首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A 4.8-kilobase-pair plasmid was isolated from the ruminal bacterium selenomonas ruminantium HD4 by using a sodium carbonate-EDTA washing buffer to improve cell lysis (R.G. Dean, S.A. Martin, and C. Carver, Lett. Appl. Microbiol. 8:45-48, 1989). This plasmid, designated pSR1, appears to be quite stable. No evidence of plasmid DNA was detected in S. ruminantium D or GA192. All three strains were tested for antibiotic resistance, and all were kanamycin resistant (MIC, 25 to 50 micrograms/ml). Only strain D was tetracycline resistant (MIC, 25 micrograms/ml), and all strains were sensitive to ampicillin (MIC, 1 microgram/ml). pSR1 was cloned into pBR322, and a map of pSR1 was constructed by using HindIII, ClAI, BamHI, and PvuII. Although ClaI, BamHI, ScaI, and EcoRV digested recombined plasmid isolated from Escherichia coli, these restriction endonucleases were not effective in digesting plasmid isolated directly from S. ruminantium HD4.  相似文献   

2.
Skene IK  Brooker JD 《Anaerobe》1995,1(6):321-327
A strain of the anaerobe Selenomonas ruminantium subsp. ruminantium that is capable of growing on tannic acid or condensed tannin as a sole energy source has been isolated from ruminal contents of feral goats browsing tannin-rich Acacia sp. Growth on tannic acid was accompanied by release of gallic acid into the culture medium but the bacterium was incapable of using gallic acid as a sole energy source. Tannin acylhydrolase (EC 3.1.1.20) activity was measured in crude cell-free extracts of the bacterium. The enzyme has a pH optimum of 7, a temperature optimum of 30-40 degrees C and a molecular size of 59 kDa. In crude extracts, the maximal rate of gallic acid methyl ester hydrolysis was 6.3 micromol min(-1) mg(-1) of protein and the K(m) for gallic acid methyl ester was 1.6 mM. Enzyme activity was displayed in situ in polyacrylamide and isoelectric focusing gels and was demonstrated to increase 17-fold and 36-fold respectively when cells were grown in the presence of gallic acid methyl ester or tannic acid.  相似文献   

3.
Xylose uptake by the ruminal bacterium Selenomonas ruminantium   总被引:1,自引:0,他引:1  
Selenomonas ruminantium HD4 does not use the phosphoenolpyruvate phosphotransferase system to transport xylose (S. A. Martin and J. B. Russell, J. Gen. Microbiol. 134:819-827, 1988). Xylose uptake by whole cells of S. ruminantium HD4 was inducible. Uptake was unaffected by monensin or lasalocid, while oxygen, o-phenanthroline, and HgCl2 were potent inhibitors. Menadione, antimycin A, and KCN had little effect on uptake, and acriflavine inhibited uptake by 23%. Sodium fluoride decreased xylose uptake by 10%, while N,N'-dicyclohexylcarbodiimide decreased uptake by 31%. Sodium arsenate was a strong inhibitor (83%), and these results suggest the involvement of a high-energy phosphate compound and possibly a binding protein in xylose uptake. The protonophores carbonyl cyanide m-chlorophenylhydrazone, 2,4-dinitrophenol, and SF6847 inhibited xylose uptake by 88, 82, and 43%, respectively. The cations Na+ and K+ did not stimulate xylose uptake. The kinetics of xylose uptake were nonlinear, and it appeared that more than one uptake mechanism may be involved or that two proteins (i.e., a binding protein and permease protein) with different affinities for xylose were present. Excess (10 mM) glucose, sucrose, or maltose decreased xylose uptake less than 40%. Uptake was unaffected at extracellular pH values between 6.0 and 8.0, while pH values of 5.0 and 4.0 decreased uptake 28 and 24%, respectively. The phenolic monomers p-coumaric acid and vanillin inhibited growth on xylose and xylose uptake more than ferulic acid did. The predominant end products resulting from the fermentation of xylose were lactate (7.5 mM), acetate (4.4 mM), and propionate (5.1 nM), and the Yxylose was 24.1 g/mol.  相似文献   

4.
Monoclonal antibodies were raised against whole cells of two different strains of Selenomonas ruminantium and tested for specificity and sensitivity in immunofluorescence and enzyme-linked immunosorbent assay procedures. Species-specific and strain-specific antibodies were identified, and reactive antigens were demonstrated in solubilized cell wall extracts of S. ruminantium. A monoclonal antibody-based solid-phase immunoassay was established to quantify S. ruminantium in cultures or samples from the rumen, and this had a sensitivity of 0.01 to 0.02% from 10(7) cells. For at least one strain, the extent of antibody reaction varied depending upon the stage of bacterial growth. Antigen characterization by immunoblotting shows that monoclonal antibodies raised against two different strains of S. ruminantium reacted with the same antigen on each strain. For one strain, an additional antigen reacted with both monoclonal antibodies. In the appropriate assay, these monoclonal antibodies may have advantages over gene probes, both in speed and sensitivity, for bacterial quantification studies.  相似文献   

5.
Selenomonas ruminantium HD4 does not use the phosphoenolpyruvate phosphotransferase system to transport xylose (S. A. Martin and J. B. Russell, J. Gen. Microbiol. 134:819-827, 1988). Xylose uptake by whole cells of S. ruminantium HD4 was inducible. Uptake was unaffected by monensin or lasalocid, while oxygen, o-phenanthroline, and HgCl2 were potent inhibitors. Menadione, antimycin A, and KCN had little effect on uptake, and acriflavine inhibited uptake by 23%. Sodium fluoride decreased xylose uptake by 10%, while N,N'-dicyclohexylcarbodiimide decreased uptake by 31%. Sodium arsenate was a strong inhibitor (83%), and these results suggest the involvement of a high-energy phosphate compound and possibly a binding protein in xylose uptake. The protonophores carbonyl cyanide m-chlorophenylhydrazone, 2,4-dinitrophenol, and SF6847 inhibited xylose uptake by 88, 82, and 43%, respectively. The cations Na+ and K+ did not stimulate xylose uptake. The kinetics of xylose uptake were nonlinear, and it appeared that more than one uptake mechanism may be involved or that two proteins (i.e., a binding protein and permease protein) with different affinities for xylose were present. Excess (10 mM) glucose, sucrose, or maltose decreased xylose uptake less than 40%. Uptake was unaffected at extracellular pH values between 6.0 and 8.0, while pH values of 5.0 and 4.0 decreased uptake 28 and 24%, respectively. The phenolic monomers p-coumaric acid and vanillin inhibited growth on xylose and xylose uptake more than ferulic acid did. The predominant end products resulting from the fermentation of xylose were lactate (7.5 mM), acetate (4.4 mM), and propionate (5.1 nM), and the Yxylose was 24.1 g/mol.  相似文献   

6.
Monoclonal antibodies were raised against whole cells of two different strains of Selenomonas ruminantium and tested for specificity and sensitivity in immunofluorescence and enzyme-linked immunosorbent assay procedures. Species-specific and strain-specific antibodies were identified, and reactive antigens were demonstrated in solubilized cell wall extracts of S. ruminantium. A monoclonal antibody-based solid-phase immunoassay was established to quantify S. ruminantium in cultures or samples from the rumen, and this had a sensitivity of 0.01 to 0.02% from 10(7) cells. For at least one strain, the extent of antibody reaction varied depending upon the stage of bacterial growth. Antigen characterization by immunoblotting shows that monoclonal antibodies raised against two different strains of S. ruminantium reacted with the same antigen on each strain. For one strain, an additional antigen reacted with both monoclonal antibodies. In the appropriate assay, these monoclonal antibodies may have advantages over gene probes, both in speed and sensitivity, for bacterial quantification studies.  相似文献   

7.
A cryptic plasmid (pSR1) isolated from Selenomonas ruminantium HD4 was previously cloned into the HindIII site of pBR322 and a restriction map was constructed using HindIII, ClaI, BamHI, and PvuII (S. A. Martin and R. G. Dean, Appl. Environ. Microbiol. 55(12), 3035-3038, 1989). Analysis of the nucleotide sequence of pSR1 revealed two major open reading frames (ORFs) located in the minus strand at different frames. Analysis of ORF-1 revealed that it has 325 amino acids with a predicted MW of 36,588, and ORF-2 has 379 amino acids with a predicted MW of 42,651. The ORF-1 amino acids showed 30 to 32% sequence homology to the hypothetical protein YtqA in Bacillus subtilis and another hypothetical protein in the thermophilic bacterium Aquifex aeolicus. ORF-2 showed limited homology (23%) to the hypothetical protein ICFG in the photosynthetic cyanobacteria Synechocystis PCC6803.  相似文献   

8.
A temperate bacteriophage was obtained from an isolate of the ruminal anaerobe Selenomonas ruminantium. Clear plaques that became turbid on further incubation occurred on a lawn of host bacteria. Cells picked from a turbid plaque produced healthy liquid cultures, but these often lysed on storage. Mid-log-phase liquid cultures incubated with the bacteriophage lysed and released infectious particles with a titer of up to 3 X 10(7) PFU/ml. A laboratory strain of S. ruminantium, HD-4, was also sensitive to this bacteriophage, which had an icosohedral head (diameter, 50 nm) and a flexible tail (length, 140 nm). The bacteriophage contained 30 kilobases of linear, double-stranded DNA, and a detailed restriction map was constructed. The lysogenic nature of infection was demonstrated by hybridization of bacteriophage DNA to specific restriction fragments of infected host genomic DNA and by identification of a bacteriophage genomic domain which may participate in integration of the bacteriophage DNA. Infection of S. ruminantium in vitro was demonstrated by two different methods of cell transformation with purified bacteriophage DNA.  相似文献   

9.
10.
The plasmid content of six different isolates of Selenomonas ruminantium from the rumen of sheep, cows or goats was examined by electron microscopy. In addition to small plasmids (< 12 kb) studied previously, all six strains contained at least one plasmid larger than 20 kb. Plasmid sizes of 1·4, 2·1, 2·4, 5·0, 6·2, 20·4, 20·8, 22·7, 23·3, 29·3, 30·7, 34·4 and 42·6 kb were estimated from contour length measurements. DNA-DNA hybridization experiments revealed homology among the large plasmids from five strains, while the 20·8 kb plasmid from a sixth isolate showed no apparent relationship with the plasmids of the other strains.  相似文献   

11.
A temperate bacteriophage was obtained from an isolate of the ruminal anaerobe Selenomonas ruminantium. Clear plaques that became turbid on further incubation occurred on a lawn of host bacteria. Cells picked from a turbid plaque produced healthy liquid cultures, but these often lysed on storage. Mid-log-phase liquid cultures incubated with the bacteriophage lysed and released infectious particles with a titer of up to 3 X 10(7) PFU/ml. A laboratory strain of S. ruminantium, HD-4, was also sensitive to this bacteriophage, which had an icosohedral head (diameter, 50 nm) and a flexible tail (length, 140 nm). The bacteriophage contained 30 kilobases of linear, double-stranded DNA, and a detailed restriction map was constructed. The lysogenic nature of infection was demonstrated by hybridization of bacteriophage DNA to specific restriction fragments of infected host genomic DNA and by identification of a bacteriophage genomic domain which may participate in integration of the bacteriophage DNA. Infection of S. ruminantium in vitro was demonstrated by two different methods of cell transformation with purified bacteriophage DNA.  相似文献   

12.
Pentose sugars can be an important energy source for ruminal bacteria, but there has been relatively little study regarding the regulation of pentose utilization and transport by these organisms. Selenomonas ruminantium, a prevalent ruminal bacterium, actively metabolizes xylose and arabinose. When strain D was incubated with a combination of glucose and xylose or arabinose, the hexose was preferentially utilized over pentoses, and similar preferences were observed for sucrose and maltose. However, there was simultaneous utilization of cellobiose and pentoses. Continuous-culture studies indicated that at a low dilution rate (0.10 h-1) the organism was able to co-utilize glucose and xylose. This co-utilization was associated with growth rate-dependent decreases in glucose phosphotransferase activity, and it appeared that inhibition of pentose utilization was due to catabolite inhibition by the glucose phosphotransferase transport system. Xylose transport activity in strain D required induction, while arabinose permease synthesis did not require inducer but was subject to repression by glucose. Since an electrical potential or a chemical gradient of protons drove xylose and arabinose uptake, pentose-proton symport systems apparently contributed to transport.  相似文献   

13.
Ferredoxin from the strict rumen anaerobe Selenomonas ruminantium has been purified to homogeneity and characterized with respect to its molecular weight and amino acid composition. The molecular weight of ferredoxin was 9,880. The A380/A280 absorbance ratio of the pure ferredoxin was 0.54 with a molar extinction coefficient of 31,000 M-1 cm-1 at 380 nm. Ferredoxin was reduced by cell-free extracts in the presence of hydrogen gas or pyruvate and acetyl coenzyme A.Abbreviations [Fex/Sy] denotes an iron sulfur cluster containing x iron and y sulfur atoms  相似文献   

14.
Species of ruminal bacteria were screened for the ability to grow in media containing RNA or DNA as the energy source. Bacteroides ruminicola D31d and Selenomonas ruminantium HD4, GA192, and D effectively used RNA for growth, but not DNA. B. ruminicola D31d was able grow on nucleosides but not on bases or ribose. The S. ruminantium strains were able to grow when provided with either nucleosides or ribose but not bases. Strains of S. ruminantium, but not B. ruminicola D31d, were also able to use nucleosides as nitrogen sources. These data suggest that RNA fermentation may be a general characteristic of S. ruminantium.  相似文献   

15.
M A Cotta 《Applied microbiology》1990,56(12):3867-3870
Species of ruminal bacteria were screened for the ability to grow in media containing RNA or DNA as the energy source. Bacteroides ruminicola D31d and Selenomonas ruminantium HD4, GA192, and D effectively used RNA for growth, but not DNA. B. ruminicola D31d was able grow on nucleosides but not on bases or ribose. The S. ruminantium strains were able to grow when provided with either nucleosides or ribose but not bases. Strains of S. ruminantium, but not B. ruminicola D31d, were also able to use nucleosides as nitrogen sources. These data suggest that RNA fermentation may be a general characteristic of S. ruminantium.  相似文献   

16.
Selenomonas ruminantium produces a tuft of flagella near the midpoint of the cell body and swims by rotating the cell body along the cell's long axis. The flagellum is composed of a single kind of flagellin, which is heavily glycosylated. The hook length of S. ruminantium is almost double that of Salmonella.  相似文献   

17.
Summary The objective of this study was to determine the maximum ammonium source concentration tolerated by Selenomonas ruminantium and its metabolic response to high ammonium source concentrations. The ammonia-nitrogen half-inhibition constant (K i) in defined basal medium was 239 mabetm for NH4Cl, 173 mabetm for NH4OH, 153 mabetm for (NH4)2SO4 and 110 mabetm for NH4HCO3. Reduction in continuous culture maximal growth rate was similar to the reduction in the batch culture logarithmic growth rate for the respective NH4Cl concentrations. Cell yield when expressed as Y ATP decreased for 150 and 200 mabetm NH4C1. the NH3-N K i estimates are in line with inhibiting concentrations observed for other bacteria and suggest that energy efficiency is reduced when the NH3-N concentration is increased. Offprint requests to: S. C. Ricke  相似文献   

18.
A numerous plasmid population was detected in strain 19 of Selenomonas ruminantium. The population was found to consist of six plasmids in size ranging from 1.4 to more than 20kb. The smallest 1.4kb cryptic plasmid pSRD191 was further characterized. Sequence analysis identified a single ORF encoding the 177-residue putative replication protein (Rep191) which shared significant homology with RepL family of replication protein from Firmicutes (staphylococci and bacilli). PCR analysis and Southern hybridisation showed that pSRD191 related plasmids are frequently encountered in rumen selenomonads.  相似文献   

19.
Selenomonas ruminantium 0078A was grown in a glucose-limited chemostat over a dilution rate range of 0.049-0-137/h. Fermentation products were acetate, propionate, succinate, lactate and C02; traces of ethanol were also detected. Succinate accounted for up to 52% of the substrate glucose carbon. When dilution rate was increased without a concomitant increase in glucose supply per unit time there were changes in the fermentation pattern which were not apparent when both dilution rate and glucose supply were simultaneously increased; the molar proportion of acetate increased at the expense of propionate.  相似文献   

20.
M. GILMOUR, W.J. MITCHELL AND H.J. FLINT. 1996. Matings between the lactate-utilizing, tetracycline-sensitive Selenomonas ruminantium strains 5521Cl and 5934e and the lactate-non-utilizing, tetracycline-resistant strain FB322 resulted in putative recombinant strains capable of growth on lactate. Analysis of total protein by SDS-PAGE and chromosomal DNA by hybridization, indicated that the recombinants were derived from strain FB322. DNA hybridization produced no evidence that plasmid transfer occurred, leaving chromosomal DNA transfer as the most likely mechanism for the altered phenotype. Analysis of strains 5934e, FB322 and the resulting recombinant TC3 indicated that all three strains contained D-nLDH and L-nLDH activities. In addition strains 5934e and TC3 possessed D-iLDH activity when grown on DL-lactate. The ability of strain FB322 to grow on pyruvate but not lactate suggested that the lactate-utilizing recombinant had acquired the ability to synthesize D-iLDH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号