首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lipophilic derivatives of chlorin p6, 13,15-N-(carboxymethyl)cycloimide methyl ester (CIC1) and 13,15-N-(2-carboxyethyl)cycloimide methyl ester (CIC2), were shown to absorb light in 710 nm region and to be efficient IR photosensitizers. They exhibit similar phototoxicities on the cells of A549 human lung adenocarcinoma, which are 40- and 100-fold higher than those of chlorin p6 and the clinically used Photogem, respectively, and are not toxic in the absence of light irradiation. The confocal spectral imaging technique allowed us to demonstrate that the high phototoxicity of CIC1 and CIC2 is due to their ability to readily penetrate to cells and to be bound to the cell membranes and lipid-containing structures in the monomeric photoactive form. Under the irradiation, the membrane-bound CIC1 and CIC2 are characterized by high quantum yields of singlet oxygen generation (0.6 and 0.65, respectively) and the inability to produce hydroxyl radicals. A 1.5-microM content of CIC1 and CIC2 in the incubation medium provides for their average cytoplasmic concentrations of 21 and 16.5 microM, respectively. The incubation times to achieve 50% level of maximum accumulation for CIC1 and CIC2 in A549 cells are 30 +/- 6 and 24 +/- 12 min, and the times for 50% release of the dyes from the cells are 17 +/- 4 and 50 +/- 10 min, respectively. A diffuse distribution with the predominant accumulation in the membranes of the Golgi apparatus and mitochondria is characteristic of both CIC2 and CIC1, whereas, in addition, CIC1 is considerably accumulated in lipid droplets (cellular organelles responsible for the storage and metabolism of neutral lipids and steryl esters). Our results demonstrate that changes in the structure of the imide substituent could affect the intracellular localization and the rate of release of chlorin p6 cycloimide derivatives from cells while preserving their high photodynamic activity.  相似文献   

2.
Reactive oxygen species generated by photosensitizers are efficacious remedy for tumor eradication. Eleven cycloimide derivatives of bacteriochlorin p (CIBCs) with different N-substituents at the fused imide ring and various substituents replacing the 3-acetyl group were evaluated as photosensitizers with special emphasis on structure-activity relationships. The studied CIBCs absorb light within a tissue transparency window (780-830 nm) and possess high photostability at prolonged light irradiation. The most active derivatives are 300-fold more phototoxic toward HeLa and A549 cells than the clinically used photosensitizer Photogem due to the substituents that improve intracellular accumulation (distribution ratio of 8-13) and provide efficient photoinduced singlet oxygen generation (quantum yields of 0.54-0.57). The substituents predefine selective CIBC targeting to lipid droplets, Golgi apparatus, and lysosomes or provide mixed lipid droplets and Golgi apparatus localization in cancer cells. Lipid droplets and Golgi apparatus are critically sensitive to photoinduced damage. The average lethal dose of CIBC-generated singlet oxygen per volume unit of cell was estimated to be 0.22 mM. Confocal fluorescence analysis of tissue sections of tumor-bearing mice revealed the features of tissue distribution of selected CIBCs and, in particular, their ability to accumulate in tumor nodules and surrounding connective tissues. Considering the short-range action of singlet oxygen, these properties of CIBCs are prerequisite to efficient antitumor photodynamic therapy.  相似文献   

3.
Lipophilic derivatives of chlorin p6, 13,15-N-(carboxymethyl)cycloimide methyl ester (CIC1) and 13,15-N-(2-carboxyethyl)cycloimide methyl ester (CIC2), were shown to absorb light in 710 nm region and to be efficient IR photosensitizers. They exhibit similar phototoxicities on the cells of A549 human lung adenocarcinoma, which are 40- and 100-fold higher than those of chlorin p6 and the clinically used Photogem, respectively, and are not toxic in the absence of light irradiation. The confocal spectral imaging technique allowed us to demonstrate that the high phototoxicity of CIC1 and CIC2 is due to their ability to readily penetrate to cells and to be bound to the cell membranes and lipid-containing structures in the monomeric photoactive form. Under the irradiation, the membrane-bound CIC1 and CIC2 are characterized by high quantum yields of singlet oxygen generation (0.6 and 0.65, respectively) and the inability to produce hydroxyl radicals. A 1.5-M content of CIC1 and CIC2 in the incubation medium provides for their average cytoplasmic concentrations of 21 and 16.5 M, respectively. The incubation times to achieve 50% level of maximum accumulation for CIC1 and CIC2 in A549 cells are 30 ± 6 and 24 ± 12 min, and the times for 50% release of the dyes from the cells are 17 ± 4 and 50 ± 10 min, respectively. A diffuse distribution with the predominant accumulation in the membranes of the Golgi apparatus and mitochondria is characteristic of both CIC2 and CIC1, whereas, in addition, CIC1 is considerably accumulated in lipid droplets (cellular organelles responsible for the storage and metabolism of neutral lipids and sterol esters). Our results demonstrate that changes in the structure of the imide substituent could affect the intracellular localization and the rate of release of chlorin p6 cycloimide derivatives from cells while preserving their high photodynamic activity.  相似文献   

4.
Conjugation of boron nanoparticles with porphyrins is an attractive way to create dual agents for anticancer boron neutron capture therapy (BNCT) and photodynamic therapy (PDT). Properties of chlorin e(6) conjugated with two cobalt bis(dicarbollide) nanoparticles (1) or with a closo-dodecaborate nanoparticle (2) are reported. Fluorescent dianionic conjugates 1 and 2 penetrate in A549 human lung adenocarcinoma cells, stain cytoplasm diffusely and accumulate highly in lysosomes but are not toxic themselves for cells. Average cytoplasmic concentration of boron atoms (B) achieves 270 μM (ca. 2 × 10(8) B/cell) and 27 μM (ca. 2 × 10(7) B/cell) at the 1.5 μM extracellular concentration of 1 and 2, respectively, that makes conjugate 1 especially suitable for BNCT. Conjugate 2 causes photoinduced cell death at micromolar concentrations and can be considered also as a photosensitizer for PDT. Conjugates 1 and 2 have high quantum yields of singlet oxygen generation (0.55 and 0.85 in solution, respectively), identical intracellular localization and similar lipid-like microenvironment but conjugate 1 possesses no photoinduced cytotoxicity. A presence of cobalt complexes in conjugate 1 is supposed to be a reason of the observed antioxidative effect in cellular environment, but an exact mechanism of this intriguing phenomenon is unclear. Due to increased intracellular accumulation and absence of photoinduced cytotoxicity conjugate 1 is promising for fluorescence diagnostics of cancer.  相似文献   

5.
The effect of electron-accepting substituents in position 3 of the chlorine p6 macrocycle in neutral and carboxyl-containing negatively charged cycloimide derivatives of chlorin p6 (CIC) on the photochemical and biological properties of these photosensitizers was studied. A relationship between the structure and properties of CICs was analyzed on the basis of information on their photoinduced cytotoxicity, efficiency of the generation of reactive oxygen species, photostability, intracellular localization, quantitative parameters of accumulation in cells, and cellular pharmacokinetics. It was shown that these compounds can be used for the development of photosensitizers with intense light absorption at 740 nm, controlled intracellular localization, and a high photodynamic activity toward tumor cells.  相似文献   

6.
Two series of chlorin p6 13,15-cycloimides that differ in their substituents at the nitrogen atom of the additional six-membered ring were synthesized. The compounds of the first series have a hydroxyl, alkoxyl, or acyloxy group at the 13,15-cycloimide nitrogen and those of the second series, residues of aliphatic alcohols. The cycloimides synthesized are satisfactorily stable and display an intensive light absorption maximum at 710-718 nm. Treatment of the cycloimides with sodium periodate in the presence of osmium tetroxide and with the Vilsmeier reagent resulted in the formation of 3-formyl- and 3-(2-formylvinyl)derivatives, respectively. The conversion of vinyl into formyl group or 2-formylvinyl group leads to an additional bathochromic shift of the long-wave maximum by 30 nm on an average. An extra hydroxy group was introduced at position 18 of the macrocycle to increase the cycloimide hydrophilicity. The English version of the paper: Russian Journal of Bioorganic Chemistry, 2004, vol. 30, no. 5; see also http: // www.maik.ru.  相似文献   

7.
The effect of electron-accepting substituents in position 3 of the chlorine p6 macrocycle in neutral and carboxyl-containing negatively charged cycloimide derivatives of chlorin p6 (CIC) on the photochemical and biological properties of these photosensitizers was studied. The relationship between the structure and properties of CICs was analyzed on the basis of information on their photoinduced cytotoxicity, efficiency of generation of reactive oxygen species, photostability, intracellular localization, quantitative parameters of accumulation in cells, and cellular pharmakinetics. It was shown that these compounds can be used for the development of photosensitizers with intense light absorption at 740 nm, controlled intracellular localization, and a high photodynamic activity toward tumor cells.  相似文献   

8.
Cationic liposomes complexed with DNA have been used extensively as non-viral vectors for the intracellular delivery of reporter or therapeutic genes in culture and in vivo. We examined the relationship between the characteristics of the lipoplexes, their mode of interaction with monocytic THP-1 cells and their ability to transfect these cells. We determined the size and zeta potential of cationic liposomes (composed of 1,2-dioleoyl-3-(trimethylammonium) propane (DOTAP) and its mixtures with neutral lipids), and lipoplexes at different (+/-) charge ratios. As the (+/-) charge ratio of the lipoplexes decreased to (1/1), a significant reduction in zeta potential and an increase in size was observed. The increase in size resulted from fusion between liposomes promoted by DNA, as demonstrated by a lipid mixing assay, and from aggregation of the complexes. Interaction of liposomes and lipoplexes with THP-1 cells was assessed by monitoring lipid mixing ('fusion') as well as binding and cell association. While no lipid mixing was observed with the 1/2 (+/-) lipid/DNA complexes, lipoplexes with higher (+/-) charge ratios underwent significant fusion in conjunction with extensive cell binding. Liposome binding to cells was dependent on the positive charge of the liposomes, and their fusion could be modulated by the co-lipid. DOTAP/phosphatidylethanolamine (1:1) liposomes fused with THP-1 cells, unlike DOTAP/phosphatidylcholine (1:1) liposomes, although both liposome types bound to the cells to a similar extent. The use of inhibitors of endocytosis indicated that fusion of the cationic liposomes with cells occurred mainly at the plasma membrane level. The presence of serum increased the size of the cationic liposomes, but not that of the lipoplexes. Low concentrations of serum (3%) completely inhibited the fusion of cationic liposomes with cells, while inhibiting binding by only 20%. Our results suggest that binding of cationic liposomes and lipoplexes to cells is governed primarily by electrostatic interactions, whereas their fusion is regulated by the lipid composition and sterically favorable interactions with cell surface molecules. In addition our results indicate no correlation between fusion of the lipoplexes with the plasma membrane and the levels of transfection.  相似文献   

9.
Two series of chlorin p6 13,15-cycloimides that differ in their substituents at the nitrogen atom of the additional six-membered ring were synthesized. The compounds of the first series have a hydroxy, alkoxy, or acyloxy group at the 13,15-cycloimide nitrogen and those of the second series, residues of aliphatic alcohols. The cycloimides synthesized are satisfactorily stable and display an intensive light absorption maximum at 710–718 nm. Treatment of the cycloimides with sodium periodate in the presence of osmium tetroxide and with the Vilsmeier reagent resulted in the formation of 3-formyl- and 3-(2-formylvinyl)derivatives, respectively. The conversion of vinyl into formyl group or 2-formylvinyl group leads to an additional bathochromic shift of the long-wave maximum by 30 nm on average. An extra hydroxy group was introduced at position 18 of the macrocycle to increase the cycloimide hydrophilicity.  相似文献   

10.
Confluent secondary cultures of rat arterial smooth muscle cells were exposed to cationic and anionic derivatives of ferritin and horseradish peroxidase and studied electron microscopically in order to clarify the influence of molecular net charge on surface binding and endocytosis of proteins. The cationic markers bound uniformly to the plasma membrane. They were then ingested by membrane invagination and via small vesicles transported to lysosomes and the Golgi complex. These organelles were both labelled already after 30 min of incubation. With longer exposure times (2-4 h), an increasing accumulation within the lysosomes was observed, whereas the labelling of the Golgi complex decreased. In spite of continued interiorization of plasma membrane carrying the cationic markers, the cells retained their ability to bind the latter to the surface. The anionic markers did not bind to the cell surface, were taken up in the fluid phase, and later observed only in lysosomes. If assuming that the cationic and anionic proteins serve as markers for the plasma membrane and fluid phase, respectively, but do not affect the intracellular path of interiorized membrane, these results indicate that the endocytic vesicles fuse with and empty their content into lysosomes and that part of the incoming membrane subsequently is transferred to the Golgi complex for possible recirculation back to the cell surface. If, on the other hand, the net charge of the exogenous marker influences the path of the vesicles, there may exist more than one recovery route for membrane interiorized by endocytosis.  相似文献   

11.
It was previously shown that cultured mouse peritoneal macrophages ingest anionic derivatives of horseradish peroxidase (HRP) and ferritin by fluid-phase endocytosis and accumulate them in lysosomes. Cationic derivatives were taken up by adsorptive endocytosis and transported to lysosomes but subsequently appeared also in stacked cisternae, tubules, and vesicles of the Golgi complex. In the present investigation, the effect of molecular net charge on the rate of cellular inactivation of a protein was studied. The results demonstrate that anionized HRP was inactivated at a higher initial rate than cationized HRP. This is in agreement with the finding that the cationic protein partly escaped from the digestive compartment of the cells, that means the lysosomes. The effects of phorbol myristate acetate (PMA)--a diterpene ester and a tumor promoter--and monensin--a carboxylic ionophore and a perturbant of the Golgi complex--on fluid-phase endocytosis of HRP and intracellular transport of cationized ferritin (CF) were also studied. PMA stimulated fluid-phase endocytosis of HRP but did not interfere with transport of CF to the Golgi complex. Contrarily, monensin inhibited uptake of HRP and almost totally blocked transport of CF to the Golgi complex. The findings support the idea that membrane and content of endocytic vesicles are treated separately. The content is emptied into lysosomes where macromolecular material normally is degraded. The membrane becomes part of the lysosomal envelope in connection with endocytic vesicle-lysosome fusion. Subsequently, membrane patches are detached from the lysosomes and reutilized. This is at least partly mediated via the Golgi complex and particularly its tubular and vesicular parts. Since the cationic tracers do not bind to the membrane in a stable way, it is not possible to extend the conclusions to individual membrane constituents.  相似文献   

12.
We present a study on whether and to what extent subcellular localization may compete favorably with photosensitization efficiency with respect to the overall efficiency of photoinduced cell death. We have compared the efficiency with which two cationic photosensitizers, namely methylene blue (MB) and crystal violet (CV), induce the photoinduced death of human cervical adenocarcinoma (HeLa) cells. Whereas MB is well known to generate singlet oxygen and related triplet excited species with high quantum yields in a variety of biological and chemical environments (i.e., acting as a typical type II photosensitizer), the highly mitochondria-specific CV produces triplet species and singlet oxygen with low yields, acting mostly via the classical type I mechanism (e.g., via free radicals). The findings described here indicate that the presumably more phototoxic type II photosensitizer (MB) does not lead to higher degrees of cell death compared to the type I (CV) photosensitizer. In fact, CV kills cells with the same efficiency as MB, generating at least 10 times fewer photoinduced reactive species. Therefore, subcellular localization is indeed more important than photochemical reactivity in terms of overall cell killing, with mitochondrial localization representing a highly desirable property for the development of more specific/efficient photosensitizers for photodynamic therapy applications.  相似文献   

13.
Tim Brac 《Tissue & cell》1984,16(6):859-871
The distribution of microinjected ferritin, ranging in charge from anionic to highly cationic, has been used to indicate differences in surface charge on the rough endoplasmic reticulum and the Golgi complex of intact cells. Highly cationic ferritins (HCF)(HCF1, pI 7.9-9.1; HCF2, pI 8.5-9.4; and HCF3.pI 9.5-10.1) were mostly bound and caused swelling of the rough endoplasmic reticulum. Cationic ferritin (CF) (pI 7.0-8.0) and anionic ferritin (AF) (pI 4.0-4.4) caused no changes in morphology. The distribution of these ferritins in the cytoplasmic space varied with their charge. Significantly more CF was bound to surfaces than was found in the free cytoplasmic space. Conversely, there was significantly more AF in the free cytoplasmic space than close to surfaces. Therefore, the intracellular surfaces are negatively charged. Comparison of the structures in the secretory pathway showed no differences in ferritin binding to transition vesicles, rough endoplasmic reticulum, Golgi saccules or secretory vesicles. The Golgi complex beads are not distinguished by their charge. It is therefore unlikely that charge differences play a role in regulating membrane-membrane interactions in this region of the secretory pathway.  相似文献   

14.
The capability for electrogenic inward transport of substrates that carry different net charge is a phenomenon observed in a variety of membrane-solute transporters but is not yet understood. We employed the two-electrode voltage clamp technique combined with intracellular pH recordings and the giant patch technique to assess the selectivity for bidirectional transport and the underlying stoichiometries in proton to substrate flux coupling for electrogenic transfer of selected anionic, cationic, and neutral dipeptides by the intestinal peptide transporter PEPT1. Anionic dipeptides such as Gly-Asp and Asp-Gly are transported in their neutral and negatively charged forms with high and low affinities, respectively. The positive transport current obtained with monoanionic substrates results from the cotransport of two protons. Cationic dipeptides can be transported in neutral and positively charged form, resulting in an excess transport current as compared with neutral substrates. However, binding and transport of cationic dipeptides shows a pronounced selectivity for the position of charged side chains demonstrating that the binding domain of PEPT1 is asymmetric, both in its inward and outward facing conformation. The simultaneous presence of identically charged substrates on both membrane surfaces generates outward and, unexpectedly, enhanced inward transport currents probably by increasing the turnover rate.  相似文献   

15.
The mechanistic aspects of Escherichia coli photodynamic inactivation (PDI) have been investigated in bacteria treated with 5,10,15-tris[4-(3-N,N,N-trimethylammoniumpropoxy)phenyl]-20-(4-trifluoromethylphenyl)porphyrin iodide (A(3)B(3+)) and visible light. The photosensitization activity of A(3)B(3+) porphyrin was compared with that of 5,10,15,20-tetra(4-N,N,N-trimethylammonium phenyl)porphyrin p-tosylate (TMAP(4+)), which is an active tetracationic sensitizer to eradicate bacteria. The PDI damages on plasmid and genomic DNA were analyzed by electrophoresis. DNA photocleavage was observed after a long period of irradiation, when the bacterial cells are largely photoinactivated. Transmission electron microscopy (TEM) revealed structural changes with appearance of low density areas into the cells and irregularities in cell barriers, which could affect the normal cell membrane functionality. Also, damages on the cell-wall were not detected by scanning electron microscopy (SEM) and release of intracellular biopolymers was not found after PDI. These results indicate that the photodynamic activity of these cationic porphyrins produces DNA photodamage after a long period of irradiation. Therefore, an interference with membrane functions could be the main cause of E. coli photoinactivation upon short PDI treatments.  相似文献   

16.
Fas-mediated caspase-dependent cell apoptosis has been well investigated. However, recent studies have shown that Fas can induce nonapoptotic caspase-independent cell death (CICD) when caspase activity is inhibited. Currently, the molecular mechanism of this alternative cell death mediated by Fas remains unclear. In this study, we investigated the signaling pathway of Fas-induced CICD in mouse embryonic fibroblasts (MEFs) whose caspase function was disrupted by the pan-caspase inhibitor Z-VAD-FMK and its coupling to inflammatory responses. Our results revealed that receptor-interacting protein 1 and tumor necrosis factor receptor-associated factor 2 play important roles in FasL-induced CICD. This death is associated with intracellular reactive oxygen species (ROS) production from mitochondria, as a ROS scavenger (BHA), antioxidants (trolox, NAC), and a mitochondrial respiratory chain uncoupler (rotenone) could prevent this event. Furthermore, delayed and sustained JNK activation, mitochondrial membrane potential breakdown, and loss of intracellular GSH were observed. In addition to CICD, FasL also induces cyclooxygenase-2 and MIP-2 gene upregulation, and both responses are attributed to ROS-dependent JNK activation. Taken together, these results demonstrate alternative signaling pathways of Fas upon caspase inhibition in MEFs that are unrelated to the classical apoptotic pathway, but steer cells toward necrosis and an inflammatory response through ROS production.  相似文献   

17.
In this feature article, a brief overview over the photoinduced energy and charge transfer mechanisms involving fullerenes will be presented. The photoinduced charge separation between organic donor and acceptor molecules is the basic photophysical mechanism for natural photosynthesis and nearly all organic solar cell concepts. We will give a short introduction to the mechanisms of excited state charge transfer and resonant energy transfer and present examples of relevant applications in organic optoelectronics and photodynamic tumor therapy.  相似文献   

18.
The photodynamic activity of a cationic Zn(II) tetramethyltetrapyridinoporphyrazinium salt (ZnPc ) was compared with that of a non-charged Zn(II) tetrapyridinoporphyrazine (ZnPc 1), both in vitro using human red blood (HRB) cells and a typical Gram-negative bacterium Escherichia coli. Absorption and fluorescence spectroscopic studies were analyzed in different media. Fluorescence quantum yields (phi(F)) of 0.35 for ZnPc 1 and 0.30 for ZnPc 2 were calculated in N,N-dimethylformamide (DMF). The singlet molecular oxygen, O(2)((1)Delta(g)), production was evaluated using 9,10-dimethylanthracene (DMA) in DMF yielding values of Phi(Delta)= 0.56 for ZnPc 1 and 0.50 for ZnPc 2. In biological medium, the photodynamic effect was first evaluated in HRB cells. Both phthalocyanines produce similar photohemolysis of HRB cells, reaching values >90% of lysis after 5 min of irradiation with visible light. The photodynamic effect is accompanied by an increase in the membrane fluidity of HRB cells. However, these studies on E. coli cells showed that the cationic ZnPc 2 produces a higher photoinactivation of Gram-negative bacteria than ZnPc 1. Also, these results were established by stopped of growth curves for E. coli. Therefore the studies show that cationic ZnPc 2 is an efficient phototherapeutic agent with potential applications in tumor cell and Gram-negative bacteria inactivation by photodynamic therapy.  相似文献   

19.
Disulfonated aluminium phthalocyanine (AlS(2)Pc) is used experimentally as a photosensitiser for both photodynamic therapy (PDT) and photochemical internalisation (PCI). In this study we have focused on modifications in intracellular photosensitiser localisation and fluorescence intensity in macrophages during and after photoirradiation. Since macrophages are highly abundant in tumour tissue and readily accumulate AlS(2)Pc both in vivo and in vitro, we investigated PDT-induced changes of AlS(2)Pc fluorescence in the murine macrophage cell line J774A.1 using CCD fluorescence imaging microscopy. The distinct intracellular localization disappeared upon red laser irradiation and was replaced by a uniform distribution accompanied by a transient fluorescence intensity increase using higher AlS(2)Pc concentrations, followed by photobleaching after further irradiation. A short period of irradiation was sufficient to induce the intracellular redistribution and intensity increase, which then continued in the dark without further laser irradiation. However in the absence of oxygen no fluorescence intensity increase or redistribution was observed. This finding favours the general assumption of photodynamic destruction of organelle membranes resulting in the observed redistribution of the phthalocyanine. No other long-lived fluorescent photoproducts were observed during irradiation. Under deoxygenated conditions slower photobleaching was observed, and photobleaching quantum yields were estimated under aerated and deoxygenated conditions. The participation of reactive oxygen intermediates (ROS) generated during irradiation was indicated by intracellular oxidation of 2',7'-dichlorodihydrofluorescein to the fluorescent 2',7'-dichlorofluorescein in macrophages. The oxygen dependence of these photomodification processes is relevant to the application of AlS(2)Pc to photochemical internalisation which relies on photosensitiser redistribution in cells upon light exposure.  相似文献   

20.
Cationic lipid-DNA (CL-DNA) complexes comprise a promising new class of synthetic nonviral gene delivery systems. When positively charged, they attach to the anionic cell surface and transfer DNA into the cell cytoplasm. We report a comprehensive x-ray diffraction study of the lamellar CL-DNA self-assemblies as a function of lipid composition and lipid/DNA ratio, aimed at elucidating the interactions determining their structure, charge, and thermodynamic stability. The driving force for the formation of charge-neutral complexes is the release of DNA and lipid counterions. Negatively charged complexes have a higher DNA packing density than isoelectric complexes, whereas positively charged ones have a lower packing density. This indicates that the overcharging of the complex away from its isoelectric point is caused by changes of the bulk structure with absorption of excess DNA or cationic lipid. The degree of overcharging is dependent on the membrane charge density, which is controlled by the ratio of neutral to cationic lipid in the bilayers. Importantly, overcharged complexes are observed to move toward their isoelectric charge-neutral point at higher concentration of salt co-ions, with positively overcharged complexes expelling cationic lipid and negatively overcharged complexes expelling DNA. Our observations should apply universally to the formation and structure of self-assemblies between oppositely charged macromolecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号