE analysis after radioimmunoprecipitation with anti-IL-1 antibodies indicates that cell-associated IL-1 resulting from IL-2 stimulation was in the form of the 35 kDa IL-1 precursor whereas secreted IL-1 was almost entirely in the form of the mature 18 kDa product. Depletion of monocytes from the PBMC culture substantially reduced IL-2-induced IL-1 production. In addition, Leu M3+ monocytes obtained through FACS, but not CD16+ NK cells, produced both IL-1 alpha and IL-1 beta in response to IL-2. The low level of endotoxin present in the IL-2 preparation used in our studies and the selective inhibition by polymyxin B of LPS-induced, but not IL-2-induced, IL-1 production by PBMC indicate that IL-2-induced IL-1 production was not due to endotoxin contamination. Furthermore, an anti-IL-2 antiserum selectively inhibited IL-1 production in response to IL-2 stimulation. We conclude that IL-2 is a potent inducer of IL-1 synthesis and secretion in vitro and propose that IL-1 may be generated in vivo in patients undergoing IL-2 immunotherapy.  相似文献   

2.
3.
Chemokines are important mediators in immune responses and inflammatory processes of neuroimmunologic and infectious diseases. Although chemokines are expressed predominantly by cells of the immune system, neurons also express chemokines and chemokine receptors. We report herein that human neuronal cells (NT2-N) produce macrophage inflammatory protein-1alpha and -1beta (MIP-1alpha and MIP-1beta), which could be enhanced by interleukin (IL)-1beta at both mRNA and protein levels. The addition of supernatants from human peripheral blood monocyte-derived macrophage (MDM) cultures induced MIP-1beta mRNA expression in NT2-N cells. Anti-IL-1beta antibody removed most, but not all, of the MDM culture supernatant-induced MIP-1beta mRNA expression in NT2-N cells, suggesting that IL-1beta in the MDM culture supernatants is a major factor in the induction of MIP-1beta expression. Investigation of the mechanism(s) responsible for IL-1beta-induced MIP-1alpha and -1beta expression demonstrated that IL-1beta activated nuclear factor kappa B (NF-kappaB) promoter-directed luciferase activity in NT2-N cells. Caffeic acid phenethyl ester, a potent and specific inhibitor of activation of NF-kappaB, not only blocked IL-1beta-induced activation of the NF-kappaB promoter but also decreased IL-1beta-induced MIP-1alpha and -1beta expression in NT2-N cells. These data suggest that NF-kappaB is at least partially involved in the IL-1beta-mediated action on MIP-1alpha and -1beta in NT2-N cells. IL-1beta-mediated up-regulation of beta-chemokine expression may have important implications in the immunopathogenesis of inflammatory diseases in the CNS.  相似文献   

4.
Vascular endothelial cells (EC) produced IL-1 alpha but not IL-1 beta into extracellular fluids. Vascular smooth muscle cells (SMC), on the other hand, produced both IL-1 alpha and IL-1 beta, and IL-1 beta produced was much higher than IL-1 alpha. The addition of recombinant human IL-1 beta or recombinant human TNF-alpha significantly enhanced IL-1 alpha production in EC, and IL-1 alpha and IL-1 beta production in SMC. IL-1 beta release was not observed even when EC were stimulated with TNF-alpha. These results suggest that the species of released form of IL-1 are different in different cell types and that cytokines enhance IL-1 alpha and IL-1 beta production in SMC and IL-1 alpha production in EC.  相似文献   

5.
6.
Interleukin-1 beta (IL-1beta) is an important regulator of the thyroid cell function. This cytokine has been largely described to trigger an important biological signaling cascade: the sphingomyelin/ceramide pathway. In this report, we show that IL-1beta induces the transient activation of a neutral sphingomyelinase in porcine thyroid cells. Moreover, IL-1beta and ceramides are demonstrated to inhibit the TSH-induced cAMP production via the implication of alphaGi subunit of the adenylyl cyclase system. This crosstalk between cAMP and ceramide pathways constitutes a preponderant process in the TSH-controlled differentiation state of thyrocytes. All these results argue for the involvement of ceramides and IL-1beta in the thyroid function regulation, leading to a cell dedifferentiated state.  相似文献   

7.
In rat brain astroglia-enriched cultures long-term treatment with interleukin-1beta induces NO release and stimulation of soluble guanylyl cyclase. The cGMP formed is recovered in the extracellular medium but not in the cell monolayer. The interleukin-1beta effect is mediated by type I receptor and potentiated by interferon-gamma. In cells treated with bacterial endotoxin a larger NO-dependent cGMP accumulation occurs only intracellularly, however a significant cGMP egression is observed when cells are co-treated with interleukin-1beta. The non-selective anion transport inhibitors probenecid and verapamil block cGMP efflux, indicating that interleukin-1beta stimulates a cGMP transporter.  相似文献   

8.
The collagen-binding integrins α1β1 and α2β1 have profoundly different functions, yet they are often co-expressed in epithelial cells. When both integrins are expressed in the same cell, it has been suggested that α1β1 negatively regulates integrin α2β1-dependent functions. In this study we utilized murine ureteric bud (UB) epithelial cells, which express no functionally detectable levels of endogenous integrins α1β1 and α2β1, to determine the mechanism whereby this regulation occurs. We demonstrate that UB cells expressing integrin α2β1, but not α1β1 adhere, migrate and proliferate on collagen I as well as form cellular cords in 3D collagen I gels. Substitution of the transmembrane domain of the integrin α2 subunit with that of α1 results in decreased cell adhesion, migration and cord formation. In contrast, substitution of the integrin α2 cytoplasmic tail with that of α1, decreases cell migration and cord formation, but increases proliferation. When integrin α1 and α2 subunits are co-expressed in UB cells, the α1 subunit negatively regulates integrin α2β1-dependent cord formation, adhesion and migration and this inhibition requires expression of both α1 and α2 tails. Thus, we provide evidence that the transmembrane and cytoplasmic domains of the α2 integrin subunit, as well as the α1 integrin subunit, regulate integrin α2β1 cell function.  相似文献   

9.
10.
Cycloheximide, a potent inhibitor of protein synthesis, has been used to examine the relationship between recruitment of hexose carriers and the activation of glucose transport by insulin in rat adipocytes. Adipocytes were preincubated +/- cycloheximide for 90 min then +/- insulin for a further 30 min. We measured 3-O-methylglucose uptake in intact cells and in isolated plasma membrane vesicles. The concentration of glucose transporters in plasma membranes and low density microsomes was measured using a cytochalasin B binding assay. Cycloheximide had no affect on basal or insulin-stimulated 3-O-methylglucose uptake in intact cells or in plasma membrane vesicles. However, the number of glucose carriers in plasma membranes prepared from cells incubated with cycloheximide and insulin was markedly reduced compared to that from cells incubated with insulin alone (14 and 34 pmol/mg protein, respectively). Incubation of cells with cycloheximide alone did not change the concentration of glucose carriers in either plasma membranes or in low density microsomes compared to control cells. When isolated membranes were analyzed with an antiserum prepared against human erythrocyte glucose transporter, decreased cross-reactivity was observed in plasma membranes prepared from cycloheximide/insulin-treated cells compared to those from insulin cells. The present findings indicate that incubation of adipocytes with cycloheximide greatly reduces the number of hexose carriers in the plasma membrane of insulin-stimulated cells. Despite this reduction, insulin is still able to maximally stimulate glucose uptake. Thus, these data suggest an apparent dissociation between insulin stimulation of glucose transport activity and the recruitment of glucose carriers by the hormone.  相似文献   

11.
The pro-inflammatory cytokines interleukin-1beta (IL-1beta), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-alpha) are elevated following acute myocardial infarction (MI) and have been implicated in the pathophysiology of cardiac disease progression. The cardiac fibroblast represents an important effector cell target for cytokine actions. In particular, cytokine-directed cardiac fibroblast migration is likely to impact both myocardial repair following acute MI and pathological myocardial remodeling in the progression to heart failure. In the present study, we examined the migratory response of neonatal rat cardiac fibroblasts to pro-inflammatory cytokines using modified Boyden chamber assays. On the basis of the knowledge of migration in other cell types, we hypothesized that members of the mitogen-activated protein kinase (MAPK) family may regulate this process. This possibility was addressed with the use of immunoblot detection of active phosphorylated MAPK species and pharmacological inhibitors for individual members of the MAPK cascades. IL-1beta stimulated robust and concentration-dependent increases in migration (maximum, 20-fold over control cells). TNF-alpha had lesser effect (fourfold increase over control). IL-6 did not induce migration. Activation of all three MAPK subfamilies (extracellular signal-regulated kinases, c-Jun NH(2)-terminal kinases, and p38) was shown to occur in response to cytokine stimulation. Fibroblast migration was attenuated by pharmacological inhibition of each MAPK subfamily. Understanding the regulation of cardiac fibroblast migration may provide insights in the search for therapies aimed at enhancing the functional nature of the remodeling process.  相似文献   

12.
In a previous report (Cebo et al. J Biol Chem 276 (2001) 5685–5691), it was established that biologically active recombinant human IL-1α and IL-1β had different carbohydrate-binding properties. IL-1α recognized a di-antennary N-glycan with two α2-3-linked sialic acid residues, whereas IL-1β recognized the GM4, a α2-3-linked sialylated glycosphingolipid. These different carbohydrate-binding properties of two interleukins binding to the same receptor (IL-1R) could explain why these molecules had different biological effects and cell specificities. Molecular modeling of the ligands and in silico docking experiments defined putative carbohydrate-recognition domains localized in the same area of the two molecules, a domain different from that defined as the type I IL-1R binding domain. The calculated pattern of hydrogen bonding and of van der Waals interactions fulfilled the essential features observed for calcium-independent lectins (mammalian, viral or bacterial). The analysis of the same domain of the third members of this family of molecules, the IL-1R-antagonist, indicated it did not fulfill the criteria for carbohydrate-recognition domains. It is proposed that its role as a pure antagonist is due to the absence of lectin activity and consequently explained its inability to associate IL-1R with other surface molecular complexes necessary for signaling.  相似文献   

13.
The concept of a membrane form of IL-1 arose from the observation that paraformaldehyde-treated macrophages display IL-1 bioactivity. Thus far, the biochemical characterization of a membrane form of the molecule has not been reported. In a recent publication we demonstrated that murine IL-1 alpha can be detected in the supernatants of paraformaldehyde-treated macrophages. These data indicate that the phenomenon of membrane IL-1 may result from leakage of IL-1 from inadequately fixed cells. In the current report we have extended our studies toward the examination of human IL-1 alpha and IL-1 beta. IL-1 activity can be detected in the supernatants of paraformaldehyde-treated human monocytes. Although anti-IL-1 alpha, but not anti-IL-1 beta, antibodies can efficiently block the IL-1 bioactivity, both IL-1 alpha and IL-1 beta can be found by immunoprecipitation in the supernatants of the fixed monocytes. IL-1 alpha is efficiently processed to the low m.w. form, whereas IL-1 beta remains predominantly as the inactive, precursor molecule. IL-1 is not found in the supernatants of monocyte membrane preparations, demonstrating that the leakage of IL-1 is from an intracellular, rather than membrane-bound source.  相似文献   

14.
Incubation of segments of rat epididymal adipose tissue in media prepared with deuterium oxide results in increased glucose oxidation, increased lipogenesis, accelerated sugar transport and decreased lipolysis in response to epinephrine or theophylline. In view of the well documented action of heavy water to “stabilize” cytoplasmic microtubules, the foregoing observations are in support of a link between cytoplasmic microtubules and metabolic process in adipose tissue.  相似文献   

15.
When C6 glioma cells were stimulated by β -adrenergic ligands, [3H]-deoxyglucose uptake by the cells decreased in the first 30 min, followed by its acceleration. The stimulation of deoxyglucose uptake was attributable to desensitization of β-adrenergic receptor-adenylate cyclase system. When the cells were treated with quinacrine or tetracaine, phospholipase inhibitors, the stimulation of deoxyglucose uptake by isoproterenol was diminished without changing the basal rate. On the other hand, when C6 glioma cells were treated with melittin or phorbol ester, phospholipase A2 activators, the deoxyglucose uptake increases even in the absence of isoproterenol. Since these compounds inhibit or enhance phospholipase A2 as well as the desensitization of β -adrenergic receptors (Proc. Natl. Acad. Sci. USA 77, 1341–1345, 1980), these results suggest that turnovers of phospholipids in the vicinity of β -adrenergic receptors modify the glucose uptake of C6 glioma cells.  相似文献   

16.
Genes of the IL-1 family encode three different peptides, IL-1alpha, IL-1beta, and IL-1Ra, respectively. IL-1 operates through IL-1RI, and is involved in airway inflammation in asthmatic subjects, whereas IL-1Ra appears to be a specific competitive inhibitor of IL-1. All genes are on chromosome 2q12-21 where genomewide searches have identified linkage for asthma. To test whether variants of IL-1 relate to asthma, we conducted a genetic association study in a Japanese population. We show that the A2 allele of IL1RN (encoding IL-1Ra) associates with nonatopic asthma [OR = 5.71, 95% CI: 1.63-19. 8, Pc = 0.007]. Both atopic and nonatopic asthmatics with the A2 allele had significantly lower serum IL-1Ra levels in both types of asthmatics. Peripheral blood cells from asthmatics with A2 alleles, however, produced as much IL-1 as did those with A1 homozygotes. Since Th1 and Th2 cytokines differentially regulate the ratio between IL-1beta and IL-1Ra, these findings suggest that dysregulation of IL-1beta/IL-1Ra, probably due to interaction between epithelium and immuno-competent cells in the airway, is important in asthma inflammation.  相似文献   

17.
The mechanism of modulation of insulin-stimulated glucose transport activity in isolated rat adipose cells by lipolytic and antilipolytic agents has been examined. We have measured glucose transport activity in intact cells with 3-O-methylglucose and in plasma membranes with D-glucose, and the concentration of glucose transporters in plasma membranes using a cytochalasin B binding assay. In intact cells, isoproterenol reduced insulin-stimulated transport activity by 60%. This effect was lost after cooling and washing the cells with homogenization buffer, and neither the concentration of glucose transporters nor transport activity in the plasma membranes differed from control. However, treatment of cells with KCN prior to homogenization preserved the isoproterenol effect through the fractionation procedure. Plasma membranes from these cells contained an unchanged number of transporters (31 +/- 7, mean +/- S.E., versus 31 +/- 4 pmol/mg of protein in controls) but transported glucose at a reduced rate (19 +/- 6 versus 48 +/- 9 pmol/mg of protein/s). Conversely, incubation of intact cells in the presence of adenosine stimulated plasma membrane glucose transport activity compared to that in the absence of adenosine (44 +/- 6 versus 36 +/- 6 pmol/mg of protein/s). Kinetic studies of isoproterenol-inhibited glucose transport in plasma membranes revealed a 60% decrease in Vmax (2900 +/- 350 versus 7200 +/- 1000 pmol/mg of protein/s) and a small increase in Km (15.1 +/- 1 versus 13.0 +/- 0.6 mM). These data indicate that modifications of glucose transport activity produced by lipolytic and antilipolytic agents in intact adipose cells can be fully retained in plasma membranes isolated under appropriate conditions. Furthermore, the effects of these agents occur through a modification of the glucose transporter intrinsic activity.  相似文献   

18.
The effects of insulin therapy in streptozotocin diabetic rats on the glucose transport response to insulin in adipose cells have been examined. At sequential intervals during subcutaneous insulin infusion, isolated cells were prepared and incubated with or without insulin, and 3-O-methylglucose transport was measured. Insulin treatment not only reversed the insulin-resistant glucose transport associated with diabetes, but resulted in a progressive hyperresponsiveness, peaking with a 3-fold overshoot at 7-8 days (12.1 +/- 0.3 versus 3.4 +/- 0.1 fmol/cell/min, mean +/- S.E.) and remaining elevated for more than 3 weeks. During the peak overshoot, glucose transporters in subcellular membrane fractions were assessed by cytochalasin B binding. Insulin therapy restored glucose transporter concentration in the plasma membranes of insulin-stimulated cells from a 40% depleted level previously reported in the diabetic state to approximately 35% greater than control (38 +/- 4 versus 28 +/- 2 pmol/mg of membrane protein). Glucose transporter concentration in the low-density microsomes from basal cells was also restored from an approximately 45% depleted level back to normal (50 +/- 4 versus 50 +/- 6 pmol/mg of membrane protein), whereas total intracellular glucose transporters were further increased due to an approximately 2-fold increase in low-density microsomal membrane protein. However, these increases remained markedly less than the enhancement of insulin-stimulated glucose transport activity in the intact cell. Thus, insulin treatment of diabetic rats produces a marked and sustained hyperresponsive insulin-stimulated glucose transport activity in the adipose cell with little more than a restoration to the non-diabetic control level of glucose transporter translocation. Because this enhanced glucose transport activity occurs through an increase in Vmax, insulin therapy appears to be associated with a marked increase in glucose transporter intrinsic activity.  相似文献   

19.
The interleukin 1 receptors (IL-1R) on the human B lymphoma RAJI and on the murine thymoma EL4-6.1 have been characterized. Equilibrium binding analysis using both 125I-labeled IL-1 alpha and IL-1 beta showed that RAJI cells have a higher number of binding sites/cell for IL-1 beta (2400, Kd 2.2 nM) than for IL-1 alpha (316, Kd 0.13 nM). On the other hand, EL4-6.1 cells have more receptors/cell for IL-1 alpha (22 656, Kd 1 nM) than for IL-1 beta (2988, Kd 0.36 nM). Dexamethasone (DXM) induced on RAJI cells a time-dependent increase in binding sites for both IL-1 beta and IL-1 alpha without affecting their binding affinities. However, while receptor-bound 125I-IL-1 alpha was displaced with equal efficiency by both IL-1 forms, only unlabeled IL-1 beta could effectively displace 125I-IL-1 beta. Cross-linking experiments indicated that RAJI cells have a predominant IL-1R of about 68 kDa, while EL4-6.1 cells have an IL-1-binding polypeptide of 80 kDa. These results suggest that B and T cells possess structurally different IL-1R with distinct binding properties for IL-1 alpha and IL-1 beta.  相似文献   

20.
The cytokine interleukin-1 (IL-1 beta) increased prostaglandin production by decidual stromal cells in culture in a time and dose dependent manner. Optimum conditions for stimulation were found to be for 24 hours at a concentration of 100 pg IL-1 beta/ml. An apparent increase in cyclo-oxygenase enzyme synthesis accompanied the increase in prostaglandin production, and both changes were inhibited by the protein synthesis inhibitor cycloheximide. This implicates protein synthesis in the stimulatory effects of IL-1 beta, which may be mediated through the increase in cyclo-oxygenase enzyme. A pre-incubation period of 72 hours was found to be necessary to observe the stimulatory effect of IL-1 beta on prostaglandin production, but this did not seem to be due to any change in the sensitivity of the cells to IL-1 beta; the increase in the number of cyclo-oxygenase positive cells was the same if IL-1 beta was added on day 1, day 2 or day 3 of culture, even though prostaglandin production was not stimulated on day 1 or day 2. Cycloheximide increased prostaglandin production on the first two days of culture and had no effect on the third day of culture. This was interpreted as indicating that a factor inhibiting cyclo-oxygenase activity was synthesised during the initial period of culture, which prevented any increase in prostaglandin production following the increase in enzyme synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号