首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Cell differentiation》1988,22(2):165-170
The influence of saccharides, especially glucose and fructose, on the metacyclogenesis and growth of Trypanosoma cruzi has been investigated. In the absence of glucose and fructose in the media, both the percentage of metacyclic forms and the growth increased significantly. Furthermore, the addition of NaCl to the medium without monosaccharides strongly increased the formation of metacyclic forms. Presence of NaCl and absence of monosaccharides showed a synergic effect on differentiation of T. cruzi.  相似文献   

2.
The protozoan Trypanosoma cruzi is a parasite exposed to several environmental stressors inside its invertebrate and vertebrate hosts. Although stress conditions are involved in its differentiation processes, little information is available about the stress response proteins engaged in these activities. This work reports the first known association of the stress-inducible protein 1 (STI1) with the cellular differentiation process in a unicellular eukaryote. Albeit STI1 expression is constitutive in epimastigotes and metacyclic trypomastigotes, higher protein levels were observed in late growth phase epimastigotes subjected to nutritional stress. Analysis by indirect immunofluorescence revealed that T. cruzi STI1 (TcSTI1) is located throughout the cell cytoplasm, with some cytoplasmic granules appearing in greater numbers in late growing epimastigotes and late growing epimastigotes subjected to nutritional stress. We observed that part of the fluorescence signal from both TcSTI1 and TcHSP70 colocalized around the nucleus. Gene silencing of sti1 in Trypanosoma brucei did not affect cell growth. Similarly, the growth of T. cruzi mutant parasites with a single allele sti1 gene knockout was not affected. However, the differentiation of epimastigotes in metacyclic trypomastigotes (metacyclogenesis) was compromised. Lower production rates and numbers of metacyclic trypomastigotes were obtained from the mutant parasites compared with the wild-type parasites. These data indicate that reduced levels of TcSTI1 decrease the rate of in vitro metacyclogenesis, suggesting that this protein may participate in the differentiation process of T. cruzi.  相似文献   

3.

Background

Trypanosoma cruzi is the etiological agent of Chagas'' disease. During the parasite life cycle, many molecules are involved in the differentiation process and infectivity. Peptidases are relevant for crucial steps of T. cruzi life cycle; as such, it is conceivable that they may participate in the metacyclogenesis and interaction with the invertebrate host.

Methodology/Principal Findings

In this paper, we have investigated the effect of the calpain inhibitor MDL28170 on the attachment of T. cruzi epimastigotes to the luminal midgut surface of Rhodnius prolixus, as well as on the metacyclogenesis process and ultrastructure. MDL28170 treatment was capable of significantly reducing the number of bound epimastigotes to the luminal surface midgut of the insect. Once the cross-reactivity of the anti-Dm-calpain was assessed, it was possible to block calpain molecules by the antibody, leading to a significant reduction in the capacity of adhesion to the insect guts by T. cruzi. However, the antibodies were unable to interfere in metacyclogenesis, which was impaired by the calpain inhibitor presenting a significant reduction in the number of metacyclic trypomastigotes. The calpain inhibitor also promoted a direct effect against bloodstream trypomastigotes. Ultrastructural analysis of epimastigotes treated with the calpain inhibitor revealed disorganization in the reservosomes, Golgi and plasma membrane disruption.

Conclusions/Significance

The presence of calpain and calpain-like molecules in a wide range of organisms suggests that these proteins could be necessary for basic cellular functions. Herein, we demonstrated the effects of MDL28170 in crucial steps of the T. cruzi life cycle, such as attachment to the insect midgut and metacyclogenesis, as well as in parasite viability and morphology. Together with our previous findings, these results help to shed some light on the functions of T. cruzi calpains. Considering the potential roles of these molecules on the interaction with both invertebrate and vertebrate hosts, it is interesting to improve knowledge on these molecules in T. cruzi.  相似文献   

4.
Virulence of Trypanosoma cruzi depends on a variety of genetic and biochemical factors. It has been proposed that components of the parasites’ antioxidant system may play a key part in this process by pre-adapting the pathogen to the oxidative environment encountered during host cell invasion. Using several isolates (10 strains) belonging to the two major phylogenetic lineages (T. cruzi-I and T. cruzi-II), we investigated whether there was an association between virulence (ranging from highly aggressive to attenuated isolates at the parasitemia and histopathological level) and the antioxidant enzyme content. Antibodies raised against trypanothione synthetase (TcTS), ascorbate peroxidase (TcAPX), mitochondrial and cytosolic tryparedoxin peroxidases (TcMPX and TcCPX) and trypanothione reductase (TcTR) were used to evaluate the antioxidant enzyme levels in epimastigote and metacyclic trypomastigote forms in the T. cruzi strains. Levels of TcCPX, TcMPX and TcTS were shown to increase during differentiation from the non-infective epimastigote to the infective metacyclic trypomastigote stage in all parasite strains examined. Peroxiredoxins were found to be present at higher levels in the metacyclic infective forms of the virulent isolates compared with the attenuated strains. Additionally, an increased resistance of epimastigotes from virulent T. cruzi populations to hydrogen peroxide and peroxynitrite challenge was observed. In mouse infection models, a direct correlation was found between protein levels of TcCPX, TcMPX and TcTS, and the parasitemia elicited by the different isolates studied (Pearson’s coefficient: 0.617, 0.771, 0.499; respectively, < 0.01). No correlation with parasitemia was found for TcAPX and TcTR proteins in any of the strains analyzed. Our data support that enzymes of the parasite antioxidant armamentarium at the onset of infection represent new virulence factors involved in the establishment of disease.  相似文献   

5.
A liquid medium containing a high concentration of water-soluble vitamins and ATP was developed for serial cultivation of Trypanosoma cruzi at 27–37 C; fetal bovine serum and trypticase were the only undefined substances in this medium. At 27 C, Trypanosoma cruzi grows primarily (over 99%) as epimastigotes with a population density reaching 92.7 × 106/ml after 12 days of incubation. During the first subculture at 37 C, many epimastigotes from the original inocula changed into metacyclic trypomastigotes after 48 hr; the trypomastigotes subsequently transformed into amastigotes by 96 hr. In the second passage at 48 hr, 57.8% of the organisms were trypomastigotes which changed into amastigotes by the end of the incubation period. The proportion of amastigotes in the third and subsequent passages increased steadily as the proportion of epimastigotes gradually diminished. Amastigotes thus obtained could be serially subcultured indefinitely, yielding population densities of over 3.0 × 107/ml of medium in 4–5 days at 37 C. Available evidence indicates that these amastigotes are morphologically and physiologically similar to intracellular amastigotes.  相似文献   

6.
Trypanosoma cruzi, the parasite causing Chagas disease, is a digenetic flagellated protist that infects mammals (including humans) and reduviid insect vectors. Therefore, T. cruzi must colonize different niches in order to complete its life cycle in both hosts. This fact determines the need of adaptations to face challenging environmental cues. The primary environmental challenge, particularly in the insect stages, is poor nutrient availability. In this regard, it is well known that T. cruzi has a flexible metabolism able to rapidly switch from carbohydrates (mainly glucose) to amino acids (mostly proline) consumption. Also established has been the capability of T. cruzi to use glucose and amino acids to support the differentiation process occurring in the insect, from replicative non-infective epimastigotes to non-replicative infective metacyclic trypomastigotes. However, little is known about the possibilities of using externally available and internally stored fatty acids as resources to survive in nutrient-poor environments, and to sustain metacyclogenesis. In this study, we revisit the metabolic fate of fatty acid breakdown in T. cruzi. Herein, we show that during parasite proliferation, the glucose concentration in the medium can regulate the fatty acid metabolism. At the stationary phase, the parasites fully oxidize fatty acids. [U-14C]-palmitate can be taken up from the medium, leading to CO2 production. Additionally, we show that electrons are fed directly to oxidative phosphorylation, and acetyl-CoA is supplied to the tricarboxylic acid (TCA) cycle, which can be used to feed anabolic pathways such as the de novo biosynthesis of fatty acids. Finally, we show as well that the inhibition of fatty acids mobilization into the mitochondrion diminishes the survival to severe starvation, and impairs metacyclogenesis.  相似文献   

7.
ABSTRACT. The phorbol ester TPA (phorbol 12-myristate 13-acetate) substitutes for CO2 as an agonist for transforming Trypanosoma cruzi epimastigotes to the metacyclic trypomastigote stage in a starvation medium consisting of phosphate buffered saline + 10 mM proline, 10 mM sodium acetate and 0.035% NaHCO3. Since TPA is thought to stimulate protein kinase C by mimicking the activity of the secondary messenger diacylglycerol, the above result suggested that T. cruzi metacyclogenesis could be activated by a Ca2+-dependent protein kinase C signal induction pathway. Accordingly, cytosolic calcium flux ([Ca2+]i) in epimastigotes, activated with 5% CO2 or TPA (10-7 M), was measured with the Ca2+ molecular probe, fluo-3AM. In addition, [Ca2+]i was measured in cells incubated with putative metacyclogenic agonists (e.g. proline, glutamate, bioamines, ionophores and catecholamines). None of the compounds studied, except for EGTA, affected cytosolic Ca2+ levels. Control assays with 11 μM thapsigargin, which mobilizes noncytoplasmic Ca2+ stores by inhibiting endoplasmic reticulum Ca2+-ATPase. validated our fluorometric assay procedure. Although thapsigargin significantly increases cytoplasmic Ca2+ fluorescence, it has no effect on transformation. The protein kinase C inhibitors staurosporine, H-7 and HA 1004 were tested for their effect on T. cruzi metacyclogenesis. Low concentrations of staurosporine and HA 1004 significantly elevated Pent strain transformation while H-7 had no effect on Peru strain metacyclogenesis. Inhibitor H-7 did significantly depress CL transformation. the results indicate that induction of T. cruzi metacyclic trypomastigote formation by CO2 and TPA is not accompanied by changes in cytosolic Ca2+ and do not provide supporting evidence for participation of a protein kinase C-mediated phosphoinositide cascade in metacyclogenesis.  相似文献   

8.
Trypanosoma congolense epimastigote forms (EMFs) adhere to the tsetse fly proboscis, proliferate, and differentiate into animal-infective metacyclic forms (MCFs). This differentiation step, called metacyclogenesis, is indispensable for the cyclical transmission of the parasite. Although an in vitro metacyclogenesis culture system was established several decades ago, few genetic tools have been utilized to investigate the molecular mechanisms underlying T. congolense metacyclogenesis. This study established a transgene expression system using an in vitro derived EMF of T. congolense IL3000, and the transgenic EMF successfully underwent metacyclogenesis in vitro. The newly constructed expression vector pSAK was designed for integration into the α–β tubulin locus, which is tandemly arranged in the T. congolense genome. The expression cassette of pSAK/enhanced green fluorescent protein (eGFP) was transfected into the EMF by electroporation. An EMF expressing eGFP was successfully generated and differentiated into an MCF that constitutively expressed eGFP. The in vitro metacyclogenesis system in combination with the transgenic EMF technique will be important tools to investigate the molecular mechanisms of metacyclogenesis.  相似文献   

9.
Trypanosoma cruzi, the etiologic agent of Chagas disease, has a complex life cycle in which four distinct developmental forms alternate between the insect vector and the mammalian host. It is assumed that replicating epimastigotes present in the insect gut are not infective to mammalian host, a paradigm corroborated by the widely acknowledged fact that only this stage is susceptible to the complement system. In the present work, we establish a T. cruzi in vitro and in vivo epimastigogenesis model to analyze the biological aspects of recently differentiated epimastigotes (rdEpi). We show that both trypomastigote stages of T. cruzi (cell‐derived and metacyclic) are able to transform into epimastigotes (processes termed primary and secondary epimastigogenesis, respectively) and that rdEpi have striking properties in comparison to long‐term cultured epimastigotes: resistance to complement‐mediated lysis and both in vitro (cell culture) and in vivo (mouse) infectivity. Proteomics analysis of all T. cruzi stages reveled a cluster of proteins that were up‐regulated only in rdEpi (including ABC transporters and ERO1), suggesting a role for them in rdEpi virulence. The present work introduces a new experimental model for the study of host‐parasite interactions, showing that rdEpi can be infective to the mammalian host.  相似文献   

10.
The presence of serum from chronic chagasic patients or rabbits immunized with killed epimastigote forms of Trypanosoma cruzi inhibited infection of rat heart myoblasts by insect-vector (Triatoma infestans)-derived, metacyclic forms of Trypanosoma cruzi. The effect was produced even after diluting the chagasic serum to non-agglutinating levels and was evidenced by marked reductions in both the percentage of infected myoblasts and the number of parasites per 100 cells. Human IgG or IgM purified from chronic chagasic serum and serum from rabbits immunized with killed T. cruzi epimastigotes also reduced both parameters. While previous work has shown that immunological destruction of invasive forms of T. cruzi may underlie the protective effects of the humoral immune response against this parasite, the present in vitro results suggest that specific anti- T. cruzi antibodies could also contribute to protection via inhibition of host cell infection by the vectortransmissible form of the parasite.  相似文献   

11.
Trypanosoma cruzi proliferate and differentiate inside different compartments of triatomines gut that is the first environment encountered by T. cruzi. Due to its complex life cycle, the parasite is constantly exposed to reactive oxygen species (ROS). We tested the influence of the pro-oxidant molecules H2O2 and the superoxide generator, Paraquat, as well as, metabolism products of the vector, with distinct redox status, in the proliferation and metacyclogenesis. These molecules are heme, hemozoin and urate. We also tested the antioxidants NAC and GSH. Heme induced the proliferation of epimastigotes and impaired the metacyclogenesis. β-hematin, did not affect epimastigote proliferation but decreased parasite differentiation. Conversely, we show that urate, GSH and NAC dramatically impaired epimastigote proliferation and during metacyclogenesis, NAC and urate induced a significant increment of trypomastigotes and decreased the percentage of epimastigotes. We also quantified the parasite loads in the anterior and posterior midguts and in the rectum of the vector by qPCR. The treatment with the antioxidants increased the parasite loads in all midgut sections analyzed. In vivo, the group of vectors fed with reduced molecules showed an increment of trypomastigotes and decreased epimastigotes when analyzed by differential counting. Heme stimulated proliferation by increasing the cell number in the S and G2/M phases, whereas NAC arrested epimastigotes in G1 phase. NAC greatly increased the percentage of trypomastigotes. Taken together, these data show a shift in the triatomine gut microenvironment caused by the redox status may also influence T. cruzi biology inside the vector. In this scenario, oxidants act to turn on epimastigote proliferation while antioxidants seem to switch the cycle towards metacyclogenesis. This is a new insight that defines a key role for redox metabolism in governing the parasitic life cycle.  相似文献   

12.
Cell-substrate adhesion during Trypanosoma cruzi differentiation   总被引:2,自引:0,他引:2       下载免费PDF全文
The transformation of Trypanosoma cruzi epimastigotes to the mammal infective metacyclic trypomastigotes (metacyclogenesis) can be performed in vitro under chemically defined conditions. Under these conditions, differentiating epimastigotes adhere to a surface before their transformation into metacyclic trypomastigotes. Scanning and transmission electron microscopy of adhered and non-adhered parasites during the metacyclogenesis process show that only epimastigotes and few transition forms are found in the first population, whereas metacyclic trypomastigotes are exclusively found in the cell culture supernatant. PAGE analysis of the [35S]methionine metabolic labeling products of adhered and non-adhered parasites shows that although most of the polypeptides are conserved, adhered parasites express specifically four polypeptides in the range of 45-50 kD with an isoelectric point of 4.8. These proteins might be involved in the adhesion process and are recognized by an antiserum against total adhered parasite proteins. This antiserum also recognized a group of 45-50 kD in the iodine-radiolabeled surface proteins of differentiating cells, providing direct evidence that these components are indeed surface antigens. The results suggest that epimastigotes must adhere to a substrate before their transformation to metacyclic trypomastigotes, being released to the medium as the metacyclogenesis process is accomplished. This could correspond to the process naturally occurring within the triatomine invertebrate host.  相似文献   

13.
14.
Chagas disease is an endemic parasitic infection caused by Trypanosomacruzi that affects 18-20 million people in Central and South America. Recently we described the Epoxy-α-Lap, an oxyran derivative of α-lapachone, which presents a low toxicity profile and a high inhibitory activity against T.cruzi epimastigotes forms, the non-infective form of this parasite. In this work we described the trypanocidal effects of Epoxy-α-Lap on extracellular (trypomastigote) and intracellular (amastigote) infective forms of two T. cruzi strains (Y and Colombian) known by their different infective profile. Our results showed that Epoxy-α-Lap is lethal to trypomastigote Y and Colombian strains (97% and 84%, respectively). Interestingly, Epoxy-α-Lap also showed a trypanocidal effect in human macrophage infected with T. cruzi Y (85.6%) and Colombian (71.9%) strains amastigote forms. Similar effects were observed on T. cruzi amastigote infected Vero cells (96.4% and 95.0%, respectively). Our results pointed Epoxy-α-Lap as a potential candidate for Chagas disease chemotherapy since it presents trypanocidal activity on all T. cruzi forms with low) toxicity profile.  相似文献   

15.
Okanla E. O., Stumpf J. L. &; Dusanic D. G. 1982. Resistance of mice immunized with irradiated and lyophilized stages of Trypanosoma cruzi to infections with metacyclics. International Journal for Parasitology12: 251–256. BALB/c mice were immunized with either irradiated or lyophilized metacyclic, epimastigote or bloodstream forms of Trypanosoma cruzi in three weekly injections of 1 × 108 trypanosomes/injection. The lyophilized trypanosomes were emulsified in equal quantities of Freund's complete adjuvant. Two weeks following the final immunization, the mice were challenged subcutaneously with metacyclics obtained from either culture or the vector Triatoma infestans. The mice challenged with metacyclics from culture included groups of mice immunized with each of the three stages, while those challenged with metacyclics from the T. infestans included mice immunized with the epimastigotes or metacyclics. Mice immunized with the irradiated epimastigotes, metacyclics and blood-stream form trypomastigote challenged with metacyclics from culture exhibited reduced parasitemias compared to mice of the control groups. Parasitemias were lowest in those mice immunized with irradiated metacyclics. The parasitemias terminated in the immunized mice before those of the control animals. No protection was detected in the mice inoculated with lyophilized trypanosomes and challenged with culture metacyclics. Groups of mice injected with either irradiated or lyophilized epimastigotes or metacyclics and challenged with metacyclics from T. infestans exhibited resistance both by reduction of the parasitemias and the duration of the parasitemias when compared to the infected control animals. This study demonstrated the comparative effectiveness in mice of irradiated and lyophilized vaccines produced from either metacyclics, epimastigotes or bloodstream forms when challenged with metacyclics obtained from culture and the vector.  相似文献   

16.
Heteroxenic and monoxenic trypanosomatids were screened for the presence of actin using a mouse polyclonal antibody produced against the entire sequence of the Trypanosoma cruzi actin gene, encoding a 41.9 kDa protein. Western blot analysis showed that this antibody reacted with a polypeptide of approximately 42 kDa in the whole-cell lysates of parasites targeting mammals (T. cruzi, Trypanosoma brucei and Leishmania major), insects (Angomonas deanei, Crithidia fasciculata, Herpetomonas samuelpessoai and Strigomonas culicis) and plants (Phytomonas serpens). A single polypeptide of approximately 42 kDa was detected in the whole-cell lysates of T. cruzi cultured epimastigotes, metacyclic trypomastigotes and amastigotes at similar protein expression levels. Confocal microscopy showed that actin was expressed throughout the cytoplasm of all the tested trypanosomatids. These data demonstrate that actin expression is widespread in trypanosomatids.  相似文献   

17.

Background

The palmitate analogue 2-bromopalmitate (2-BP) is a non-selective membrane tethered cysteine alkylator of many membrane-associated enzymes that in the last years emerged as a general inhibitor of protein S-palmitoylation. Palmitoylation is a post-translational protein modification that adds palmitic acid to a cysteine residue through a thioester linkage, promoting membrane localization, protein stability, regulation of enzymatic activity, and the epigenetic regulation of gene expression. Little is known on such important process in the pathogenic protozoan Trypanosoma cruzi, the etiological agent of Chagas disease.

Results

The effect of 2-BP was analyzed on different developmental forms of Trypanosoma cruzi. The IC50/48 h value for culture epimastigotes was estimated as 130 μM. The IC50/24 h value for metacyclic trypomastigotes was 216 nM, while for intracellular amastigotes it was 242 μM and for cell derived trypomasigotes was 262 μM (IC50/24 h). Our data showed that 2-BP altered T. cruzi: 1) morphology, as assessed by bright field, scanning and transmission electron microscopy; 2) mitochondrial membrane potential, as shown by flow cytometry after incubation with rhodamine-123; 3) endocytosis, as seen after incubation with transferrin or albumin and analysis by flow cytometry/fluorescence microscopy; 4) in vitro metacyclogenesis; and 5) infectivity, as shown by host cell infection assays. On the other hand, lipid stress by incubation with palmitate did not alter epimastigote growth, metacyclic trypomastigotes viability or trypomastigote infectivity.

Conclusion

Our results indicate that 2-BP inhibits key cellular processes of T. cruzi that may be regulated by palmitoylation of vital proteins and suggest a metacyclic trypomastigote unique target dependency during the parasite development.
  相似文献   

18.
Investigation of protease activities during the transformation of Trypanosoma cruzi epimastigotes into metacyclic trypomastigoes (metacyclo-genesis) revealed three major components with apparent molecular weights of 65, 52, and 40 kDa. The 65-kDa protease is a metacyclic trypomastigote stage-specific protease with an isoelectric point of 5.2 whose activity is inhibited by 1,10-phenanthroline, suggesting that it might be a metalloprotease. The 52-kDa component is also a metalloprotease which is constitutively expressed in epimastigotes and metacyclic trypomastigoes. On the other hand, the 40-kDa component is apparently made up of several isoforms of a cysteine protease which is expressed in much higher levels in epimastigotes than in metacyclic trypomastigote forms. The fact that the 65- and 40-kDa proteases are developmentally regulated suggests that proteases might be important for T. cruzi differentiation. Accordingly, T. cruzi metacyclogenesis is blocked by metallo- and cysteine-protease inhibitors.  相似文献   

19.
 The transformation of Trypanosoma cruzi epimastigotes to mammal-infective metacyclic trypomastigotes (metacyclogenesis) can be performed in vitro under chemically defined conditions (TAU 3AAG medium). During this process, changes in the nature of cell surface sugar composition and sugar distribution was evaluated using FITC and gold-labeled lectins and observed by flow cytometry and transmission electron microscopy. The pattern of labeling with the lectins from Triticum vulgaris (WGA), Arachis hypogaea (PNA), Limax flavus (LFA), Canavalia ensiformis (Con-A), and Ricinus communis (RCA-I) significantly changed during the metacyclogenic process. The results obtained are discussed in relation to the role played by T. cruzi cell surface carbohydrate residues on the process of parasite–host cell interaction. Accepted: 26 May 1998  相似文献   

20.
Epimastigotes of Trypanosoma cruzi, Peru strain, incubated in Contreras' artificial triatomine urine transformed into metacyclic trypomastigotes when 10 mM L-glutamine, L-asparagine or D-fructose was added to the medium. Metacyclogenesis with these substrates was comparable to the percent metacyclic morphotype formation induced by L-proline and significantly greater than that stimulated by 10 mM D-glucose. Sodium acetate (10 mM) increased transformation induced by L-proline, and L-hydroxyproline (10 mM) increased transformation induced by D-fructose. Phosphoenolpyruvate (10 mM) inhibited L-proline-induced metacyclic trypomastigote stage formation. Three antimetabolites, azetidine 2-carboxylate (5 mM), malonic acid (1 mM), and desthiobiotin (5 mM), completely inhibited D-fructose-induced but not L-proline-induced transformation. The Costa Rica, Y, and CL strains of T. cruzi showed different patterns of percent metacyclogenesis with substrates that induce transformation in the Peru strain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号