首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fused hexaphyrins have many physical and chemical properties and can coordinate transition metal ions. In this study, we investigated the geometric structure, charge decomposition analysis (CDA), spin density, frontier molecular orbital (FMO) compositions and absorption spectra of four oxygen doubly N-confused hexaphyrin (1.1.1.1.1.1) (ONCP) complexes with the metal ions Co(II), Ni(II), Cu(II) and Zn(II) (designated ONCP-d-Co, ONCP-d-Ni, ONCP-d-Cu and ONCP-d-Zn). Based on their energies, geometric structures, FMO characteristics and comparison to experiments, ONCP-d-Co and ONCP-d-Cu have the mix-states of the triplet state and broken-symmetry state (antiferromagnetic state) rather than the spin singlet of a closed shell as previously reported. Moreover, based on analyses of the spin density and spin population of the spin triplet ONCP-d-Co and ONCP-d-Cu complexes, the charge transfer in ONCP-d-Cu is greater than that in ONCP-d-Co because the spin density in ONCP-d-Cu is concentrated not only on the Cu ion but also on the ONCP ligand. Thus, the CDA value for ONCP-d-Cu is larger. Finally, through comparative analysis of the FMO compositions and absorption spectra, the complexes and ligand are shown to have very similar absorption spectra with characteristics that arise mainly from π?→?π* transitions both in the B-band and the Q-band, which is due to the FMO compositions being dominated by the highly delocalized conjugated system, rather than by the metal ions. The absorption maxima of the Q-band are ONCP-d-Co (1020 nm)?>?ONCP-d-Zn (1012 nm)?>?ONCP-d-Ni (997 nm)?>?ONCP-d-Cu (988 nm), which is inversely proportional to the energy gap in their FMOs.
Graphical Abstract The present work investigates the geometric structure, charge decomposition analysis (CDA), spin density, frontier molecular orbital (FMO) compositions and absorption spectra of four oxygen doubly N-confused hexaphyrin (1.1.1.1.1.1) (ONCP) complexes with the metal ions Co(II), Ni(II), Cu(II) and Zn(II) (designated ONCP-d-Co, ONCP-d-Ni, ONCP-d-Cu and ONCP-d-Zn). Based on their energies, geometric structures, FMO characteristics and comparison to experiments, ONCP-d-Co and ONCP-d-Cu have the mix-state of the triplet state and broken-symmetry state (antiferromagnetic state) rather than the spin singlet of a close shell as were previously reported. Meanwhile, ONCP-d-Ni and ONCP-d-Zn show spin singlet structure. The calculated CDA shows the following order: ONCP-d-Cu (1.487)?>?ONCP-d-Ni (1.255)?>?ONCP-d-Co (1.211)?>?ONCP-d-Zn (1.201). Through comparisons of spin density and spin populations of ONCP-d-Co and ONCP-d-Cu, charge transfer between Cu and ligand ONCP is greater than that of Co and ONCP, which makes the CDA value of ONCP-d-Cu obviously larger than that of the other complexes
  相似文献   

2.
The acid-base and coordination properties towards Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Pb(II) of four polyamino-phenol macrocycles 15-hydroxy-3,6,9-triazabicyclo[9.3.1]pentadeca-11,13,115-triene L1, 18-hydroxy-3,6,9,12-tetraazabicyclo[12.3.1]octadeca-14,16,118-triene L2, 21-hydroxy-3,6,9,12,15-pentaazabicyclo[15.3.1]enaicosa-17,19,121-triene L3 and 24-hydroxy-3,6,9,12,15,18-hexaazabicyclo[18.3.1]tetraicosa-20,22,124-triene L4 are reported. The protonation and stability constants were determined by means of potentiometric measurements in 0.15 mol dm−3 NMe4Cl aqueous solution at 298.1 K. L1 forms highly unsaturated Co(II), Cu(II), Zn(II) and Cd(II) mononuclear complexes that are prone to give dimeric dinuclear species with [(MH−1L1)2]2+ stoichiometry, in solution. L2 forms stable Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Pb(II) mononuclear complexes that can coordinate external species as OH anion, giving hydroxylated complexes at alkaline pH. L3 forms stable Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Pb(II) mononuclear complexes and Co(II), Ni(II), Cu(II) and Zn(II) dinuclear [M2H−1L3]3+ species. L4 forms stable mono- and dinuclear Co(II), Cu(II), Zn(II) and Cd(II) complexes, but only mononuclear species with Pb(II). The effect of macrocyclic size is considered in the discussion of results.  相似文献   

3.
Abstract

The purpose of the study was to acquire the source and evaluate the risk posed by heavy metals in road dust of steel industrial city (Anshan), Liaoning, Northeast China. Potential ecological risk index (RI), pollution index (PI) and geo-accumulation index (Igeo) were applied to evaluate the heavy metal pollution level, and the carcinogenic risk (RI) and hazard index (HI) were calculated to estimate the human health risk. The geographic information system maps clearly reveal the hot spots of heavy metal spatial distribution. Principle component analysis (PCA) and cluster analysis (CA) classified heavy metals into three groups. The metal Zn and Pb originate from the traffic emission, while Cd, Cr, Fe, Mn, Ni and Sb primarily come from industrial activities. These two pathways were the major source of heavy metals pollution by positive matrix factorization (PMF). The Igeo and PI values of heavy metals were decreased in the following order: Cd?>?Sb?>?Zn?>?Fe?>?Pb?>?Cu?>?Cr?>?Sn?>?Mn?>?Ni. The RI index showed the heavy metals were moderate to very high potential ecological risk. The HI values for children and adults presented a decreasing order of Cr?>?Pb?>?Ni?>?Cu?>?Cd?>?Zn. The HI also predicted a possibility of non-carcinogenic risk for children living in urban areas in comparison with adults.  相似文献   

4.
5.
Common reed (Phragmites australis (Cav.) Trin. ex Steud.) plants were harvested from four natural water ecosystems of the Bogdanka river catchment (Poznań, Poland) four times throughout the 2014 vegetative season. Over the year, average metal contents followed different decreasing trends according to the analyzed tissue: Zn > Cu ≈ Pb > Cd (rhizomes) and Zn > Pb > Cu > Cd (leaves), and mean translocation ratios (leaves/rhizomes) were found as follows: 0.93, 0.70, 0.65, 0.40 for Zn, Pb, Cd and Cu, respectively. Metal content increased gradually during the growing season, and in the case of Cu, Cd and Pb exceeded the upper limit of average concentration detected in plants from natural ecosystems. However, the content of salicylic acid did not follow the increase of metal accumulation. In rhizomes, the highest production of the metabolite was observed in May and reached 324 ng g?1 fresh weight (FW) (mean value). Afterwards, a significant drop to 50 ng g?1 FW was observed. Simultaneously, the highest values of total salicylic acid in P. australis leaves were observed in July and accompanied the intensive development of the aboveground biomass of the plant (11.3 µg g?1 FW–mean value). Subsequently, its content in leaves showed a significant decrease down to 2.1 µg g?1 FW in November. Multivariate regression analysis revealed significant interactions between analyzed metals influencing the plant response to metal-derived stress. Cu and Zn showed antagonistic properties considering their uptake and the induction of salicylic acid biosynthesis, whereas non-essential metals (Pb and Cd) acted similarly and stimulated the formation of salicylic acid glucoside.  相似文献   

6.
The levels of essential (Ca, Mg, Mn, Fe, Zn, Cr, Cu, and Co) and non-essential (Cd and Pb) metal in six different varieties of Ethiopian khat (Catha edulis Forsk, an evergreen stimulant plant) commonly consumed in the country and exported to the neighboring countries were determined by flame atomic absorption spectrometry. Known weight of oven-dried khat samples were wet-digested using 2 mL of (69–72%) HNO3 and 2 mL of (70%) HClO4 for 2 h and 30 min at variable temperature (120–270°C). The mineral contents in the digests were analyzed using flame atomic absorption spectrometer. The following concentrations ranges in fresh-weight basis were recorded in decreasing order: Ca (1,038–2,173 µg/g)?>?Mg (478.2–812.3 µg/g)?>?Fe (53.95–82.83 µg/g)?>?Zn (5.18–9.40 µg/g)?>?Mn (6.98–8.66 µg/g)?>?Cu (1.85–5.53 µg/g)?>?Cr (0.66–3.47 µg/g)?>?Co (0.41–0.80 µg/g). A wide variation in the mineral contents of khat from different region of Ethiopia was noticed. The toxic metals (Pb and Cd) were not detected in all the samples analyzed.  相似文献   

7.
The chelating properties of diethanoldithiocarbamate (DEDC) and π-electron flow from the nitrogen atom to the sulfur atom via a plane-delocalized π-orbital system (quasi ring) was studied using a density functional theory method. The molecular structure of DEDC and its complexes with Zn(II), Cd(II), and Hg(II) were also considered. First, the geometries of this ligand and DEDC-Zn(II), DEDC-Cd(II), and DEDC-Hg(II) were optimized, and the formation energies of these complexes were then calculated based on the electronic energy, or sum of electronic energies, with the zero point energy of each species. Formation energies indicated the DEDC-Zn(II) complex as the most stable complex, and DEDC-Cd(II) as the least stable. Structural data showed that the N1–C2 π-bond was localized in the complexes rather than the ligand, and a delocalized π-bond over S7–C2–S8 was also present. The stability of DEDC-Zn(II), DEDC-Cd(II), and DEDC-Hg(II) complexes increased in the presence of the non-specific effects of the solvent (PCM model), and their relative stability did not change. There was π-electron flow or resonance along N1–C2–S7 and along S7–C2–S8 in the ligand. The π-electron flow or resonance along N1–C2–S7 was abolished when the metal interacted with sulfur atoms. Energy belonging to van der Waals interactions and non-covalent delocalization effects between the metal and sulfur atoms of the ligand was calculated for each complex. The results of nucleus-independent chemical shift (NICS) indicated a decreasing trend as Zn(II)?<?Cd(II)?<?Hg(II) for the aromaticity of the quasi-rings. Finally, by ignoring van der Waals interactions and non-covalent delocalization effects between the metal and sulfur atoms of the ligand, the relative stability of the complexes was changed as follows:
$$ \mathrm{DEDC}-\mathrm{Z}\mathrm{n}\left(\mathrm{I}\mathrm{I}\right)>\mathrm{DEDC}-\mathrm{C}\mathrm{d}\left(\mathrm{I}\mathrm{I}\right)>\mathrm{DEDC}-\mathrm{H}\mathrm{g}\left(\mathrm{I}\mathrm{I}\right) $$
Graphical Abstract Huge electronic cloud localized on Hg(II) in the Hg(II)-DEDC complex
  相似文献   

8.
The metal ion coordinating properties of the ligands N,N-bis(2-methylquinoline)-2-(2-aminoethyl)pyridine (DQPEA) and N,N-bis(2-methylquinoline)-2-(2-aminomethyl)pyridine (DQPMA) are presented. DQPEA and DQPMA differ only in that DQPEA forms six-membered chelate rings that involve the pyridyl group, whereas DQPMA forms analogous five-membered chelate rings.These two ligands illustrate the application of a ligand design principle, which states that increase of chelate ring size in a ligand will result in increase in selectivity for smaller relative to larger metal ions. The formation constants (log K1) of DQPEA and DQPMA with Ni(II), Cu(II), Zn(II), Cd(II) and Pb(II) are reported. As expected from the applied ligand design principle, small metal ions such as Ni(II) and Zn(II) show increases in log K1 with DQPEA (six-membered chelate ring) relative to DQPMA (five-membered chelate ring), while large metal ions such as Cd(II) and Pb(II) show decreases in log K1 when the chelate ring increases in size. In order to further understand the steric origin of the destabilization of complexes of metal ions of differing sizes by the six-membered chelate ring of DQPEA, the structures of [Zn(DQPEA)H2O](ClO4)2 (1) [triclinic, , a = 9.2906(10), b = 10.3943(10), c = 17.3880(18) Å, α = 82.748(7)°, β = 88.519(7)°, γ = 66.957(6)°, Z = 4, R = 0.073] and [Cd(DQPEA)(NO3)2] (2) [monoclinic, C2/c, a = 22.160(3), b = 15.9444(18), c = 16.6962(18) Å, β = 119.780(3)°, Z = 8, R = 0.0425] are reported. The Zn in (1) is five-coordinate, with a water molecule completing the coordination sphere. The Cd(II) in (2) is six-coordinate, with two unidentate nitrates coordinated to the Cd. It is found that the bonds to the quinaldine nitrogens in the DQPEA complexes are considerably stretched as compared to those of analogous TPyA (tri(pyridylmethyl)amine) complexes, which effect is attributed to the greater steric crowding in the DQPEA complexes. The structures are analyzed for indications of the origins of the destabilization of the complex of the large Cd(II) ion relative to the smaller Zn(II) ion. A possible cause is the greater distortion of the six-membered chelate ring in (2) than in (1), as evidenced by torsion angles that are further away from the ideal values in (2) than in (1). Fluorescence properties of the DQPMA and DQPEA complexes of Zn(II) and Cd(II) are reported. It is found that the DQPEA complex of Zn(II) has increased fluorescence intensity compared to the DQPMA complex, while for the Cd(II) complex the opposite is found. This is related to the greater strain in the six-membered chelate ring of the Cd(II) DQPEA complex as compared to the Zn(II) complex, with resulting poorer overlap in the Cd-N bond, and hence greater ability to quench the fluorescence in the Cd(II) complex.  相似文献   

9.
The distribution of Cd (II) and Pb (II) among amino acids in parenteral nutrition formulations was investigated by coupling ion-chromatography (HPLC/IC) and electrothermal atomic absorption spectrometry. The methodology was based on ion-exchange separation and fluorimetric amino acid detection after post-column derivatization. Cd (II) and Pb (II) were assayed in 500-µL fractions of the column effluent. The distribution of Cd (II) and Pb (II) in alanine (Ala), aspartic acid (Asp), glutamic acid (Glu), glycine (Gly), histidine (His), methionine (Met), phenylalanine (Phe), serine (Ser), and threonine (Thr) were analyzed by monitoring changes in the concentration of free amino acids by HPLC/IC. The results indicated that Cd (II) and Pb (II) were distributed according to the following trend: Gly–Cd?>?Gly–Pb?>?Ala–Cd?>?Ala–Pb?>?His–Cd?~?His–Pb?>?Thr–Cd?>?Thr–Pb?>?Phe–Cd?~?Phe–Pb?~?Asp–Cd?~?Asp–Pb?~?Met–Cd?~?Met–Pb?~?Glu–Cd?~?Glu–Pb?>?Ser–Cd?~?Ser–Pb. The effects of amino acid concentration and stability constants of amino acid–metal complexes are discussed.  相似文献   

10.
Heavy metal pollution in soils and the high costs of remediation necessitate the evaluation of cheaper alternatives. The aim of this experiment was to evaluate Cd, Pb, Zn, and Cu sorption characteristics of three soils and their influence on the comparative effectiveness of EDTA and legume intercrop on the remediative abilities of maize, mucuna, okra, and kenaf. The sorption studies were done using standard procedures. The EDTA-assisted phytoextraction (6 mmol kg?1) and the cowpea intercrop trials were conducted in triplicate. The metal-spiked soils were planted with maize, kenaf, and mucuna in the EDTA trial and maize, kenaf, and okra were planted in the cowpea intercrop experiment. Cadmium was prefentially sorbed in acid and alkaline soils and Cu in slightly acid soil. Cadmium uptake was significantly lower (P < 0.05) in all the plants. Bioconcentration factors of Pb, Cu, and Zn were higher (P < 0.05) in maize compared with other plants. Phytoremediative ability of the plants in trials were maize > kenaf > mucuna and okra > maize > kenaf, respectively. It was concluded that a legume intercrop can substitute EDTA- assisted phytoextraction to prevent groundwater contamination resulting from high solubility of metals by EDTA.  相似文献   

11.
Metallothioneins (MTs) are a superfamily of Cys-rich, low-molecular weight metalloproteins that bind heavy metal ions. These cytosolic metallopeptides, which exist in most living organisms, are thought to be involved in metal homeostasis, metal detoxification, and oxidative stress protection. In this work, we characterise the Zn(II)- and Cd(II)-binding abilities of plant type 3 and type 4 MTs identified in soybean and sunflower, both of them being His-containing peptides. The recombinant metal-MT complexes synthesised in Zn(II) or Cd(II)-enriched Escherichia coli cultures have been analysed by ESI-MS, and CD, ICP-AES, and UV spectroscopies. His-to-Ala type 3 MT mutants have also been constructed and synthesised for the study of the role of His in divalent metal ion coordination. The results show comparable divalent metal-binding capacities for the MTs of type 3, and suggest, for the first time, the participation of their conserved C-term His residues in metal binding. Interesting features for the Zn(II)-binding abilities of type 4 MTs are also reported, as their variable His content may be considered crucial for their biological performance.  相似文献   

12.
Sorption of Cu(II) and Cd(II) onto the extracellular polymeric substances (EPS) produced by Aspergillus fumigatus was investigated for the initial pH of the solution, EPS concentrations, contact time, NaCl concentration, initial metal ion concentration and the presence of other ions in the solution. The results showed that the adsorption of metal ions was significantly affected by pH, EPS concentrations, initial metal concentration, NaCl concentration and co-ions. The sorption of Cu(II) and Cd(II) increased with increasing pH and initial metal ion concentration but decreased with an increase in the NaCl concentration. The maximum sorption capacities of A. fumigatus EPS calculated from the Langmuir model were 40 mg g−1 EPS and 85.5 mg g−1 EPS for Cu(II) and Cd(II), respectively. The binary metal sorption experiments showed a selective metal binding affinity in the order of Cu(II) > Pb(II) > Cd(II). Both the Freundlich and Langmuir adsorption models described the sorption of Cu(II) and Cd(II) by the EPS of Afumigatus adequately. Fourier transform infrared spectroscopy (FTIR) analysis revealed that carboxyl, amide and hydroxyl functional groups were mainly correlated with the sorption of Cu(II) and Cd(II). Energy dispersive X-ray (EDX) system analysis revealed that the ion-exchange was an important mechanism involved in the Cu(II) and Cd(II) sorption process taking place on EPS.  相似文献   

13.
Complexes of the type [M(bssdh)]Cl and [M(dspdh)]Cl, where M = Co(II), Ni(II), Cu(II), Zn(II) and Cd(II); Hbssdh = benzil salicylaldehyde succinic acid dihydrazone, Hdspdh = diacetyl salicylaldehyde phthalic acid dihydrazone have been synthesized and characterized with the help of elemental analyses, electrical conductance, magnetic susceptibility measurements, electronic, ESR and IR spectra and X–ray diffraction studies. Magnetic moment values and electronic spectral transitions indicate a spin free octahedral structure for Co(II), Ni(II) and Cu(II) complexes. IR spectral studies suggest that both the ligands behave as monobasic hexadentate ligands coordinating through three > C = O, two > C = N– and a phenolate group to the metal. ESR spectra of Cu(II) complexes are axial type and suggest as the ground state. X–ray powder diffraction parameters for [Co(bssdh)]Cl and [Co(dspdh)]Cl complexes correspond to an orthorhombic crystal lattice. The ligands as well as their metal complexes show a significant antifungal and antibacterial activity against various fungi and bacteria. The metal complexes are more active than the parent ligands.  相似文献   

14.
The yellow stripe-like (YSL) family of transporters mediates the uptake, translocation, and distribution of various mineral elements in vivo by transferring metal ions chelated with phytosiderophore or nicotianamine (NA). However, little is known about the roles of the YSL genes against cadmium in planta. In this study, we first cloned and characterized a vital member of the YSL gene family, MsYSL1, from the bioenergy plant Miscanthus sacchariflorus. MsYSL1 localized in the plasma membrane and was widely expressed throughout the whole seedling with the highest expression level in the stem. In addition, its expression in the root was stimulated by excess manganese (Mn), cadmium (Cd), and lead, and a shortage of iron (Fe), zinc (Zn), and copper. Functional complementation in yeast indicated that MsYSL1 showed transport activity for Fe(II)–NA and Zn–NA, but not for Cd–NA. Although they exhibited no significant differences versus the wild type under normal cultivation conditions, MsYSL1-overexpressing Arabidopsis lines displayed a higher resistance to Cd accompanied by longer root lengths, lower Cd, Zn, and Mn levels in roots, and higher Cd, Fe, and Mn translocation ratios under Cd stress. Moreover, genes related to NA synthesis, metal translocation, long-distance transport, and Cd exclusion were highly induced in transgenic lines under Cd stress. Thus, MsYSL1 may be an essential transporter for diverse metal–NAs to participate in the Cd detoxification by mediating the reallocation of other metal ions.  相似文献   

15.
The ability of Kraft lignin, a waste product of paper production, for removing copper, zinc, cadmium and chromium ions from water was investigated. The studies were conducted by a batch method to determine equilibrium parameters. The adsorbed heavy metal ions followed the order: Cr(VI) ? Cd(II) > Cu(II) > Zn(II). The influence of other ions such as Ni(II), Cd(II) and Pb(II), on Cu(II) adsorption by Kraft lignin was evaluated. Obtained results support the idea that adsorption behaviour of heavy metal ions have to be perceived from the aspect of possible influence of interfering ion species.  相似文献   

16.
Liu T  Golden JW  Giedroc DP 《Biochemistry》2005,44(24):8673-8683
A novel Zn(II)/Pb(II)/Cd(II)-responsive operon that consists of genes encoding a Zn(II)/Pb(II) CPx-ATPase efflux pump (aztA) and a Zn(II)/Cd(II)/Pb(II)-specific SmtB/ArsR family repressor (aztR) has been identified and characterized from the cyanobacterium Anabaena PCC 7120. In vivo real time quantitative RT-PCR assays reveal that both aztR and aztA expression are induced by divalent metal ions Zn(II), Cd(II), and Pb(II) but not by other divalent [Co(II), Ni(II)] or monovalent metal ions [Cu(I) and Ag(I)]. The introduction of a plasmid containing the azt operon into a Zn(II)/Cd(II)-hypersensitive Escherichia coli strain GG48 functionally restores Zn(II) and Pb(II) resistance with a limited effect on Cd(II) resistance. Gel mobility shift assays and aztR O/P-lacZ induction experiments confirm that AztR is the metal-regulated repressor of this operon. In vitro biochemical and mutagenesis studies indicate that AztR contains a sole metal-binding site, designated the alpha3N site, that binds Zn(II), Cd(II), and Pb(II) with a high affinity. Optical absorption spectra of Co(II)- and Cd(II)-substituted AztR and (113)Cd NMR spectroscopy of (113)Cd(II)-substituted AztR reveal that the sole alpha3N site in AztR is a CadC-like distorted tetrahedral S(3)(N,O) metal site. The first metal-coordination shell in the AztR alpha3N site differs from other alpha3N family members that sense Cd(II)/Pb(II) and those alpha5 repressors that sense Zn(II)/Co(II). Our results reveal that the alpha3N site in AztR mediates derepression of the azt operon in the presence of Zn(II), as well as Cd(II) and Pb(II); this might have provided Anabaena with an evolutionary advantage to adapt to heavy-metal-rich environments, while maintaining homeostasis of an essential metal ion, Zn(II).  相似文献   

17.
In the present work, trace elemental analysis of mace (Myristica fragrans Houtt) was carried out by the atomic absorption spectrometry technique. The concentrations of various elements analyzed in this medicine were ranked in decreasing order: selenium (Se)?>?zinc (Zn)?>?magnesium (Mg)?>?iron (Fe)?>?calcium (Ca)?>?manganese (Mn)?>?lead (Pb). The concentrations of Mg, Zn, Fe, Mn, Ca, and Se were significantly decreased in serum of methylcholanthrene tumor models (P?<?0.001) compared with the control and mace groups. It is consistent with the result of tumor incidence. These trace elements could be directly or indirectly responsible for the antitumor activity of mace. The inorganic elements in this folk remedy can partly account for the antitumor.  相似文献   

18.
The biosorption from artificial wastewaters of heavy metals (Cd(II), Pb(II) and Cu(II)) onto the dry fungal biomass of Phanerochaete chryosporium was studied in the concentration range of 5-500 mg l(-1). The maximum absorption of different heavy metal ions on the fungal biomass was obtained at pH 6.0 and the biosorption equilibrium was established after about 6 h. The experimental biosorption data for Cd(II), Pb(II) and Cu(II) ions were in good agreement with those calculated by the Langmuir model.  相似文献   

19.
In order to better understand the processes that regulate the accumulation in the apoplasm of heavy metals and their mobilization by the plant metabolites it is essential to study the mechanisms that regulate the interactions between metal ions and pectins. In such a context, the sorption of Cd(II), Zn(II), Cu(II) and Pb(II) from single and multi-metal solutions, by a Ca-polygalacturonate gel with a degree of esterification of 18.0 (PGAM1) and 65.5% (PGAM2) was studied in the 3.0–6.0 pH range in the presence of CaCl2 2.5 mM. The sorption of Cr(III) from single metal solution was also considered. The results show that the amount of each metal ion sorbed increases with increasing the initial metal ion concentration and pH. The data from the single metal solution tests show that at pH 6.0 the affinity of the metal ions towards the PGAM1 matrix follows the order: Cr(III) > Cu(II) ? Pb(II) ? Zn(II) ? Cd(II). The simultaneous sorption of the bivalent metal ions by the PGAM1 gels indicates that Pb(II) is selectively sorbed. The FT-IR spectra show that the carboxylate groups are mainly responsible for the metal ion coordination. The ability of PGAM2 to accumulate Cr(III), Cu(II), and Pb(II) was lower than that found in the PGAM1 systems whereas the sorption of Zn(II) and Cd(II) was negligible.  相似文献   

20.
In this study, a new chitosan biopolymer derivative (CTSL) has been synthesized by anchoring a new vanillin-based complexing agent or ligand, namely 4-hydroxy-3-methoxy-5-[(4-methylpiperazin-1-yl)methyl] benzaldehyde, (L) with chitosan (CTS) by means of condensation. The new material was characterized by elemental (CHN), spectral (FTIR and solid state 13C NMR), thermal (TG-DTA and DSC), structural (powder XRD), and morphological (SEM) analyses. The CTSL was employed to study the equilibrium adsorption of various metal ions, namely, Mn(II), Fe(II), Co(II), Cu(II), Ni(II), Cd(II), and Pb(II), as functions of pH of the solutions. Its kinetics of adsorption was evaluated utilizing the pseudo first order and pseudo second order equation models and the equilibrium data were analyzed by Langmuir isotherm model. The CTSL shows good adsorption capacity for metal ions studied in the order Cu(II) > Ni(II) > Cd(II) ? Co ? Mn(II) > Fe(II) > Pb(II) in all studied pH ranges due to the presence of many coordinating moieties present in it.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号