首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effects of interleukin 1 (IL-1) on MC3T3-E1 cells (clonal osteoblast-like cells established from mouse calvaria) were studied to elucidate the mechanism of IL-1-induced bone resorption. Recombinant human interleukin 1 alpha (rhIL-1 alpha) and beta (rhIL-1 beta) stimulated PGE2 production in MC3T3-E1 cells in a dose dependent manner. rhIL-1 alpha and 1 beta also stimulated MC3T3-E1 cells to produce macrophage-colony stimulating activity (M-CSA) in a dose-dependent manner. Indomethacin completely abolished PGE2 production but did not affect CSA. These results suggest that bone resorption induced by IL-1s is at least in part mediated by PGE2 produced by osteoblasts, and that M-CSA produced by osteoblasts may synergistically potentiate bone resorption by recruiting osteoclast precursors.  相似文献   

2.
3.
The cytokine interleukin-1 (IL-1 beta) increased prostaglandin production by decidual stromal cells in culture in a time and dose dependent manner. Optimum conditions for stimulation were found to be for 24 hours at a concentration of 100 pg IL-1 beta/ml. An apparent increase in cyclo-oxygenase enzyme synthesis accompanied the increase in prostaglandin production, and both changes were inhibited by the protein synthesis inhibitor cycloheximide. This implicates protein synthesis in the stimulatory effects of IL-1 beta, which may be mediated through the increase in cyclo-oxygenase enzyme. A pre-incubation period of 72 hours was found to be necessary to observe the stimulatory effect of IL-1 beta on prostaglandin production, but this did not seem to be due to any change in the sensitivity of the cells to IL-1 beta; the increase in the number of cyclo-oxygenase positive cells was the same if IL-1 beta was added on day 1, day 2 or day 3 of culture, even though prostaglandin production was not stimulated on day 1 or day 2. Cycloheximide increased prostaglandin production on the first two days of culture and had no effect on the third day of culture. This was interpreted as indicating that a factor inhibiting cyclo-oxygenase activity was synthesised during the initial period of culture, which prevented any increase in prostaglandin production following the increase in enzyme synthesis.  相似文献   

4.
The balance between IL-1 and its naturally occurring inhibitor IL-1 receptor antagonist (IL-1ra) is critical in determining the inflammatory response. Four splice variants of the IL-1ra gene have been identified; one secreted (sIL-1ra) and three intracellular (icIL-1ra1-3). The biological roles of the intracellular isoforms remain largely unclear. We wished to determine whether icIL-1ra1 had intracellular functions regulating IL-1 signalling. Signalling was determined using an NF-kappaB reporter assay measuring induction of the IL-8 promoter in transfected cells. Over-expression of icIL-1ra1 in HeLa cells had no effect on IL-1 stimulated IL-8 activity. In contrast over-expression of sIL-ra significantly attenuated IL-1 activity. In addition, transfection of icIL-1ra1 in HeLa cells did not cause inhibition of IL-8 promoter activity following over-expression of the IL-1 signalling components MyD88, IRAK-1, TRAF-6, Ikappakappabeta or RelA. This implies that icIL-1ra1 does not act to alter IL-1 mediated intracellular signalling in this system. We investigated whether ATP and/or over-expression of the P2X7 receptor caused icIL-1ra1 inhibition of IL-1beta mediated IL-8 reporter activation, by permitting its release. In HeLa cells, no effect of icIL-1ra1 was observed in ATP stimulated and/or P2X7 transfected cells, compared to a significant inhibition in sIL-1ra transfected cells. However, in endothelial cells stimulated with ATP, the released fraction was effective in attenuating IL-1beta activation of the IL-8 reporter. These results suggest that icIL-1ra1 does not act at an intracellular level to alter IL-1 mediated signalling, and is effective in inhibiting IL-1 responses only when released in an ATP-dependent and cell type specific manner.  相似文献   

5.
We studied the effect of transforming growth factor-beta 1 (TGF-beta 1) on colony formation of leukemic blast progenitors from ten acute myeloblastic leukemia (AML) patients stimulated with granulocyte colony-stimulating factor (G-CSF), granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-3 (IL-3), interleukin-6 (IL-6), or interleukin-1 beta (IL-1 beta). These CSFs and interleukins by themselves stimulated the proliferation of leukemic blast progenitors without adding TGF-beta 1. G-CSF, GM-CSF, and IL-3 stimulated blast colony formation in nine patients, IL-6 stimulated it in five, and IL-1 beta stimulated in four. TGF-beta 1 significantly reduced blast colony formation stimulated by G-CSF, GM-CSF, or IL-6 in all patients. In contrast, TGF-beta 1 enhanced the stimulatory effect of IL-3 on blast progenitors from three cases, while in the other seven patients TGF-beta 1 reduced blast colony formation in the presence of IL-3. To study the mechanism by which TGF-beta 1 enhanced the stimulatory effect of IL-3 on blast progenitors, we carried out the following experiments in the three patients in which it occurred. First, the media conditioned by leukemic cells in the presence of TGF-beta 1 stimulated the growth of leukemic blast progenitors, but such effect was completely abolished by anti-IL-1 beta antibody. Second, the addition of IL-1 beta in the culture significantly enhanced the growth of blast progenitors stimulated with IL-3. Third, leukemic cells of the two patients studied were revealed to secrete IL-1 beta and tumor necrosis factor-alpha (TNF-alpha) constitutively; the production by leukemic cells of IL-1 beta and TNF-alpha was significantly promoted by TGF-beta 1. Furthermore, the growth enhancing effect of TGF-beta 1 in the presence of IL-3 was fully neutralized by anti-IL-1 beta antibody. These findings suggest that TGF-beta 1 stimulated the growth of blast progenitors through the production and secretion of IL-1 beta by leukemic cells.  相似文献   

6.
Previously, IL-1beta secretion from Type 2 diabetic patients has been shown to be increased compared with controls. In this study, we aimed to delineate the mechanism of IL-1beta induction under high-glucose (HG) conditions in human monocytes. THP-1 cells cultured in normal glucose were treated with increasing concentrations of d-glucose (10-25 mM) for 6-72 h. IL-1beta and IL-1 receptor antagonist levels were measured by ELISA and Western blots, whereas mRNA was quantitated by RT-PCR. Specific inhibitors and small interfering RNAs of PKC, p38, ERK1/2, NF-kappaB, and NADPH oxidase were used to determine the mediators in parallel experiments under HG conditions. IL-1beta-secreted protein, cellular protein, and mRNA increase under HG conditions is time and dose dependent, with maximum increase at 15 mM (48 h; P < 0.05). IL-1 receptor antagonist release was time and dose dependent, similar to IL-1beta expression pattern; however, the molar ratio of IL-1beta to IL-1RA was increased. Data from inhibitor and small interfering RNA experiments indicate that IL-1beta release under HG is mediated by PKC-alpha, via phosphorylation of p38 MAPK, and ERK1/2 leading to NF-kappaB activation, resulting in increased mRNA and protein for IL-1beta. At the same time, it appears that NADPH oxidase via p47phox activates NF-kappaB, resulting in increased IL-1beta secretion. Data suggest that, under HG conditions, monocytes release significantly higher amounts of IL-1beta through multiple mechanisms, further compounding the disease progression. Targeting signaling pathways mediating IL-1beta release could result in the amelioration of inflammation and possibly diabetic vasculopathies.  相似文献   

7.
8.
The effect of selective PDE-I (vinpocetine), PDE-III (milrinone, CI-930), PDE-IV (rolipram, nitroquazone), and PDE-V (zaprinast) isozyme inhibitors on TNF-alpha and IL-1beta production from LPS stimulated human monocytes was investigated. The PDE-IV inhibitors caused a concentration dependent inhibition of TNF-alpha production, but only partially inhibited IL-1beta at high concentrations. High concentrations of the PDE-III inhibitors weakly inhibited TNF-alpha, but had no effect on IL-1beta production. PDE-V inhibition was associated with an augmentation of cytokine secretion. Studies with combinations of PDE isozyme inhibitors indicated that PDE-III and PDE-V inhibitors modulate rolipram's suppression of TNF production in an additive manner. These data confirm that TNF-alpha and IL-1beta production from LPS stimulated human monocytes are differentially regulated, and suggest that PDE-IV inhibitors have the potential to suppress TNF levels in man.  相似文献   

9.
AIMS: To determine whether granulocyte macrophage-colony stimulating factor (GM-CSF) production by neuronal precursor (NT2) cells can be regulated by IL-1beta and TNF-alpha. BACKGROUND: We have previously demonstrated GM-CSF expression by neurons of the developing human brain, as well as by NT2 cells. IL-1beta and TNF-alpha upregulate GM-CSF production in glial cells, but GM-CSF regulation in neurons is as yet undefined. We hypothesized that IL-1beta and TNF-alpha would increase GM-CSF mRNA and protein production in NT2 cells. METHODS: The effect of IL-1beta and TNF-alpha on GM-CSF production was assessed by dose response (0 to 2,000 U/ml), and time course (0 to 48 hours incubation) experiments. GM-CSF mRNA and protein production were assessed by quantitative RT-PCR and by ELISA. The effect of these cytokines on cell turnover was determined by BrdU incorporation. RESULTS: IL-1beta increased GM-CSF mRNA and protein expression by NT2 cells. This effect was time and dose dependent, and the effective dose ranging from (20-200 U/ml). TNF-alpha increased GM-CSF mRNA expression to a lesser extent than did IL-1beta (maximal stimulation at 200 U/ml), and a minimal increase in net protein accumulation was noted. Neither cytokine increased NT2 cell turnover. CONCLUSIONS: IL-1beta and TNF-alpha both increase GM-CSF mRNA expression by NT2 cells, but only IL-1beta increases net GM-CSF protein accumulation.  相似文献   

10.
The effect of FK506 and cyclosporin A (CsA) on the production of interleukin 6 (IL-6) in adherent monocytes was studied at a single-cell level by the avidinbiotin- peroxidase complex methods. The percentage of IL-6-producing monocytes increased when stimulated with lipopolysaccharide (LPS) at concentrations between 10 ng/ml and 10 mug/ml, in a dose dependent manner. Both FK506 and CsA enhanced the percentage of IL-6- producing monocytes stimulated with 100 pg/ml-1 mug/ml of LPS up to values near those obtained with 10 mug/ml of LPS. The enhancement by FK506 and CsA was not seen when monocytes were stimulated with a high concentration of LPS (10 mug/ml). When monocytes were stimulated with a low concentration of LPS (10 ng/ml), FK506 and CsA enhanced IL-6 production in a dose dependent manner, at a drug concentration of 0.12 nM-1.2 muM (0.1-1 000 ng/ml) for FK506 and 0.83 nM-8.3 muM (1-10 000 ng/ml) for CsA. The optimal effect of FK506 was achieved at a concentration 7-fold lower than that of CsA. In contrast, production of turnout necrosis factor-alpha (TNFalpha and interleukin 1beta (IL-1beta) was slightly suppressed by FK506 and CsA at the concentrations tested. Moreover, pretreatment of monocytes with FK506 and CsA had a significant enhancing effect on LPS-induced IL-6 production, while treatment with FK506 or CsA after LPS stimulation had no effects on IL-6 production, suggesting that the enhancing effect of each drug is exerted before LPS stimulation or at an early stage of the post-receptor pathway after LPS stimulation. These experiments demonstrate that FK506 and CsA can selectively enhance IL-6 production in monocytes under certain conditions in vitro and, possibly, also in vivo.  相似文献   

11.
The objective of this study was to examine the effects of sex hormones on IL-1beta-mediated responses by uterine epithelial cells. The mRNA expression and secretion of human beta-defensin-2 and CXCL8 by uterine epithelial cells was examined following stimulation with IL-1beta in the presence of estradiol or progesterone. Estradiol inhibited the IL-1beta-mediated mRNA expression and secretion of human beta-defensin-2 and CXCL8 by uterine epithelial cells while progesterone had no effect. Inhibition of the IL-1beta-mediated response by estradiol was dose dependent, with maximal inhibition observed using 10(-7) to 10(-10) M, and was shown to be mediated through the estrogen receptor because addition of a pure estrogen receptor antagonist abrogated this effect. The mechanism by which estradiol inhibits IL-1beta-mediated responses by uterine epithelial cells appears to be the down-modulation of the IL-1R type I, thereby reducing the uterine epithelial cell's ability to respond to IL-1beta. These results suggest that the inhibitory effect of estradiol on IL-1beta-mediated inflammatory responses by uterine epithelial cells indicates a link between the endocrine and immune systems and may be crucial for dampening proinflammatory responses during the time of ovulation or pregnancy.  相似文献   

12.
Interleukin-33 (IL-33) receptors are composed of ST2 (also known as IL-1R4), a ligand binding chain, and IL-1 receptor accessory protein (IL-1RAcP, also known as IL-1R3), a signal transducing chain. IL-1R3 is a common receptor for IL-1α, and IL-1β, IL-33, and three IL-36 isoforms. A549 human lung epithelial cells are highly sensitive to IL-1α and IL-1β but not respond to IL-33. The lack of responsiveness to IL-33 is due to ST2 expression. ST2 was stably transfected into A549 cells to reconstitute its activity. RT-PCR and FACS analysis confirmed ST2 expression on the cell surface of A549/ST2 cells. Upon IL-33 stimulation, A549/ST2 cells induced IL-8 and IL-6 production in a dose dependent manner while A549/mock cells remained unresponsive. There was no difference in IL-1α and IL-1β activity in A549/ST2 cells compared to A549/mock cells despite the fact that IL-33 shares IL-1R3 with IL-1α/β. IL-33 activated inflammatory signaling molecules in a time- and dose-dependent manner. Anti-ST2 antibody and soluble recombinant ST2-Fc abolished IL-33-induced IL-6 and IL-8 production in A549/ST2 cells but the IL-1 receptor antagonist failed to block IL-33-induced cytokines. This result demonstrates for the first time the reconstitution of ST2 in A549 human lung epithelial cell line and verified its function in IL-33-mediated cytokine production and signal transduction.  相似文献   

13.
Previously, we demonstrated that rat macrophages express CD8 and that Ab to CD8 stimulates NO production. We confirm that CD8 is expressed by rat macrophages and extend understanding of its functional significance. Activation of CD8 alpha (OX8 Ab) on alveolar macrophages stimulated mRNA expression for TNF and IL-1 beta and promoted TNF and IL-1 beta secretion. Similarly, OX8 Ab (CD8 alpha) stimulated NR8383 cells to secrete TNF, IL-1 beta, and NO. Activation of CD8 beta (Ab 341) on alveolar macrophages increased mRNA expression for TNF and IL-1 beta and stimulated secretion of TNF, but not IL-1 beta. Interestingly, anti-CD8 Abs did not stimulate IFN-gamma or PGE2 production, or phagocytosis by macrophages. OX8 (CD8 alpha)-induced TNF and IL-1 beta production by macrophages was blocked by inhibitors of protein tyrosine kinase(s), PP1, and genistein, but not by phosphatidylinositol-3 kinase inhibitor, wortmannin. Moreover, OX8 stimulated protein tyrosine kinase activity in NR8383 cells. Further analysis of kinase dependence using antisense to Syk kinase demonstrated that TNF, but not IL-1 beta, stimulation by CD8 alpha is Syk dependent. By contrast, protein kinase C inhibitor Ro 31-8220 had no effect on OX8-induced TNF production, whereas OX8-induced IL-1 beta production was blocked by Ro 31-8220. Thus, there are distinct signaling mechanisms involved in CD8 alpha (OX8)-induced TNF and IL-1 beta production. In summary, macrophages express CD8 molecules that, when activated, stimulate TNF and IL-1 beta expression, probably through mechanisms that include activation of Src and Syk kinases and protein kinase C. These findings identify a previously unknown pathway of macrophage activation likely to be involved in host defense and inflammation.  相似文献   

14.
Infections by coxsackievirus B3 (CVB3) have previously been shown to cause acute and chronic myocarditis characterized by a heavy mononuclear leukocyte infiltration and myocyte necrosis. Because clinical and experimental evidence suggested that cardiac damage may result from immunologic rather than viral mechanisms, we examined in this study the in vitro interaction of CVB3 with human monocytes. CVB3 was capable of infecting freshly harvested monocytes as revealed by immunofluorescence and release of infectious virus particles. Virus infection did not reduce monocyte viability but, on the contrary, enhanced spreading and adherence. In a dose-dependent manner, CVB3 stimulated the release of cytokines from monocytes. Whereas a potent production of TNF-alpha, IL-1 beta, and IL-6 was dependent on exposure to infectious CVB3, IFN release was also induced by UV-inactivated virus. On a molecular level, CVB3 stimulated cytokine gene expression as shown by a marked TNF-alpha, IL-1 beta, and IL-6 mRNA accumulation. Supernatants of CVB3-infected monocytes displayed cytotoxic activity against Girardi heart cells which could be abrogated by an anti-TNF-alpha antiserum. These data suggest that CVB3-induced cytokine release from monocytes may participate in virus-induced organ damage such as myocarditis, which may either occur by a direct cytotoxicity of cytokines or by activation of cytotoxic lymphocytes.  相似文献   

15.
The expression of IL-1R on human peripheral B cells was analyzed by the binding assay with 125I-labeled human rIL-1 alpha and by the flow cytofluorometry by the use of FITC-conjugated IL-1 alpha. The proliferation and the differentiation of B cells stimulated with Staphylococcus aureus Cowan I (SAC) in the presence of T cell-derived factors were dependent on IL-1. By the binding experiment with 125I-labeled IL-1 alpha, B cells expressed only few IL-1R without any stimulations. When they were stimulated with SAC, IL-1R on B cells began to increase by only 1 h, reached the maximum level at 6 h. The binding of 125I-labeled IL-1 alpha to B cells was inhibited by the addition of either cold IL-1 alpha or IL-1 beta suggesting that IL-1R on B cells reactive for IL-1 alpha and IL-1 beta were identical. By Scatchard plot analysis, the existence of two classes of IL-1R on B cells was found. A major class of IL-1R (320 molecules/cell) has a lower affinity (Kd = 3.8 x 10(-10) M) and a minor class of IL-1R (70 molecules/cell) has a higher affinity (Kd = 4.4 x 10(-12) M). When B cells were stimulated with SAC, both lower and higher affinity IL-1R were increased to 1960 molecules/cell and 300 molecules/cell, respectively. Furthermore, IL-1R on B cells were also detected with FITC-conjugated IL-1 alpha by a flow cytofluorometer. Only 3 to 5% of B cells expressed IL-1R without any stimulations. When B cells were stimulated with SAC, IL-1R-positive B cells were increased to 20%. The addition of anti-class II antibodies inhibited B cell proliferation and differentiation induced with SAC, IL-1, and T cell-derived factors. Anti-class II antibodies also inhibited the number of IL-1R on B cells. These results suggest that the expression of IL-1R was induced as the initial stage of B cell activation and that class II Ag play an important role for the expression of IL-1R on B cells.  相似文献   

16.
Mononuclear cells from atopic blood donors showed increased IL-3 steady state mRNA levels. This finding complemented our earlier observations that cells from atopics also showed increased IL-4 but decreased IFN-gamma, IL-1 beta and IL-6 mRNA levels. Therefore, we investigated the effect of human recombinant IL-4 on cytokines mRNA levels in mononuclear cells from normals and atopics. In the presence of IL-4 steady state levels of IL-1 beta and IL-6 mRNA were decreased even if cells were co-stimulated with polyclonal activators such as PMA, PWM or PHA. No influence of IL-4 on granulocyte-macrophage colony-stimulating factor (GM-CSF), IL-3 or IFN-gamma mRNA levels was observed with the exception of a decreased IFN-gamma mRNA level in PWM stimulated cells.  相似文献   

17.
Vascular endothelial cells (EC) produced IL-1 alpha but not IL-1 beta into extracellular fluids. Vascular smooth muscle cells (SMC), on the other hand, produced both IL-1 alpha and IL-1 beta, and IL-1 beta produced was much higher than IL-1 alpha. The addition of recombinant human IL-1 beta or recombinant human TNF-alpha significantly enhanced IL-1 alpha production in EC, and IL-1 alpha and IL-1 beta production in SMC. IL-1 beta release was not observed even when EC were stimulated with TNF-alpha. These results suggest that the species of released form of IL-1 are different in different cell types and that cytokines enhance IL-1 alpha and IL-1 beta production in SMC and IL-1 alpha production in EC.  相似文献   

18.
19.
We evaluated the expression of IL-1 system by normal human myogenic cells during in vitro myogenesis and the effect of exogenous IL-1beta. Expression of IL-1alpha and beta, IL-1 receptor antagonist (IL-1Ra), IL-1RI and II, IL-1R accessory protein (IL-1RAcP) and IL-1beta converting enzyme (ICE) was studied by immunocytochemistry, immunoblotting, ELISA and RT - PCR. Cell proliferation was evaluated by [3H]thymidine incorporation, cell fusion by flow cytometry and cell death by in situ end-labelling. Human normal myogenic cells constitutively produced IL-1beta and ICE, with a maximum expression at time of cell fusion. IL-1Rs and IL-1RAcP expression reached a peak at time of commitment to fusion. Myogenic cells produced small amounts of IL-1Ra at latest stages of culture, and only the intracellular isoform. Exposure of cultures to exogenous IL-1beta (1-5 ng/ml) induced myogenic cell apoptosis, without effect on cell proliferation or fusion. IL-1beta-induced cell death was associated with morphological changes including spreading appearance of cells and alteration of cell alignment. We conclude that (1) human myogenic cells constitutively produce IL-1beta; (2) IL-1 system components are differentially expressed during in vitro myogenesis; (3) IL-1 system participates to the coordinated regulation of cell density during normal myogenesis, which could serve to control the muscle mass in vivo.  相似文献   

20.
Previous work from our laboratory has shown that rabbit articular chondrocytes, like macrophages, produce reactive oxygen intermediates, express Ia antigen, and can mediate immunologic functions such as antigen presentation and induction of mixed and autologous lymphocyte reactions. We were interested in seeing if these cells could secrete interleukin-1 (IL-1) or express membrane form of IL-1 (mIL-1). Using the standard C3H/HeJ thymocyte assay, neither secreted IL-1 nor mIL-1 activity was detected in untreated or LPS-treated chondrocytes. However, the D10.G4.1 proliferation assay showed that chondrocytes, stimulated with LPS, secrete IL-1 and express the mIL-1 in a dose- and time-dependent manner. The IL-1 activity in LPS-stimulated chondrocyte supernatant and on fixed cells could be inhibited by anti-IL-1 antibodies. Sephadex G-75 chromatography of pooled, concentrated LPS culture supernatant resolved into two peaks of IL-1 activity at 13-17 and at 45-70 kDa, respectively. The bioactivity of chromatographic fractions were similar using both the thymocyte and D10.G4.1 bioassays. Western blot analysis of chondrocyte supernatant detects 17-kDa IL-1 beta; no processed 17-kDa IL-1 alpha was seen but IL-1 alpha-specific reactivity was observed at 64 kDa. Immunoblot analysis of chondrocyte lysates shows that cell-associated IL-1 is IL-1 alpha and is 37 kDa in size. PCR analysis shows the presence of mRNA for IL-1 beta and IL-1 alpha in LPS-treated cells; IL-1 beta mRNA was detected in untreated chondrocytes. The inability to detect IL-1 by the thymocyte assay is due to the presence of a chondrocyte inhibitor of IL-1 that can be demonstrated in cell sonicates, supernatants, and on paraformaldehyde-fixed chondrocytes. Chromatography of LPS-stimulated supernatant showed a peak of IL-1 inhibitory activity at 21-45 kDa. Chondrocytes which secrete IL-1 and express mIL-1 could play a critical role in maintaining chronic inflammation in rheumatoid arthritis. Therefore, the ability of chondrocytes to produce both IL-1 and an inhibitor to IL-1 is important in interpreting the mechanism of cartilage matrix maintenance and degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号