首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Free amino acids that accumulate in the plasma of patients with diabetes and obesity influence lipid metabolism and protein synthesis in the liver. The stress-inducible intracellular protease calpain proteolyzes various substrates in vascular endothelial cells (ECs), although its contribution to the supply of free amino acids in the liver microenvironment remains enigmatic. In the present study, we showed that calpains are associated with free amino acid production in cultured ECs. Furthermore, conditioned media derived from calpain-activated ECs facilitated the phosphorylation of ribosomal protein S6 kinase (S6K) and de novo lipogenesis in hepatocytes, which were abolished by the amino acid transporter inhibitor, JPH203, and the mammalian target of rapamycin complex 1 inhibitor, rapamycin. Meanwhile, calpain-overexpressing capillary-like ECs were observed in the livers of high-fat diet–fed mice. Conditional KO of EC/hematopoietic Capns1, which encodes a calpain regulatory subunit, diminished levels of branched-chain amino acids in the hepatic microenvironment without altering plasma amino acid levels. Concomitantly, conditional KO of Capns1 mitigated hepatic steatosis without normalizing body weight and the plasma lipoprotein profile in an amino acid transporter–dependent manner. Mice with targeted Capns1 KO exhibited reduced phosphorylation of S6K and maturation of lipogenic factor sterol regulatory element–binding protein 1 in hepatocytes. Finally, we show that bone marrow transplantation negated the contribution of hematopoietic calpain systems. We conclude that overactivation of calpain systems may be responsible for the production of free amino acids in ECs, which may be sufficient to potentiate S6K/sterol regulatory element–binding protein 1–induced lipogenesis in surrounding hepatocytes.  相似文献   

2.
The acyl-CoA-binding protein (ACBP) is a 10-kDa intracellular lipid-binding protein that transports acylCoA esters. The protein is expressed in most cell types at low levels; however, expression is particularly high in cells with a high turnover of fatty acids. Here we confirm a previous observation that ACBP expression in rodent liver is down-regulated by fasting, and we show that insulin but not glucose is the inducer of ACBP expression in primary rat hepatocytes. In keeping with the regulation by insulin, we show that ACBP is a sterol regulatory element-binding protein 1c (SREBP-1c) target gene in hepatocytes. Members of the SREBP family activate the rat ACBP gene through binding sites for SREBP and the auxiliary factors Sp1 and nuclear factor Y in the proximal promoter. In addition, we show that ACBP is a peroxisome proliferator-activated receptor (PPAR) alpha target gene in cultured hepatocytes and is induced in the liver by fibrates in a PPARalpha-dependent manner. Thus, ACBP is a dual PPARalpha and SREBP-1c target gene in hepatocytes. Fasting leads to reduced activity of SREBP but increased activity of PPARalpha in hepatocytes, and in keeping with ACBP being a dual target gene, we show that ACBP expression is significantly lower in livers from PPARalpha knock-out mice than in livers from wild type mice. In conclusion, expression of ACBP in rodent hepatocytes is subject to dual metabolic regulation by PPARalpha and SREBP-1c, which may reflect the need for ACBP during lipogenic as well as lipo-oxidative conditions.  相似文献   

3.
4.
Activation of the thiol protease calpain results in proteolysis of focal adhesion-associated proteins and severing of cytoskeletal-integrin links. We employed a commonly used inhibitor of calpain, calpeptin, to examine a role for this protease in the reorganization of the cytoskeleton under a variety of conditions. Calpeptin induced stress fiber formation in both forskolin-treated REF-52 fibroblasts and serum-starved Swiss 3T3 fibroblasts. Surprisingly, calpeptin was the only calpain inhibitor of several tested with the ability to induce these effects, suggesting that calpeptin may act on targets besides calpain. Here we show that calpeptin inhibits tyrosine phosphatases, enhancing tyrosine phosphorylation particularly of paxillin. Calpeptin preferentially inhibits membrane-associated phosphatase activity. Consistent with this observation, in vitro phosphatase assays using purified glutathione S-transferase fusion proteins demonstrated a preference for the transmembrane protein-tyrosine phosphatase-alpha over the cytosolic protein-tyrosine phosphatase-1B. Furthermore, unlike wide spectrum inhibitors of tyrosine phosphatases such as pervanadate, calpeptin appeared to inhibit a subset of phosphatases. Calpeptin-induced assembly of stress fibers was inhibited by botulinum toxin C3, indicating that calpeptin is acting on a phosphatase upstream of the small GTPase Rho, a protein that controls stress fiber and focal adhesion assembly. Not only does this work reveal that calpeptin is an inhibitor of protein-tyrosine phosphatases, but it suggests that calpeptin will be a valuable tool to identify the phosphatase activity upstream of Rho.  相似文献   

5.
In our recent paper in Plant Physiology and Biochemistry, we reported that the mRNAs encoding Arabidopsis thaliana cytosolic acyl-CoA-binding proteins, ACBP4 and ACBP5, but not ACBP6, are modulated by light/dark cycling. The pattern of circadian-regulated expression in ACBP4 and ACBP5 mRNAs resembles that of FAD7 which encodes omega-3-fatty acid desaturase, an enzyme involved in plastidial fatty acid biosynthesis. Recombinant ACBP4 and ACBP5 proteins were observed to bind oleoyl-CoA ester comparably better than recombinant ACBP6, suggesting that ACBP4 and ACBP5 are promising candidates in the trafficking of oleoyl-CoA from the plastids to the endoplasmic reticulum (ER) for the biosynthesis of non-plastidial membrane lipids. By western blot analyses using the ACBP4 and ACBP5-specific antibodies, we show herein that the levels of ACBP4 and ACBP5 proteins peak at the end of the light period, further demonstrating that they, like their corresponding mRNAs, are tightly controlled by light to satisfy demands of lipids in plant cells.Key words: acyl-CoA-binding protein, ACBP4, ACBP5, lipid trafficking, phosphatidylcholine-binding  相似文献   

6.
7.
The effect of GCDC-induced apoptosis on PKC activity and PKC's role in GCDC-induced hepatocyte apoptosis is unclear. The specific aims of this study were to determine if GCDC-induced apoptosis changed intracellular PKC activity and if modulation of PKC activity affected GCDC-induced hepatocyte apoptosis.Apoptosis was induced in isolated hepatocytes using GCDC. PKC activity was measured and specific PKC and calpain inhibitors were used to study the effects of PKC and calpain modulation on GCDC-induced apoptosis.After 4 h exposure, 50 M GCDC induced apoptosis in 42% of hepatocytes. Intracellular PKC activity decreased to 44% of controls 2 h after exposure of hepatocytes to GCDC (p < 0.001). Pre-incubation of hepatocytes with the calpain protease inhibitor restored PKC activity in GCDC exposed hepatocytes to 91± 5% of control cells. Pre-incubation of hepatocytes with a calpain inhibitor decreased GCDC-induced apoptosis as did pre-incubation with the PKC activating phorbol ester, PMA. The combination of calpain inhibition and PMA further reduced GCDC-induced apoptosis but caused low level hepatic apoptosis. Inhibition of PKC with chelerythrine also substantially reduced GCDC-induced hepatocyte apoptosis.GCDC-induced apoptosis is associated with decreases in total cellular PKC activity, which appear to be dependent on intracellular calpain-like protease activity. The combination of protease inhibition and phorbol ester pretreatment preserved total cellular PKC activity and decreased GCDC-induced apoptosis but induced low level apoptosis in the absence of GCDC exposure. PKC inhibition also decreased GCDC-induced hepatocyte apoptosis highlighting the complex interactions of PKC and proteases during GCDC-induced apoptosis.  相似文献   

8.
The heptapeptide toxins produced by the blue-green alga (cyanobacterium) Microcystis aeruginosa are selectively hepatotoxic in mammals. The characteristic post-mortem pathology of the liver is extensive lobular disruption due to sinusoidal breakdown, leakage of blood into the tissue and hepatocyte disintegration. Isolated hepatocytes incubated with toxin show severe structural deformity and surface blebbing. This paper demonstrates the effects of Microcystis toxins on the contraction and aggregation of actin microfilaments, and on the relocation and breakdown of cytokeratin intermediate filaments, in cultured hepatocytes. Earlier work did not show changes in the assembly/disassembly of actin; however, this paper demonstrates the change in cytokeratin from intermediate filaments to distributed granules in the cytoplasm of toxin-affected cells. Acrylamide gel electrophoresis of cytoskeletal fractions from hepatocytes did not show changes in total cytokeratins; however, marked changes in the immunogenicity of cytokeratins at 52 and 58 kDa were seen on toxin exposure of cells. Measurement of 32P-phosphorylation of proteins in toxin-affected cells incubated with [32P]orthophosphate showed a dramatic increase compared to control incubations. This is in agreement with research elsewhere describing phosphatase inhibition in vitro by Microcystis toxins. The data indicate that phosphorylated cytokeratin is a major component of cytoplasmic fraction phosphorylated protein after toxin exposure to hepatocytes. It is concluded that the mechanism of Microcystis toxicity to the hepatocyte is through cytoskeletal damage leading to loss of cell morphology, cell to cell adhesion and finally cellular necrosis. The underlying biochemical lesion is likely to be phosphatase inhibition causing hyperphosphorylation of a number of hepatocyte proteins, including those cytokeratins responsible for microfilament orientation and intermediate filament integrity.  相似文献   

9.
10.

Background

Hepatitis B virus (HBV) is a major cause of liver infection in human. Because of the lack of an appropriate cell culture system for supporting HBV infection efficiently, the cellular and molecular mechanisms of hepadnavirus infection remain incompletely understood. Duck heptatitis B virus (DHBV) can naturally infect primary duck hepatocytes (PDHs) that provide valuable model systems for studying hepadnavirus infection in vitro. In this report, we explored global changes in cellular protein expression in DHBV infected PDHs by two-dimension gel electrophoresis (2-DE) combined with MALDI-TOF/TOF tandem mass spectrometry (MS/MS).

Results

The effects of hepadnavirus infection on hepatocytes were investigated in DHBV infected PDHs by the 2-DE analysis. Proteomic profile of PDHs infected with DHBV were analyzed at 24, 72 and 120 h post-infection by comparing with uninfected PDHs, and 75 differentially expressed protein spots were revealed by 2-DE analysis. Among the selected protein spots, 51 spots were identified corresponding to 42 proteins by MS/MS analysis; most of them were matched to orthologous proteins of Gallus gallus, Anas platyrhynchos or other avian species, including alpha-enolase, lamin A, aconitase 2, cofilin-2 and annexin A2, etc. The down-regulated expression of beta-actin and annexin A2 was confirmed by Western blot analysis, and potential roles of some differentially expressed proteins in the virus-infected cells have been discussed.

Conclusions

Differentially expressed proteins of DHBV infected PDHs revealed by 2-DE, are involved in carbohydrate metabolism, amino acid metabolism, stress responses and cytoskeleton processes etc, providing the insight to understanding of interactions between hepadnavirus and hepatocytes and molecular mechanisms of hepadnavirus pathogenesis.  相似文献   

11.
DNA fragmentation is a hallmark of apoptosis that is induced by apoptotic stimuli in various cell types. Apoptotic signal pathways, which eventually cause DNA fragmentation, are largely mediated by the family of cysteinyl aspartate-specific protease caspases. Caspases mediate apoptotic signal transduction by cleavage of apoptosis-implicated proteins and the caspases themselves. In the process of caspase activation, reversible protein phosphorylation plays an important role. The activation of various proteins is regulated by phosphorylation and dephosphorylation, both upstream and downstream of caspase activation. Many kinases/phosphatases are involved in the control of cell survival and death, including the mitogen-activated protein kinase signal transduction pathways. Reversible protein phosphorylation is involved in the widespread regulation of cellular signal transduction and apoptotic processes. Therefore, phosphatase/kinase inhibitors are commonly used as apoptosis inducers/inhibitors. Whether protein phosphorylation induces apoptosis depends on many factors, such as the type of phosphorylated protein, the degree of activation and the influence of other proteins. Phosphorylation signaling pathways are intricately interrelated; it was previously shown that either induction or inhibition of phosphorylation causes cell death. Determination of the relationship between protein and phosphorylation helps to reveal how apoptosis is regulated. Here we discuss DNA fragmentation and protein phosphorylation, focusing on caspase and serine/threonine protein phosphatase activation.  相似文献   

12.
Liver ischemia and reperfusion (I/R) injury is characterized by oxidative stress that is accompanied by alterations of the endogenous defensive system. Emerging evidence suggests a protective role for autophagy induced by multiple stressors including reactive oxygen species. Meanwhile, heme oxygenase-1 (HO-1) has long been implicated in cytoprotection against oxidative stress in vitro and in vivo. Therefore, we investigated the impact of autophagy in the pathogenesis of liver I/R and its molecular mechanisms, particularly its linkage to HO-1. By using transmission electron microscopic analysis and biochemical autophagic flux assays with microtubule-associated protein 1 light chain 3-II, and beclin-1, representative autophagy markers, and p62, a selective substrate for autophagy, we found that reperfusion reduced autophagy both in the rat liver and in primary cultured hepatocytes. When autophagy was further inhibited with chloroquine or wortmannin, I/R-induced hepatocellular injury was aggravated. While livers that underwent I/R showed increased levels of mammalian target of rapamaycin and calpain 1 and 2, inhibition of calpain 1 and 2 induced an autophagic response in hepatocytes subjected to hypoxia/reoxygenation. HO-1 increased autophagy, and HO-1 reduced I/R-induced calcium overload in hepatocytes and prevented calpain 2 activation both in vivo and in vitro. Taken together, these findings suggest that the impaired autophagy during liver I/R, which is mediated by calcium overload and calpain activation, contributes to hepatocellular damage and the HO-1 system protects the liver from I/R injury through enhancing autophagy.  相似文献   

13.
Even though protein phosphatases are key regulators of signal transduction, their cellular mechanisms of action are poorly understood. Here, we undertook a large-scale proteomics survey to identify cellular protein targets of a serine/threonine phosphatase. We used SILAC-based quantitative MS to measure differences in protein expression and phosphorylation upon ablation of the serine/threonine phosphatase Ppt1 in Saccharomyces cerevisiae. Phosphopeptide fractionation by strong cation exchange chromatography combined with immobilized metal affinity chromatography (IMAC) enrichment enabled quantification of more than 8000 distinct phosphorylation sites in Ppt1 wild-type versus Ppt1-deficient yeast cells. We further quantified the relative expression of 1897 yeast proteins and detected no major protein changes accompanying Ppt1 deficiency. Notably, we found 33 phosphorylation sites to be significantly and reproducibly up-regulated while no phosphorylation events were repressed in cells lacking Ppt1. Ppt1 acted on its cellular target proteins in a sequence- and site-specific fashion. Several of the regulated phosphoproteins were involved in the response to heat stress in agreement with known Ppt1 functions. Additionally, biosynthetic enzymes were particularly prominent among Ppt1-regulated phosphoproteins, pointing to unappreciated roles of Ppt1 in the control of various metabolic functions. These results demonstrate the utility of large-scale and quantitative phosphoproteomics to identify cellular sites of serine/threonine phosphatase action in an unbiased manner.  相似文献   

14.
The reversible phosphorylation of proteins controlled by protein kinases and protein phosphatases is a major mechanism that regulates a wide variety of cellular processes. In contrast to C. elegans, recent studies in mammalian cells have highlighted a major role of serine/threonine protein phosphorylation in apoptosis. To illustrate the importance of dephosphorylation processes in apoptosis, this review will focus on recent studies suggesting that the interaction of the serine/threonine protein phosphatase 1 (PP1) and protein phosphatase 2A (PP2A) with certain regulators of the Bcl-2 family is critically involved in the control of apoptosis.  相似文献   

15.
《Autophagy》2013,9(12):2154-2155
Freshly isolated, depolarized rat hepatocytes can repolarize into bile canalicular networks when plated in collagen sandwich cultures. We studied the events underlying this repolarization process, focusing on how hepatocytes restore ATP synthesis and resupply biosynthetic precursors after the stress of being isolated from liver. We found that soon after being plated in collagen sandwich cultures, hepatocytes converted their mitochondria into highly fused networks. This occurred through a combination of upregulation of mitochondrial fusion proteins and downregulation of a mitochondrial fission protein. Mitochondria also became more active for oxidative phosphorylation, leading to overall increased ATP levels within cells. We further observed that autophagy was upregulated in the repolarizing hepatocytes. Boosted autophagy levels likely served to recycle cellular precursors, supplying building blocks for repolarization. Repolarizing hepatocytes also extensively degraded lipid droplets, whose fatty acids provide precursors for β-oxidation to fuel oxidative phosphorylation in mitochondria. Thus, through coordination of mitochondrial fusion, autophagy, and lipid droplet consumption, depolarized hepatocytes are able to boost ATP synthesis and biosynthetic precursors to efficiently repolarize in collagen sandwich cultures.  相似文献   

16.
17.
As earlier reported, the main component of narrow fractions of chromosomal non-histone proteins (NHP) of kidney and of Zaidel hepatoma cells has its own protein kinase activity, and is identified as a heteroorgan NHP-antigen, which is intrinsic to the definite renal tissue and absent in the liver. Effects of narrow fractions of kidney and Zaidel hepatoma NHP on biosynthetic processes and sizes of hepatocytes were studied in vitro. It has been shown that as a result of a 5 h incubation of rat hepatocytes with a narrow fraction of renal NHP the proportion of small hepatocytes increases approximately by 12% as compared with that of cells cultivated without NHP. Besides, binding of organ-specific anti-kidney immune serum with a small hepatocyte population rises by more than 20%, which results from the expression of tumor-associated heteroorgan kidney-specific antigen on the hepatocyte surface. According to immunoprecipitation and subsequent electrophoresis, the molecular mass of a membrane heteroorgan antigen on the surface of hepatocytes amounts approximately to 65 kDa, and an active phosphorylation of cellular proteins takes place. The same effect on hepatocytes is produced by a narrow NHP fraction of chromatin of Zaidel hepatoma cells, whereas no phosphorylation is observed in the presence of liver NHP as well as in the absence of NHP. It is suggested that the heteroorgan NHP-antigen induces biosynthetic processes including synthesis of membrane tumorassociated antigen on the surface of hepatocytes cultivated in vitro by activation of cellular protein phosphorylation, which can lead to changes in size of cultivated cells.  相似文献   

18.
Wilson病是一种以肝损害为常见临床表现的常染色体隐性遗传铜代谢障碍性疾病,但铜蓄积导致的肝细胞损害的具体分子机制尚不明确。本研究拟采用硫酸铜模拟肝细胞铜负荷进行体外实验,选用Western印迹法测试铜负荷肝细胞内蛋白激酶R样内质网激酶(protein kinase R-like endoplasmic reticulum kinase, PERK)及p-eIF2α蛋白质的表达;并探究特异性eIF2α磷酸化抑制剂Salubrinal对铜负荷诱导的肝细胞凋亡、胱天蛋白酶-3活性、C/EBP同源蛋白(C/EBP homologous protein, CHOP)mRNA转录的影响。选用流式细胞仪测试肝细胞凋亡率;比色法测试肝细胞内的胱天蛋白酶-3活性;Real-time PCR法检测肝细胞内CHOP mRNA转录水平。本研究结果显示: (1) 铜负荷显示出时间依赖性地增加肝细胞内PERK及p-eIF2α蛋白质表达(P<0.05, P<0.01)。(2)相比较对照组,铜负荷培养肝细胞24 h明显增加了肝细胞的凋亡率(P<0.01),增强了肝细胞内的胱天蛋白酶-3活性,促进肝细胞内CHOP mRNA的转录,加入特异性eIF2α磷酸化抑制剂Salubrinal后可抑制上述过程。(3)相比较对照组,铜负荷促进肝细胞PERK及p-eIF2α蛋白质表达,加入特异性eIF2α磷酸化抑制剂Salubrinal后,对铜负荷诱导的肝细胞PERK蛋白质表达无影响(P>0.05),但可显著抑制铜负荷诱导的肝细胞p-eIF2α蛋白质表达(P<0.01)。本研究结果提示,铜负荷可以诱发肝细胞内质网应激,铜负荷引起的肝细胞凋亡机制与激活内质网应激PERK/eIF2α信号通路密切相关, Salubrinal具有干预该信号通路作用,能够抑制铜负荷后肝细胞的凋亡。  相似文献   

19.
The multi-kinase inhibitor Sorafenib increases the survival of patients with advanced hepatocellular carcinoma (HCC). Current data suggest that Sorafenib inhibits cellular proliferation and angiogenesis and promotes apoptosis. However, the underlying pro-apoptotic molecular mechanisms are incompletely understood. Here we compared the pro-apoptotic and anti-proliferative properties of Sorafenib in murine hepatoma cells and syngeneic healthy hepatocytes in vitro and in animal models of HCC and liver regeneration in vivo. In vitro, we demonstrate that cell cycle activity and expression of anti-apoptotic Bcl-2 like proteins are similarly downregulated by Sorafenib in Hepa1-6 hepatoma cells and in syngeneic primary hepatocytes. However, Sorafenib-mediated activation of caspase-3 and induction of apoptosis were exclusively found in hepatoma cells, but not in matching primary hepatocytes. We validated these findings in vivo by applying an isograft HCC transplantation model and partial hepatectomy (PH) in C57BL/6 mice. Sorafenib treatment activated caspase-3 and thus apoptosis selectively in small tumor foci that originated from implanted Hepa1-6 cells but not in surrounding healthy hepatocytes. Similarly, Sorafenib did not induce apoptosis after PH. However, Sorafenib treatment transiently inhibited cell cycle progression and resulted in mitotic catastrophe and enhanced non-apoptotic liver injury during regeneration. Importantly, Sorafenib-mediated apoptosis in hepatoma cells was associated with the expression of p53-upregulated-modulator-of-apoptosis (PUMA). In contrast, regenerating livers after PH revealed downregulation of PUMA and were completely protected from Sorafenib-mediated apoptosis. We conclude that Sorafenib induces apoptosis selectively in hepatoma cells but not in healthy hepatocytes and can additionally increase non-apoptotic hepatocyte injury in the regenerating liver.  相似文献   

20.
Abstract: We have found that modification of rat PC12 cells with pertussis toxin resulted in an ∼50% inhibition of a protein phosphatase 2A-like phosphatase. Protein phosphatase 2A (PP2A) is a major cellular serine/threonine-specific protein phosphatase. Treatment of extracts from pertussis toxin-modified PC12 cells with either immobilized alkaline phosphatase or Ca2+ reversed this inhibition. Reactivation of the PP2A-like phosphatase in Ca2+ appears to result from the dephosphorylation of a protein by the Ca2+/calmodulin-dependent protein phosphatase calcineurin. The PP2A-like phosphatase in extracts from pertussis toxin-modified PC12 cells eluted from a Mono Q column at a higher ionic strength than did the PP2A-like phosphatase in extracts from control cells. After incubation in Ca2+, the PP2A-like phosphatase in extracts from pertussis toxin-modified cells eluted from a Mono Q column at the same ionic strength as did the PP2A-like phosphatase in extracts from control cells. These results indicate that the effect of pertussis toxin on this PP2A-like activity results from the phosphorylation of either one of the subunits of the PP2A-like phosphatase or a protein that when phosphorylated binds to and inhibits this phosphatase. Pertussis toxin modification did not result in the phosphorylation of the catalytic subunit of PP2A. Because phosphorylation regulates the activities of many enzymes and cell surface receptors, a pertussis toxin-induced decrease in PP2A activity could alter signaling pathways and other cellular processes in which G proteins are not directly involved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号