首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A quantitative PCR approach is presented to detect small genomic sequence differences for molecular quantification of recombinant DNA. The only unique genetic feature of the mercury-reducing, genetically improved Pseudomonas putida KT2442::mer73 available to distinguish it from its native mercury-resistant relatives is the DNA sequence crossing the border of the insertion site of the introduced DNA fragment. The quantification assay is a combination of specific PCR amplification and temperature gradient gel electrophoresis (TGGE). Gene quantification is provided by a competitively co-amplified DNA standard constructed by point mutation PCR. After computing the denaturation behavior of the target DNA stretch, a single base difference was introduced to achieve maximum migration difference in TGGE between the original target DNA and the modified standard without altering the PCR amplification efficiency. This competitive PCR strategy is a highly specific and sensitive way to detect small sequence differences and to monitor recombinant DNA in effluxes of biotechnological plants.  相似文献   

2.
The aim of this study was to develop a system for rapid and accurate real-time quantitative PCR (qPCR) identification and quantification of Botrytis cinerea, one of the major pathogens present on grapes. The intergenic spacer (IGS) region of the nuclear ribosomal DNA was used to specifically detect and quantify B. cinerea. A standard curve was established to quantify this fungus. The qPCR reaction was based on the simultaneous detection of a specific IGS sequence and also contained an internal amplification control to compensate for variations in DNA extraction and the various compounds from grapes that inhibit PCR. In these conditions, the assay had high efficiency (97%), and the limit of detection was estimated to be 6.3 pg DNA (corresponding to 540 spores). Our method was applied to assess the effects of various treatment strategies against Botrytis in the vineyard. Our qPCR assay proved to be rapid, selective and sensitive and may be used to monitor Botrytis infection in vineyards.  相似文献   

3.
The protozoan parasite Giardia lamblia is the most common cause of waterborne disease outbreaks associated with drinking water in the United States. The conventional method used for the enumeration of Giardia cysts in water is based on immunofluorescence with monoclonal antibodies. It is tedious and time-consuming and has the major drawback to be non-specific for the only species infecting humans, G. lamblia. We have developed a real-time polymerase chain reaction (PCR) method using fluorescent TaqMan technology, which improved the specificity of G. lamblia cyst quantification compared to the immunofluorescence assay (IFA). However, this PCR was not totally specific for G. lamblia species and amplified Giardia ardeae target as well. This method showed a sensitivity of 0.45 cysts per reaction and an efficiency of 95% in purified suspensions. We have then applied this quantification method to raw wastewater, a medium containing numerous debris, particles and PCR inhibitors. The adaptation to these environmental samples was realized by a screening of three cyst purification methods and six DNA extraction protocols. Real-time quantification was accomplished by the simultaneous amplification of unknown samples and a tenfold serial dilution of purified G. lamblia cysts. For all samples, the concentrations observed with TaqMan PCR method were compared to the IFA values. Giardia spp. cysts were detected in all non-spiked raw wastewater samples with IFA procedure and the concentrations of Giardia spp. cysts used for the comparison between the two methods ranged between 3.3x10(2)/l and 4.3x10(3)/l. The highest TaqMan PCR/IFA ratios were observed when Percoll/sucrose flotation was combined with DNA extraction protocol optimized for cyst wall lysis, impurities adsorption on a resin, and double step protein digestion and column purification. The concentrations observed with this TaqMan PCR method ranged from 2.5x10(2) to 2.4x10(3) G. lamblia cysts/l and only one sample resulted in a no amplification curve. Thus, we developed a TaqMan PCR method increasing the rapidity and specificity of G. lamblia cyst quantification. The combination of Percoll/sucrose flotation and DNA extraction optimized protocol before TaqMan assay has provided a good indication of the G. lamblia contamination level in raw sewage samples.  相似文献   

4.
A quantitative PCR approach is presented to analyze the amount of recombinant green fluorescent protein (gfp) genes in environmental DNA samples. The quantification assay is a combination of specific PCR amplification and temperature gradient gel electrophoresis (TGGE). Gene quantification is provided by a competitively coamplified DNA standard constructed by point mutation PCR. A single base difference was introduced to achieve a suitable migration difference in TGGE between the original target DNA and the modified standard without altering the PCR amplification efficiency. This competitive PCR strategy is a highly specific and sensitive way to monitor recombinant DNA in environments like the efflux of a biotechnological plant.  相似文献   

5.
A novel method for DNA quantification and specific sequence detection in a highly integrated silicon microchamber array is described. Polymerase chain reaction (PCR) mixture of only 40 nL volume could be introduced precisely into each chamber of the mineral oil layer coated microarray by using a nanoliter dispensing system. The elimination of carry-over and cross-contamination between microchambers, and multiple DNA amplification and detection by TaqMan chemistry were demonstrated, for the first time, by using our system. Five different gene targets, related to Escherichia coli were amplified and detected simultaneously on the same chip by using DNA from three different serotypes as the templates. The conventional method of DNA quantification, which depends on the real-time monitoring of variations in fluorescence intensity, was not applied to our system, instead a simple method was established. Counting the number of the microchambers with a high fluorescence signal as a consequence of TaqMan PCR provided the precise quantification of trace amounts of DNA. The initial DNA concentration for Rhesus D (RhD) gene in each microchamber was ranged from 0.4 to 12 copies, and quantification was achieved by observing the changes in the released fluorescence signals of the microchambers on the chip. DNA target could be detected as small as 0.4 copies. The amplified DNA was detected with a CCD camera built-in to a fluorescence microscope, and also evaluated by a DNA microarray scanner with associated software. This simple method of counting the high fluorescence signal released in microchambers as a consequence of TaqMan PCR was further integrated with a portable miniaturized thermal cycler unit. Such a small device is surely a strong candidate for low-cost DNA amplification, and detected as little as 0.4 copies of target DNA.  相似文献   

6.
Polymerase chain reaction (PCR) is a major DNA amplification technology from molecular biology. The quantitative analysis of PCR aims at determining the initial amount of the DNA molecules from the observation of typically several PCR amplifications curves. The mainstream observation scheme of the DNA amplification during PCR involves fluorescence intensity measurements. Under the classical assumption that the measured fluorescence intensity is proportional to the amount of present DNA molecules, and under the assumption that these measurements are corrupted by an additive Gaussian noise, we analyze a single amplification curve using a hidden Markov model(HMM). The unknown parameters of the HMM may be separated into two parts. On the one hand, the parameters from the amplification process are the initial number of the DNA molecules and the replication efficiency, which is the probability of one molecule to be duplicated. On the other hand, the parameters from the observational scheme are the scale parameter allowing to convert the fluorescence intensity into the number of DNA molecules and the mean and variance characterizing the Gaussian noise. We use the maximum likelihood estimation procedure to infer the unknown parameters of the model from the exponential phase of a single amplification curve, the main parameter of interest for quantitative PCR being the initial amount of the DNA molecules. An illustrative example is provided. This research was financed by the Swedish foundation for Strategic Research through the Gothenburg Mathematical Modelling Centre.  相似文献   

7.
Fluorescent monitoring of DNA amplification is the basis of real-time PCR, from which target DNA concentration can be determined from the fractional cycle at which a threshold amount of amplicon DNA is produced. Absolute quantification can be achieved using a standard curve constructed by amplifying known amounts of target DNA. In this study, the mathematics of quantitative PCR are examined in detail, from which several fundamental aspects of the threshold method and the application of standard curves are illustrated. The construction of five replicate standard curves for two pairs of nested primers was used to examine the reproducibility and degree of quantitative variation using SYBER® Green I fluorescence. Based upon this analysis the application of a single, well- constructed standard curve could provide an estimated precision of ±6–21%, depending on the number of cycles required to reach threshold. A simplified method for absolute quantification is also proposed, in which quantitative scale is determined by DNA mass at threshold.  相似文献   

8.
A standard plasmid was constructed as a novel reference molecule for use in real-time quantitative PCR assays to verify the identity of beef, pork, chicken, mutton, and horseflesh. The plasmid contained a target domain of the cytochrome b (cyt b) gene and an artificial DNA sequence. Primers CO-F and CO-R, and probe CO-P were specifically designed to detect the artificial sequence. The calculated R2 values of the standard curves (103-10? copies per reaction) for the five species ranged between 0.998 and 0.999 in the quantification analysis. The constructed plasmid provides a universal method for measuring the copy number of cyt b DNA in minced meat. This method would be a useful procedure for verifying food labels.  相似文献   

9.
A quantitative detection assay for analysis of platelet glycoprotein GPIIIa gene expression is presented. The assay uses two fluorescently labeled TaqMan MGB probes to detect the polymorphic site in GPIIIa nucleotide sequence, leading to antigens HPA-1a and HPA-1b. In order to avoid the influence of DNA contamination on RNA quantification, a forward primer was constructed to span an exon-exon junction. The assay is therefore applicable to expression studies also in samples containing only a small amount of contaminating DNA. To standardize the amount of sample cDNA added to the reaction, amplification of endogenous control 18SrRNA was included in a separate well. The amplification validation experiment showed a high real-time PCR efficiency for HPA-1a, HPA-1b and 18SrRNA. Relative quantification was therefore performed using the comparative C(T) method. The assay was optimized on a reversely transcribed total RNA from platelets, and the specificity rate was determined by sequencing. The amount of cDNA at which amplification was still clearly detectable was 5 ng. This newly developed real-time quantitative PCR assay is a sensitive, reproducible and reliable method. It is suitable for studying different stages of megakaryopoiesis, monitoring molecular alteration in defective platelets and determining differences in the GPIIIa expression level between normal and pathological megakaryocytic differentiation pathways.  相似文献   

10.
Kinetic Outlier Detection (KOD) in real-time PCR   总被引:8,自引:1,他引:7       下载免费PDF全文
Real-time PCR is becoming the method of choice for precise quantification of minute amounts of nucleic acids. For proper comparison of samples, almost all quantification methods assume similar PCR efficiencies in the exponential phase of the reaction. However, inhibition of PCR is common when working with biological samples and may invalidate the assumed similarity of PCR efficiencies. Here we present a statistical method, Kinetic Outlier Detection (KOD), to detect samples with dissimilar efficiencies. KOD is based on a comparison of PCR efficiency, estimated from the amplification curve of a test sample, with the mean PCR efficiency of samples in a training set. KOD is demonstrated and validated on samples with the same initial number of template molecules, where PCR is inhibited to various degrees by elevated concentrations of dNTP; and in detection of cDNA samples with an aberrant ratio of two genes. Translating the dissimilarity in efficiency to quantity, KOD identifies outliers that differ by 1.3–1.9-fold in their quantity from normal samples with a P-value of 0.05. This precision is higher than the minimal 2-fold difference in number of DNA molecules that real-time PCR usually aims to detect. Thus, KOD may be a useful tool for outlier detection in real-time PCR.  相似文献   

11.

Background

The polymerase chain reaction amplifies and quantifies small amounts of DNA. It is a cyclic process, during each cycle of which each strand of template DNA is copied with probability approaching one: the amount of DNA approximately doubles and this amount can be estimated fluorimetrically each cycle, producing a set of fluorescence values hereafter referred to as the amplification curve. Commonly the biological question of relevance is one of the ratio of DNA concentrations in two samples: a ratio that is deduced by comparing the two amplification curves, usually by way of a plot of fluorescence against cycle number. Central to this analysis is measuring the extent to which one amplification curve is shifted relative to the other, a measurement often accomplished by defining a threshold or quantification cycle, Cq, for each curve: the fractional cycle number at which fluorescence reaches some threshold or at which some other criterion (maximum slope, maximum rate of change of slope) is satisfied.We propose an alternative where position is measured relative to a reference curve; position equates to the cycle shift which maximizes the correlation between the reference and the observed fluorescence sequence. A key parameter of the reference curve is obtained by fixed-point convergence.

Results

We consider the analysis of dilution series constructed for the estimation of qPCR amplification efficiency. The estimate of amplification efficiency is based on the slope of the regression line when the Cq is plotted against the logarithm of dilution. We compare the approach to three commonly used methods for determining Cq; each is applied to publicly accessible calibration data sets, and to ten from our own laboratory. As in the established literature we judge their relative merits both from the standard deviation of the slope of the calibration curve, and from the variance in Cq for replicate fluorescence curves.

Conclusions

The approach does not require modification of experimental protocols, and can be applied retrospectively to existing data. We recommend that it be added to the methodological toolkit with which laboratories interpret their real-time PCR data.

Electronic supplementary material

The online version of this article (doi:10.1186/s12859-014-0372-4) contains supplementary material, which is available to authorized users.  相似文献   

12.
A DNA binding fluorescence method based on polymerase chain reaction (PCR) products was evaluated for rapid detection of Salmonella Typhimurium in poultry products. Wash water samples of chicken carcasses and ground turkey were inoculated with S. Typhimurium to obtain final concentrations of 10° - 105 CFU/mL. One mL of each sample was used to get the DNA template and 5 μL of the sample template was added into 25 μL of SYBR Green PCR Master Mix and two specific Salmonella ompC gene primers. The negative control was the same except 5 μL of each wash solution was added instead of 5 μL sample template. The reaction was carried out in a thermocycler. Finally, the fluorescence signal of each PCR product was measured using a fluorometer. The PCR products were also confirmed by ethidium bromide agarose gel, and the DNA concentrations of the PCR products were measured by a filter fluorescence photometer. The results showed that when bacterial cells increased from 0 to 2 CFU/mL, the fluorescence signal increased significantly. The PCR-based fluorescence method could detect the target bacteria in minutes after PCR amplification compared to hours by gel electrophoresis and also could be done at an earlier time during PCR amplification. The detection limit of this method for S. Typhimurium in the poultry samples was 2 CFU/mL without any enrichment.  相似文献   

13.
Adenoviruses 40 and 41 have been recognized as important etiological agents of gastroenteritis in children. A real-time PCR method (TaqMan assay) was developed for rapid quantification of adenovirus 40 (Ad40) by amplifying an 88 bp sequence from the hexon gene. To establish a quantification standard curve, a 1090 bp hexon region of Ad40 was amplified and cloned into the pGEM-T Vector. A direct correlation was observed between the fluorescence threshold cycle number (Ct) and the starting quantity of Ad40 hexon gene. The quantification was linear over 6-log units and the amplification efficiency averaged greater than 95%. Seeding studies using various environmental matrices (including sterile water, creek water, brackish estuarine water, ocean water, and secondary sewage effluent) suggest that this method is applicable to environmental samples. However, real-time PCR was sensitive to inhibitors present in the environmental samples. Lower efficiency of PCR amplification was found in secondary sewage effluent and creek waters. Application of the method to fecal contaminated waters successfully quantified the presence of Ad40. The sensitivity of the real-time PCR is comparable to the traditional nested PCR assay for environmental samples. In addition, the real-time PCR assay offers the advantage of speed and insensitivity to contamination during PCR set up. The real-time PCR assay developed in this study is suitable for quantitative determination of Ad40 in environmental samples and represents a considerable advancement in pathogen quantification in aquatic environments.  相似文献   

14.
15.
Quantitative real-time PCR represents a highly sensitive and powerful technology for the quantification of DNA. Although real-time PCR is well accepted as the gold standard in nucleic acid quantification, there is a largely unexplored area of experimental conditions that limit the application of the Ct method. As an alternative, our research team has recently proposed the Cy0 method, which can compensate for small amplification variations among the samples being compared. However, when there is a marked decrease in amplification efficiency, the Cy0 is impaired, hence determining reaction efficiency is essential to achieve a reliable quantification. The proposed improvement in Cy0 is based on the use of the kinetic parameters calculated in the curve inflection point to compensate for efficiency variations. Three experimental models were used: inhibition of primer extension, non-optimal primer annealing and a very small biological sample. In all these models, the improved Cy0 method increased quantification accuracy up to about 500% without affecting precision. Furthermore, the stability of this procedure was enhanced integrating it with the SOD method. In short, the improved Cy0 method represents a simple yet powerful approach for reliable DNA quantification even in the presence of marked efficiency variations.  相似文献   

16.
Theoretical considerations for extending the application of quantitative competitive polymerase chain reaction (qc-PCR) to include the simultaneous measurement of multiple mRNAs, specifically the mammalian glucose transporters Glut1 and Glut4, are presented with experimental data in which the accuracy and flexibility of the system are examined. This method reliably measures changes in the initial concentration for each of three target DNA sequences. The reaction is not acutely sensitive to variations in either the primer sites or internal sequence, and although the initial concentrations of the target DNAs did affect the relative amplification efficiencies, the effect was limited and did not prohibit quantification. This PCR system was able to reliably detect differences as little as 50% in the initial concentration of the Glut1 target DNA sequence. Therefore, with the appropriate controls, PCR can be extended to include the simultaneous quantification of more than one target DNA with a single internal control.  相似文献   

17.
A standard plasmid was constructed as a novel reference molecule for use in real-time quantitative PCR assays to verify the identity of beef, pork, chicken, mutton, and horseflesh. The plasmid contained a target domain of the cytochrome b (cyt b) gene and an artificial DNA sequence. Primers CO-F and CO-R, and probe CO-P were specifically designed to detect the artificial sequence. The calculated R2 values of the standard curves (103–107 copies per reaction) for the five species ranged between 0.998 and 0.999 in the quantification analysis. The constructed plasmid provides a universal method for measuring the copy number of cyt b DNA in minced meat. This method would be a useful procedure for verifying food labels.  相似文献   

18.
19.
The real-time polymerase chain reaction   总被引:20,自引:0,他引:20  
The scientific, medical, and diagnostic communities have been presented the most powerful tool for quantitative nucleic acids analysis: real-time PCR [Bustin, S.A., 2004. A-Z of Quantitative PCR. IUL Press, San Diego, CA]. This new technique is a refinement of the original Polymerase Chain Reaction (PCR) developed by Kary Mullis and coworkers in the mid 80:ies [Saiki, R.K., et al., 1985. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia, Science 230, 1350], for which Kary Mullis was awarded the 1993 year's Nobel prize in Chemistry. By PCR essentially any nucleic acid sequence present in a complex sample can be amplified in a cyclic process to generate a large number of identical copies that can readily be analyzed. This made it possible, for example, to manipulate DNA for cloning purposes, genetic engineering, and sequencing. But as an analytical technique the original PCR method had some serious limitations. By first amplifying the DNA sequence and then analyzing the product, quantification was exceedingly difficult since the PCR gave rise to essentially the same amount of product independently of the initial amount of DNA template molecules that were present. This limitation was resolved in 1992 by the development of real-time PCR by Higuchi et al. [Higuchi, R., Dollinger, G., Walsh, P.S., Griffith, R., 1992. Simultaneous amplification and detection of specific DNA-sequences. Bio-Technology 10(4), 413-417]. In real-time PCR the amount of product formed is monitored during the course of the reaction by monitoring the fluorescence of dyes or probes introduced into the reaction that is proportional to the amount of product formed, and the number of amplification cycles required to obtain a particular amount of DNA molecules is registered. Assuming a certain amplification efficiency, which typically is close to a doubling of the number of molecules per amplification cycle, it is possible to calculate the number of DNA molecules of the amplified sequence that were initially present in the sample. With the highly efficient detection chemistries, sensitive instrumentation, and optimized assays that are available today the number of DNA molecules of a particular sequence in a complex sample can be determined with unprecedented accuracy and sensitivity sufficient to detect a single molecule. Typical uses of real-time PCR include pathogen detection, gene expression analysis, single nucleotide polymorphism (SNP) analysis, analysis of chromosome aberrations, and most recently also protein detection by real-time immuno PCR.  相似文献   

20.
Amplification of a cDNA product by quantitative polymerase chain reaction (qPCR) gives rise to fluorescence sigmoidal curves from which absolute or relative target gene content of the sample is inferred. Besides comparative C(t) methods that require the construction of a reference standard curve, other methods that focus on the analysis of the sole amplification curve have been proposed more recently. Among them, the so-called sigmoidal curve fitting (SCF) method rests on the fitting of an empirical sigmoidal model to the experimental amplification data points, leading to the prediction of the amplification efficiency and to the calculation of the initial copy number in the sample. The implicit assumption of this method is that the sigmoidal model may describe an amplification curve quantitatively even in the portion of the curve where the fluorescence signal is hidden in the noise band. The theoretical basis of the SCF method was revisited here for defining the class of experimental amplification curves for which the method might be relevant. Applying the SCF method to six well-characterized different PCR assays illustrated possible pitfalls leading to biased estimates of the amplification efficiency and, thus, of the target gene content of a sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号