首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The sphingosine kinases, SK1 and SK2, produce the potent signaling lipid sphingosine-1-phosphate (S1P). These enzymes have garnered increasing interest for their roles in tumorigenesis, inflammation, vascular diseases, and immunity, as well as other functions. The sphingosine kinases are considered signaling enzymes by producing S1P, and their activity is acutely regulated by a variety of agonists. However, these enzymes are also key players in the control of sphingolipid metabolism. A variety of sphingolipids, such as sphingosine and the ceramides, are potent signaling molecules in their own right. The role of sphingosine kinases in regulating sphingolipid metabolism is potentially a critical aspect of their signaling function. A central aspect of signaling lipids is that their hydrophobic nature constrains them to membranes. Most enzymes of sphingolipid metabolism, including the enzymes that degrade S1P, are membrane enzymes. Therefore the localization of the sphingosine kinases and S1P is likely to be important in S1P signaling. Sphingosine kinase localization affects sphingolipid signaling in several ways. Translocation of SK1 to the plasma membrane promotes extracellular secretion of S1P. SK1 and SK2 localization to specific sites appears to direct S1P to intracellular protein effectors. SK localization also determines the access of these enzymes to their substrates. This may be an important mechanism for the regulation of ceramide biosynthesis by diverting dihydrosphingosine, a precursor in the ceramide biosynthetic pathway, from the de novo production of ceramide.  相似文献   

2.
In mammalian cells, intracellular sphingosine 1-phosphate (S1P) can stimulate calcium release from intracellular organelles, resulting in the activation of downstream signaling pathways. The budding yeast Saccharomyces cerevisiae expresses enzymes that can synthesize and degrade S1P and related molecules, but their possible role in calcium signaling has not yet been tested. Here we examine the effects of S1P accumulation on calcium signaling using a variety of yeast mutants. Treatment of yeast cells with exogenous sphingosine stimulated Ca(2+) accumulation through two distinct pathways. The first pathway required the Cch1p and Mid1p subunits of a Ca(2+) influx channel, depended upon the function of sphingosine kinases (Lcb4p and Lcb5p), and was inhibited by the functions of S1P lyase (Dpl1p) and the S1P phosphatase (Lcb3p). The biologically inactive stereoisomer of sphingosine did not activate this Ca(2+) influx pathway, suggesting that the active S1P isomer specifically stimulates a calcium-signaling mechanism in yeast. The second Ca(2+) influx pathway stimulated by the addition of sphingosine was not stereospecific, was not dependent on the sphingosine kinases, occurred only at higher doses of added sphingosine, and therefore was likely to be nonspecific. Mutants lacking both S1P lyase and phosphatase (dpl1 lcb3 double mutants) exhibited constitutively high Ca(2+) accumulation and signaling in the absence of added sphingosine, and these effects were dependent on the sphingosine kinases. These results show that endogenous S1P-related molecules can also trigger Ca(2+) accumulation and signaling. Several stimuli previously shown to evoke calcium signaling in wild-type cells were examined in lcb4 lcb5 double mutants. All of the stimuli produced calcium signals independent of sphingosine kinase activity, suggesting that phosphorylated sphingoid bases might serve as messengers of calcium signaling in yeast during an unknown cellular response.  相似文献   

3.
Mice deficient in sphingosine kinase 1 are rendered lymphopenic by FTY720   总被引:9,自引:0,他引:9  
Sphingosine-1-phosphate (S1P), a lipid signaling molecule that regulates many cellular functions, is synthesized from sphingosine and ATP by the action of sphingosine kinase. Two such kinases have been identified, SPHK1 and SPHK2. To begin to investigate the physiological functions of sphingosine kinase and S1P signaling, we generated mice deficient in SPHK1. Sphk1 null mice were viable, fertile, and without any obvious abnormalities. Total SPHK activity in most Sphk1-/-tissues was substantially, but not completely, reduced indicating the presence of multiple sphingosine kinases. S1P levels in most tissues from the Sphk1-/- mice were not markedly decreased. In serum, however, there was a significant decrease in the S1P level. Although S1P signaling regulates lymphocyte trafficking, lymphocyte distribution was unaffected in lymphoid organs of Sphk1-/- mice. The immunosuppressant FTY720 was phosphorylated and elicited lymphopenia in the Sphk1 null mice showing that SPHK1 is not required for the functional activation of this sphingosine analogue prodrug. The results with these Sphk1 null mice reveal that some key physiologic processes that require S1P receptor signaling, such as vascular development and proper lymphocyte distribution, can occur in the absence of SPHK1.  相似文献   

4.
Immunotherapeutic drugs that mimic sphingosine 1-phosphate (S1P) disrupt lymphocyte trafficking and cause T helper and T effector cells to be retained in secondary lymphoid tissue and away from sites of inflammation. The prototypical therapeutic agent, 2-alkyl-2-amino-1,3-propanediol (FTY720), stimulates S1P signaling pathways only after it is phosphorylated by one or more unknown kinases. We generated sphingosine kinase 2 (SPHK2) null mice to demonstrate that this kinase is responsible for FTY720 phosphorylation and thereby its subsequent actions on the immune system. Both systemic and lymphocyte-localized sources of SPHK2 contributed to FTY720 induced lymphopenia. Although FTY720 was selectively activated in vivo by SPHK2, other S1P pro-drugs can be phosphorylated to cause lymphopenia through the action of additional sphingosine kinases. Our results emphasize the importance of SPHK2 expression in both lymphocytes and other tissues for immune modulation and drug metabolism.  相似文献   

5.
鞘磷脂特别是鞘脂是髓鞘的主要成分,高度集中在中枢神经系统。在生理和病理生理条件下,具有生物活性的鞘磷脂及其代谢产物以及信号传导过程的重要性正在逐步被人们所认识。鞘脂代谢产物鞘氨醇及其前体物质神经酰胺与细胞生长停滞和凋亡有关,而1-磷酸鞘氨醇与增强细胞增殖、分化和细胞生存以及调节细胞的生理和病理过程有关,具有细胞外第一信使和细胞内第二信使的双重功能。这三者之间的相互转换、鞘脂代谢物的相对水平以及细胞的命运,受到鞘氨醇激酶的活性的强烈影响。鞘氨醇激酶可催化磷酸鞘氨醇产生1-磷酸鞘氨醇。1-磷酸鞘氨醇在中枢神经系统中与G蛋白偶联受体家族结合对中枢神经系统发挥作用。本文对鞘磷脂代谢过程中的鞘氨醇激酶、1-磷酸鞘氨醇及其受体与脑缺血之间的关系进行概述。  相似文献   

6.
Sphingosine 1-phosphate (S1P) is a bioactive lipid phosphate that binds to cell surface G-protein-coupled receptors (GPCR), but also can elicit intracellular actions. The role of S1P in cancer has been an area of significant interest and we have focused our research on two aspects that are of importance with respect to cancer. First, we have investigated how cross talk between S1P and growth factors might affect the pathophysiology of cancer cells. In this regard, we have demonstrated that S1P receptors function to re-programme the spatial signaling specificity of receptor tyrosine kinases and vice versa to modulate cell responses. Second, we have investigated spatial/temporal aspects of intracellular S1P signaling and how this might be de-regulated in cancer. This has involved studies on: (i) the interaction of sphingosine kinase 1 (which catalyses the phosphorylation of sphingosine to produce S1P) and phospholipase D in the Golgi apparatus linked to regulation of cell survival and (ii) the novel regulatory interaction between sphingosine kinase 1 and 2 and centrosomal S1P5 receptor linked to the regulation of mitosis in mammalian cells including MDA-MB-231 breast cancer cells. Therefore, we have focused on novel aspects of spatial and temporal S1P signaling that might enable this bioactive lipid phosphate to exhibit normal and aberrant function in health and disease respectively.  相似文献   

7.
Exosomes are cell-derived extracellular vesicles thought to promote intercellular communication by delivering specific content to target cells. The aim of this study was to determine whether endothelial cell (EC)-derived exosomes could regulate the phenotype of hepatic stellate cells (HSCs). Initial microarray studies showed that fibroblast growth factor 2 induced a 2.4-fold increase in mRNA levels of sphingosine kinase 1 (SK1). Exosomes derived from an SK1-overexpressing EC line increased HSC migration 3.2-fold. Migration was not conferred by the dominant negative SK1 exosome. Incubation of HSCs with exosomes was also associated with an 8.3-fold increase in phosphorylation of AKT and 2.5-fold increase in migration. Exosomes were found to express the matrix protein and integrin ligand fibronectin (FN) by Western blot analysis and transmission electron microscopy. Blockade of the FN-integrin interaction with a CD29 neutralizing antibody or the RGD peptide attenuated exosome-induced HSC AKT phosphorylation and migration. Inhibition of endocytosis with transfection of dynamin siRNA, the dominant negative dynamin GTPase construct Dyn2K44A, or the pharmacological inhibitor Dynasore significantly attenuated exosome-induced AKT phosphorylation. SK1 levels were increased in serum exosomes derived from mice with experimental liver fibrosis, and SK1 mRNA levels were up-regulated 2.5-fold in human liver cirrhosis patient samples. Finally, S1PR2 inhibition protected mice from CCl4-induced liver fibrosis. Therefore, EC-derived SK1-containing exosomes regulate HSC signaling and migration through FN-integrin-dependent exosome adherence and dynamin-dependent exosome internalization. These findings advance our understanding of EC/HSC cross-talk and identify exosomes as a potential target to attenuate pathobiology signals.  相似文献   

8.
Tumor necrosis factor (TNF)-alpha signals cell death and simultaneously induces the generation of ceramide, which is metabolized to sphingosine and sphingosine 1-phosphate (S1P) by ceramidase (CDase) and sphingosine kinase. Because the dynamic balance between the intracellular levels of ceramide and S1P (the "ceramide/S1P rheostat") may determine cell survival, we investigated these sphingolipid signaling pathways in TNF-alpha-induced apoptosis of primary hepatocytes. Endogenous C16-ceramide was elevated during TNF-alpha-induced apoptosis in both rat and mouse primary hepatocytes. The putative acid sphingomyelinase (ASMase) inhibitor imipramine inhibited TNF-alpha-induced apoptosis and C16-ceramide increase as did the knock out of ASMase. Overexpression of neutral CDase (NCDase) inhibited the TNF-alpha-induced increase of C16-ceramide and apoptosis in rat primary hepatocytes. Moreover, NCDase inhibited liver injury and hepatocyte apoptosis in mice treated with D-galactosamine plus TNF-alpha. This protective effect was abrogated by the sphingosine kinase inhibitor N,N-demethylsphingosine, suggesting that the survival effect of NCDase is due to not only C16-ceramide reduction but also S1P formation. Administration of S1P or overexpression of NCDase activated the pro-survival kinase AKT, and overexpression of dominant negative AKT blocked the survival effect of NCDase. In conclusion, activation of ASMase and generation of C16-ceramide contributed to TNF-alpha-induced hepatocyte apoptosis. NCDase prevented apoptosis both by reducing C16-ceramide and by activation of AKT through S1P formation. Therefore, the cross-talk between sphingolipids and AKT pathway may determine hepatocyte apoptosis by TNF-alpha.  相似文献   

9.
S1P (sphingosine 1-phosphate) is a signalling molecule involved in a host of cellular and physiological functions, most notably cell survival and migration. S1P, which signals via a set of five G-protein-coupled receptors (S1P1-S1P5), is formed by the action of two SphKs (sphingosine kinases) from Sph (sphingosine). Interfering RNA strategies and SphK1 (sphingosine kinase type 1)-null (Sphk1-/-) mouse studies implicate SphK1 in multiple signalling cascades, yet there is a paucity of potent and selective SphK1 inhibitors necessary to evaluate the effects of rapid onset inhibition of this enzyme. We have identified a set of submicromolar amidine-based SphK1 inhibitors and report using a pair of these compounds to probe the cellular and physiological functions of SphK1. In so doing, we demonstrate that our inhibitors effectively lower S1P levels in cell-based assays, but we have been unable to correlate SphK1 inhibition with changes in cell survival. However, SphK1 inhibition did diminish EGF (epidermal growth factor)-driven increases in S1P levels and Akt (also known as protein kinase B)/ERK (extracellular-signal-regulated kinase) phosphorylation. Finally, administration of the SphK1 inhibitor to wild-type, but not Sphk1-/-, mice resulted in a rapid decrease in blood S1P levels indicating that circulating S1P is rapidly turned over.  相似文献   

10.
Sphingosine kinase (SK) is a signaling enzyme that phosphorylates sphingosine to produce sphingosine 1-phosphate. Sphingosine and sphingosine 1-phosphate (S1P) belong to a class of bioactive sphingolipid metabolites that are critical in a number of cellular processes, yet often have opposing biological functions. The intracellular localization of sphingosine kinase has been demonstrated in multiple studies to be a critical aspect of its signaling function. To date, assays of sphingosine kinase activity have been developed for measuring activity in lysates, where the effects of localization are lost. Here we outline a system in which the rate of production of S1P can be measured in intact cells using exogenously added radiolabeled ATP instead of tritiated sphingosine. The surprising ability of ATP to enter unpermeabilized monolayers is one aspect that makes this assay simple, efficient, and inexpensive, yet sensitive enough to measure endogenous enzyme activity. The assay is well behaved in terms of kinetics and substrate dependence. Overall, this assay is ideal for future studies to identify changes in S1P production in intact cells such as those that result from the differential intracellular targeting of sphingosine kinase.  相似文献   

11.
Platelet-derived growth factor (PDGF) and sphingosine 1-phosphate (S1P) act via PDGF beta receptor-S1P(1) receptor complexes in airway smooth muscle cells to promote mitogenic signaling. Several lines of evidence support this conclusion. First, both receptors were co-immunoprecipitated from cell lysates with specific anti-S1P(1) antibodies, indicating that they form a complex. Second, treatment of airway smooth muscle cells with PDGF stimulated the phosphorylation of p42/p44 MAPK, and this phosphorylated p42/p44 MAPK associates with the PDGF beta receptor-S1P(1) receptor complex. Third, treatment of cells with antisense S1P(1) receptor plasmid construct reduced the PDGF- and S1P-dependent activation of p42/p44 MAPK. Fourth, S1P and/or PDGF induced the formation of endocytic vesicles containing both PDGF beta receptors and S1P(1) receptors, which was required for activation of the p42/p44 MAPK pathway. PDGF does not induce the release of S1P, suggesting the absence of a sequential mechanism. However, sphingosine kinase 1 is constitutively exported from cells and supports activation of p42/p44 MAPK by exogenous sphingosine. Thus, the presentation of sphingosine from other cell types and its conversion to S1P by the kinase exported from airway smooth muscle cells might enable S1P to act with PDGF on the PDGF beta receptor-S1P(1) receptor complex to induce biological responses in vivo. These data provide further evidence for a novel mechanism for G-protein-coupled receptor and receptor tyrosine kinase signal integration that is distinct from the transactivation of receptor tyrosine kinases by G-protein-coupled receptor agonists and/or sequential release and action of S1P in response to PDGF.  相似文献   

12.
SphK (sphingosine kinase) is the major source of the bioactive lipid and GPCR (G-protein-coupled receptor) agonist S1P (sphingosine 1-phosphate). S1P promotes cell growth, survival and migration, and is a key regulator of lymphocyte trafficking. Inhibition of S1P signalling has been proposed as a strategy for treatment of inflammatory diseases and cancer. In the present paper we describe the discovery and characterization of PF-543, a novel cell-permeant inhibitor of SphK1. PF-543 inhibits SphK1 with a K(i) of 3.6 nM, is sphingosine-competitive and is more than 100-fold selective for SphK1 over the SphK2 isoform. In 1483 head and neck carcinoma cells, which are characterized by high levels of SphK1 expression and an unusually high rate of S1P production, PF-543 decreased the level of endogenous S1P 10-fold with a proportional increase in the level of sphingosine. In contrast with past reports that show that the growth of many cancer cell lines is SphK1-dependent, specific inhibition of SphK1 had no effect on the proliferation and survival of 1483 cells, despite a dramatic change in the cellular S1P/sphingosine ratio. PF-543 was effective as a potent inhibitor of S1P formation in whole blood, indicating that the SphK1 isoform of sphingosine kinase is the major source of S1P in human blood. PF-543 is the most potent inhibitor of SphK1 described to date and it will be useful for dissecting specific roles of SphK1-driven S1P signalling.  相似文献   

13.
Sphingosine kinase (SK) catalyzes the formation of sphingosine 1-phosphate (S1P), a lipid messenger that plays an important role in a variety of mammalian cell processes, including inhibition of apoptosis and stimulation of cell proliferation. Basal levels of S1P in cells are generally low but can increase rapidly when cells are exposed to various agonists through rapid and transient activation of SK activity. To date, elucidation of the exact signaling pathways affected by these elevated S1P levels has relied on the use of SK inhibitors that are known to have direct effects on other enzymes in the cell. Furthermore, these inhibitors block basal SK activity, which is thought to have a housekeeping function in the cell. To produce a specific inhibitor of SK activation we sought to generate a catalytically inactive, dominant-negative SK. This was accomplished by site-directed mutagenesis of Gly(82) to Asp of the human SK, a residue identified through sequence similarity to the putative catalytic domain of diacylglycerol kinase. This mutant had no detectable SK activity when expressed at high levels in HEK293T cells. Activation of endogenous SK activity by tumor necrosis factor-alpha (TNFalpha), interleukin-1beta, and phorbol esters in HEK293T cells was blocked by expression of this inactive sphingosine kinase (hSK(G82D)). Basal SK activity was unaffected by expression of hSK(G82D). Expression of hSK(G82D) had no effect on TNFalpha-induced activation of protein kinase C and sphingomyelinase activities. Thus, hSK(G82D) acts as a specific dominant-negative SK to block SK activation. This discovery provides a powerful tool for the elucidation of the exact signaling pathways affected by elevated S1P levels following SK activation. To this end we have employed the dominant-negative SK to demonstrate that TNFalpha activation of extracellular signal-regulated kinases 1 and 2 (ERK1,2) is dependent on SK activation.  相似文献   

14.
Sphingosine 1-phosphate (S1P) is a bioactive sphingolipid with a variety of biological activities.It is generated from the conversion of ceramide to sphingosine by ceramidase and the subsequent conversion of sphingosine to S1P,which is catalyzed by sphingosine kinases.Through increasing its intracellular levels by sphingolipid metabolism and binding to its cell surface receptors,S1P regulates several physiological and pathological processes,including cell proliferation,migration,angiogenesis and autophagy.These processes are responsible for tumor growth,metastasis and invasion and promote tumor survival.Since ceramide and S1P have distinct functions in regulating in cell fate decision,the balance between the ceramide/sphingosine/S1P rheostat becomes a potent therapeutic target for cancer cells.Herein,we summarize our current understanding of S1P signaling on tumorigenesis and its potential as a target for cancer therapy.  相似文献   

15.
Oxidized LDL (oxLDL) have been implicated in diverse biological events leading to the development of atherosclerotic lesions. We previously demonstrated that the proliferation of cultured vascular smooth muscle cells (SMC) induced by oxLDL is preceded by an increase in neutral sphingomyelinase activity, sphingomyelin turnover to ceramide, and stimulation of mitogen-activated protein kinases (Augé, N., Escargueil-Blanc, I., Lajoie-Mazenc, I., Suc, I., Andrieu-Abadie, N., Pieraggi, M. T., Chatelut, M., Thiers, J. C., Jaffrézou, J. P., Laurent, G., Levade, T., Nègre-Salvayre, A., and Salvayre, R. (1998) J. Biol. Chem. 273, 12893-12900). Since ceramide can be converted to other bioactive metabolites, such as the well established mitogen sphingosine 1-phosphate (S1P), we investigated whether additional ceramide metabolites are involved in the oxLDL-induced SMC proliferation. We report here that incubation of SMC with oxLDL increased the activities of both acidic and alkaline ceramidases as well as sphingosine kinase, and elevated cellular sphingosine and S1P. Furthermore, the mitogenic effect of oxLDL was inhibited by D-erythro-2-(N-myristoylamino)-1-phenyl-1-propanol and N,N-dimethylsphingosine which are inhibitors of ceramidase and sphingosine kinase, respectively. These findings suggest that S1P is a key mediator of the mitogenic effect of oxLDL. In agreement with this conclusion, exogenous addition of sphingosine stimulated the proliferation of cultured SMC, and this effect was abrogated by dimethylsphingosine but not by fumonisin B1, an inhibitor of the acylation of sphingosine to ceramide. Exogenous S1P also promoted SMC proliferation. Altogether, these results strongly suggest that the mitogenic effect of oxLDL in SMC involves the combined activation of sphingomyelinase(s), ceramidase(s), and sphingosine kinase, resulting in the turnover of sphingomyelin to a number of sphingolipid metabolites, of which at least S1P is critical for mitogenesis.  相似文献   

16.
CS-0777 is a selective sphingosine 1-phosphate (S1P) receptor 1 modulator with potential benefits in the treatment of autoimmune diseases, including multiple sclerosis. CS-0777 is a prodrug that requires phosphorylation to an active S1P analog, similar to the first-in-class S1P receptor modulator FTY720 (fingolimod). We sought to identify the kinase(s) involved in phosphorylation of CS-0777, anticipating sphingosine kinase (SPHK) 1 or 2 as likely candidates. Unlike kinase activity for FTY720, which is found predominantly in platelets, CS-0777 kinase activity was found mainly in red blood cells (RBCs). N,N-Dimethylsphingosine, an inhibitor of SPHK1 and -2, did not inhibit CS-0777 kinase activity. We purified CS-0777 kinase activity from human RBCs by more than 10,000-fold using ammonium sulfate precipitation and successive chromatography steps, and we identified fructosamine 3-kinase (FN3K) and fructosamine 3-kinase-related protein (FN3K-RP) by mass spectrometry. Incubation of human RBC lysates with 1-deoxy-1-morpholinofructose, a competitive inhibitor of FN3K, inhibited ~10% of the kinase activity, suggesting FN3K-RP is the principal kinase responsible for activation of CS-0777 in blood. Lysates from HEK293 cells overexpressing FN3K or FN3K-RP resulted in phosphorylation of CS-0777 and structurally related molecules but showed little kinase activity for FTY720 and no kinase activity for sphingosine. Substrate preference was highly correlated among FN3K, FN3K-RP, and rat RBC lysates. FN3K and FN3K-RP are known to phosphorylate sugar moieties on glycosylated proteins, but this is the first report that these enzymes can phosphorylate hydrophobic xenobiotics. Identification of the kinases responsible for CS-0777 activation will permit a better understanding of the pharmacokinetics and pharmacodynamics of this promising new drug.  相似文献   

17.
Sphingosine 1 phosphate (S1P) and lysophosphatidic acid (LPA) are bioactive lipid phosphates that bind to cell surface G-protein coupled receptors (GPCR) and, in addition, exhibit intracellular actions. We have summarised herein, an important functional interaction between lipid phosphate GPCR and receptor tyrosine kinases (RTK) that enables growth factors to spatially regulate effectors, thereby governing the nature of the biological response. For instance, we describe how the formation of functional complexes between the S1P(1) receptor and PDGFbeta receptor may effectively re-programme platelet-derived growth factor from a mitogenic to a migratory stimulus. This is achieved by integration of RTK- and GPCR-specific signals that results in spatial regulation of a cytoplasmic retained pool of extracellular signal regulated kinase-1/2 linked to myosin light chain kinase, myosin light chain phosphorylation and migration. We therefore suggest that the lipid phosphate receptor is a major determinant in regulating growth factor-dependent biology. Growth factors can also increase S1P inside cells, and we discuss the concept of spatial/temporal aspects of compartmentalised intracellular signaling of S1P in relation to defined interactions between, for instance, sphingosine kinase, phospholipase D1 and lipid phosphate phosphatases and regulation of cell survival.  相似文献   

18.
Sphingosine kinases (isoforms SK1 and SK2) catalyse the formation of a bioactive lipid, sphingosine 1-phosphate (S1P). S1P is a well-established ligand of a family of five S1P-specific G protein coupled receptors but also has intracellular signalling roles. There is substantial evidence to support a role for sphingosine kinases and S1P in health and disease. This review summarises recent advances in the area in relation to receptor-mediated signalling by S1P and novel intracellular targets of this lipid. New evidence for a role of each sphingosine kinase isoform in cancer, the cardiovascular system, central nervous system, inflammation and diabetes is discussed. There is continued research to develop isoform selective SK inhibitors, summarised here. Analysis of the crystal structure of SK1 with the SK1-selective inhibitor, PF-543, is used to identify residues that could be exploited to improve selectivity in SK inhibitor development for future therapeutic application.  相似文献   

19.
Steatohepatitis occurs in up to 20% of patients with fatty liver disease and leads to its primary disease outcomes, including fibrosis, cirrhosis, and increased risk of hepatocellular carcinoma. Mechanisms that mediate this inflammation are of major interest. We previously showed that overload of saturated fatty acids, such as that which occurs with metabolic syndrome, induced sphingosine kinase 1 (SphK1), an enzyme that generates sphingosine-1-phosphate (S1P). While data suggest beneficial roles for S1P in some contexts, we hypothesized that it may promote hepatic inflammation in the context of obesity. Consistent with this, we observed 2-fold elevation of this enzyme in livers from humans with nonalcoholic fatty liver disease and also in mice with high saturated fat feeding, which recapitulated the human disease. Mice exhibited activation of NFκB, elevated cytokine production, and immune cell infiltration. Importantly, SphK1-null mice were protected from these outcomes. Studies in cultured cells demonstrated saturated fatty acid induction of SphK1 message, protein, and activity, and also a requirement of the enzyme for NFκB signaling and increased mRNA encoding TNFα and MCP1. Moreover, saturated fat-induced NFκB signaling and elevation of TNFα and MCP1 mRNA in HepG2 cells was blocked by targeted knockdown of S1P receptor 1, supporting a role for this lipid signaling pathway in inflammation in nonalcoholic fatty liver disease.  相似文献   

20.
Sphingosine 1-phosphate (S1P) is a bioactive lipid that is produced by the sphingosine kinase-catalysed phosphorylation of sphingosine. S1P is an important regulator of cell function, mediating many of its effects through a family of five closely related G protein-coupled receptors (GPCR) termed S1P(1-5) which exhibit high affinity for S1P. These receptors function to relay the effects of extracellular S1P via well-defined signal transduction networks linked to the regulation of cell proliferation, survival, migration etc. Diverse agonists (e.g. cytokines) also activate sphingosine kinase and the resulting S1P formed may bind to specific undefined intracellular targets to elicit cellular responses. The purpose of this review is to discuss some of the spatial/temporal aspects of intracellular S1P signalling and to define the function of sphingosine kinases and lipid phosphate phosphatases (which catalyse dephosphorylation of S1P) in terms of their regulation of cell function. Finally, we survey the function of S1P in relation to disease, where the major challenge is to dissect the role of intracellular versus extracellular actions of S1P in terms of association with defined diseased phenotypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号