首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 618 毫秒
1.
In plant sexual reproduction, water and solute movement are tightly regulated, suggesting the involvement of aquaporins. We previously identified TIP5;1 and TIP1;3 as the only Arabidopsis aquaporin genes that are selectively and highly expressed in mature pollen, and showed that they can transport both water and urea when expressed in Xenopus oocytes. Here, we show that TIP5;1 has unusual characteristics, as its water transport activity is regulated by pH. Analysis of the water transport activity of a mutant version of TIP5;1 (TIP5;1-H131A) and amino acid alignment with other plant aquaporins regulated by pH suggested that a conserved motif is involved in pH sensing. GFP-TIP5;1 is located in the mitochondria of pollen tubes. The single mutants tip1;3 and tip5;1, as well as the tip1;3 tip5;1 double mutant, are fertile, but all mutants had shorter than normal pollen tubes when germinated in vitro in the absence of exogenous nitrogen. Thus, we propose that TIP5;1 and TIP1;3 are involved in nitrogen recycling in pollen tubes of Arabidopsis thaliana.  相似文献   

2.
Urea is the major nitrogen (N) form supplied as fertilizer in agricultural plant production and also an important N metabolite in plants. Because urea transport in plants is not well understood, the aim of the present study was to isolate urea transporter genes from the model plant Arabidopsis. Using heterologous complementation of a urea uptake-defective yeast (Saccharomyces cerevisiae) mutant allowed to isolate AtTIP1;1, AtTIP1;2, AtTIP2;1, and AtTIP4;1 from a cDNA library of Arabidopsis. These cDNAs encode channel-like tonoplast intrinsic proteins (TIPs) that belong to the superfamily of major intrinsic proteins (or aquaporins). All four genes conferred growth of a urea uptake-defective yeast mutant on 2 mm urea in a phloretin-sensitive and pH-independent manner. Uptake studies using 14C-labeled urea into AtTIP2;1-expressing Xenopus laevis oocytes demonstrated that AtTIP2;1 facilitated urea transport also in a pH-independent manner and with linear concentration dependency. Expression studies showed that AtTIP1;2, AtTIP2;1, and AtTIP4;1 genes were up-regulated during early germination and under N deficiency in roots but constitutively expressed in shoots. Subcellular localization of green fluorescent protein-fused AtTIPs indicated that AtTIP1;2, AtTIP2;1, and AtTIP4;1 were targeted mainly to the tonoplast and other endomembranes. Thus, in addition to their role as water channels, TIP transporters may play a role in equilibrating urea concentrations between different cellular compartments.  相似文献   

3.
4.
The Arabidopsis thaliana Tonoplast Intrinsic Protein 1;1 (AtTIP1;1) is a member of the tonoplast aquaporin family. The tissue-specific expression pattern and intracellular localization of AtTIP1;1 were characterized using GUS and GFP fusion genes. Results indicate that AtTIP1;1 is expressed in almost all cell types with the notable exception of meristematic cells. The highest level of AtTIP1;1 expression was detected in vessel-flanking cells in vascular bundles. AtTIP1;1-GFP fusion protein labelled the tonoplast of the central vacuole and other smaller peripheral vacuoles. The fusion protein was not found evenly distributed along the tonoplast continuum but concentrated in contact zones of tonoplasts from adjacent vacuoles and in invaginations of the central vacuole. Such invaginations may result from partially engulfed small vacuoles. A knockout mutant was isolated and characterized to gain insight into AtTIP1;1 function. No phenotypic alteration was found under optimal growth conditions indicating that AtTIP1;1 function is not essential to the plant and that some members of the TIP family may act redundantly to facilitate water flow across the tonoplast. However, a conditional root phenotype was observed when mutant plants were grown on a glycerol-containing medium.  相似文献   

5.
Aquaporins of the TIP subfamily (Tonoplast Intrinsic Proteins) have been suggested to facilitate permeation of water and ammonia across the vacuolar membrane of plants, allowing the vacuole to efficiently sequester ammonium ions and counteract cytosolic fluctuations of ammonia. Here, we report the structure determined at 1.18 Å resolution from twinned crystals of Arabidopsis thaliana aquaporin AtTIP2;1 and confirm water and ammonia permeability of the purified protein reconstituted in proteoliposomes as further substantiated by molecular dynamics simulations. The structure of AtTIP2;1 reveals an extended selectivity filter with the conserved arginine of the filter adopting a unique unpredicted position. The relatively wide pore and the polar nature of the selectivity filter clarify the ammonia permeability. By mutational studies, we show that the identified determinants in the extended selectivity filter region are sufficient to convert a strictly water-specific human aquaporin into an AtTIP2;1-like ammonia channel. A flexible histidine and a novel water-filled side pore are speculated to deprotonate ammonium ions, thereby possibly increasing permeation of ammonia. The molecular understanding of how aquaporins facilitate ammonia flux across membranes could potentially be used to modulate ammonia losses over the plasma membrane to the atmosphere, e.g., during photorespiration, and thereby to modify the nitrogen use efficiency of plants.  相似文献   

6.
Pollination is the crucial initial step that brings together the male and female gametophytes, and occurs at the surface of the stigmatic papilla cell in Arabidopsis thaliana. After pollen recognition, pollen hydration is initiated as a second critical step to activate desiccated mature pollen grains for germination, and thus water transport from pistil to pollen is essential for this process. In this study, we report a novel aquaporin-mediated water transport process in the papilla cell as a control mechanism for pollen hydration. Coupled with a time-series imaging analysis of pollination and a reverse genetic analysis using T-DNA insertion Arabidopsis mutants, we found that two aquaporins, the ER-bound SIP1;1 and the plasma membrane-bound PIP1;2, are key players in water transport from papilla cell to pollen during pollination. In wild type plant, hydration speed reached its maximal value within 5 min after pollination, remained high until 10–15 min. In contrast, sip1;1 and pip1;2 mutants showed no rapid increase of hydration speed, but instead a moderate increase during ∼25 min after pollination. Pollen of sip1;1 and pip1;2 mutants had normal viability without any functional defects for pollination, indicating that decelerated pollen hydration is due to a functional defect on the female side in sip1;1 and pip1;2 mutants. In addition, sip1;1 pip1;2 double knockout mutant showed a similar impairment of pollen hydration to individual single mutants, suggesting that their coordinated regulation is critical for proper water transport, in terms of speed and amount, in the pistil to accomplish successful pollen hydration.  相似文献   

7.
Oxysterol-binding proteins (OSBPs) and oxysterol-binding-protein related proteins (ORPs) are encoded by most eukaryotic genomes examined to date; however, they have not yet been characterized in plants. Here we report the identification and characterization of PiORP1, an ORP of Petunia inflata that interacts with the cytoplasmic kinase domain of a receptor-like kinase, named PRK1, of P. inflata. PiORP1 is phosphorylated by PRK1 in vitro and therefore may be involved in PRK1 signaling during pollen development and growth. RNA gel blot analysis showed that PiORP1 and PRK1 had very similar expression patterns in developing pollen, mature pollen and pollen tubes. GFP fusion proteins of PiORP1 localized in the plasma membrane of pollen tubes at distinct foci and its PH domain alone was sufficient to mediate this localization. The sequence for the oxysterol-binding domain of PiORP1 was used to search the genome of Arabidopsis; 12 ORPs were identified and phylogenetic analysis revealed that they fell into two distinct clades, consistent with the ORPs of other eukaryotes. RT-PCR analysis showed that all 12 Arabidopsis ORPs were expressed; 10 were expressed in most of the tissues examined under normal growth conditions, but only three were expressed in pollen. Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users. GenBank accession number for PiORP1: DQ241801  相似文献   

8.
9.
Loss of aquaporin TIP1;1 in Arabidopsis has been suggested to result in early senescence and plant death. This was based on the fact that a partial reduction of TIP1;1 by RNA interference (RNAi) led to gradual phenotypes, ranging from indistinguishable from wild type to lethality, depending on the degree of downregulation of the target messenger, and displaying pleiotropic effects in primary metabolism and cell signalling. A hypothesis was put forward to suggest that TIP1;1, apart from its transport function, may play an essential role in vesicle routing. Here we identify an Arabidopsis transposon insertion line tip1;1-1 that is completely devoid of TIP1;1 protein, as demonstrated by western blotting and immunolocalization using an isoform-specific antibody. Strikingly, the complete absence of the protein did not result in any significant effect on metabolism or elemental composition of the plants. Microarray analysis did not indicate increased expression of other aquaporins to compensate for the lack of TIP1;1 in tip1;1-1. We further developed a double mutant of TIPs in Arabidopsis, lacking both TIP1;1 and its closest paralog TIP1;2. Arabidopsis mutants lacking both TIP1;1 and TIP1;2 showed a minor increase in anthocyanin content, and a reduction in catalase activity, but showed no changes in water status. In contrast to earlier reports, plants lacking TIP1;1 and TIP1;2 aquaporins are alive and thriving. We suggest that RNAi directed towards TIP1;1 may have resulted in off-target gene silencing, a notion that is potentially interesting for various studies analysing gene function by RNAi.  相似文献   

10.
11.
12.
13.
Aquaporins mediate the movement of water across biomembranes. Arabidopsis thaliana contains 35 aquaporins that belong to four subfamilies (PIP, TIP, SIP, and NIP). We investigated their expression profiles immunochemically in suspension-cultured Arabidopsis thaliana cells during growth and in response to salt and osmotic stresses. Protein amounts of all aquaporins were much lower in cultured cells than in the plant tissues. This is consistent with the low water permeability of protoplasts from cultured cells. After treatment with NaCl, the protein amounts of PIP2;1, PIP2;2, and PIP2;3 in the cells increased several-fold, and those of TIP1;1 and TIP1;2, 15- and 3-fold respectively. PIP1 did not change under the stress. Cell death began after 19 d in culture, accompanied by marked accumulation of PIPs and TIPs and a gradual decrease in SIPs. Our results suggest the followings: (i) Accumulation of aquaporin isoforms was individually regulated at low levels in single cells. (ii) At least PIP2;2, PIP2;3, TIP1;1, and TIP1;2 are stress-responsive aquaporins in suspension cells. (iii) A sudden increment of several members of PIP2 and TIP1 subfamilies might be related to cell death.  相似文献   

14.
Folates are indispensable for plant development, but their molecular mode of action remains elusive. We synthesized a probe, “5-F-THF-Dayne,” comprising 5-formyl-tetrahydrofolate (THF) coupled to a photoaffinity tag. Exploiting this probe in an affinity proteomics study in Arabidopsis thaliana, we retrieved 51 hits. Thirty interactions were independently validated with in vitro expressed proteins to bind 5-F-THF with high or low affinity. Interestingly, the interactors reveal associations beyond one-carbon metabolism, covering also connections to nitrogen (N) metabolism, carbohydrate metabolism/photosynthesis, and proteostasis. Two of the interactions, one with the folate biosynthetic enzyme DIHYDROFOLATE REDUCTASE-THYMIDYLATE SYNTHASE 1 (AtDHFR-TS1) and another with N metabolism-associated glutamine synthetase 1;4 (AtGLN1;4), were further characterized. In silico and experimental analyses revealed G35/K36 and E330 as key residues for the binding of 5-F-THF in AtDHFR-TS1 and AtGLN1;4, respectively. Site-directed mutagenesis of AtGLN1;4 E330, which co-localizes with the ATP-binding pocket, abolished 5-F-THF binding as well as AtGLN1;4 activity. Furthermore, 5-F-THF was noted to competitively inhibit the activities of AtDHFR-TS1 and AtGLN1;4. In summary, we demonstrated a regulatory role for 5-F-THF in N metabolism, revealed 5-F-THF-mediated feedback regulation of folate biosynthesis, and identified a total of 14 previously unknown high-affinity binding cellular targets of 5-F-THF. Together, this sets a landmark toward understanding the role of folates in plant development.

Exploration of proteins that interact or bind with folates reveals folate-modulated growth and development in Arabidopsis.  相似文献   

15.
16.
Root hairs are tip-growing long tubular outgrowths of specialized epidermal cells, and are important for nutrient and water uptake and interaction with the soil microflora. Here we characterized two poplar cellulose synthase-like D (CSLD) genes, PdCSLD5 and PdCSLD6, the most probable orthologs to the Arabidopsis AtCSLD3/KOJAK gene. Both PdCSLD5 and PdCSLD6 are strongly expressed in roots, including in the root hairs. Subcellular localization experiments showed that these two proteins are located not only in the polarized plasma membrane of root hair tips, but also in Golgi apparatus of the root hair and non-hair-forming cells. Overexpression of these two poplar genes in the atcsld3 mutant was able to rescue most of the defects caused by disruption of AtCSLD3, including root hair morphological changes, altered cell wall monosaccharide composition, increased non-crystalline β-1,4-glucan and decreased crystalline cellulose contents. Taken together, our results provide evidence indicating that PdCSLD5 and PdCSLD6 are functionally conserved with AtCSLD3 and support a role for PdCSLD5 and PdCSL6 specifically in crystalline cellulose production in poplar root hair tips. The results presented here also suggest that at least part of the mechanism of root hair formation is conserved between herbaceous and woody plants.  相似文献   

17.
Extensive and kinetically well-defined water exchanges occur during germination of seeds. A putative role for aquaporins in this process was investigated in Arabidopsis. Macro-arrays carrying aquaporin gene-specific tags and antibodies raised against aquaporin subclasses revealed two distinct aquaporin expression programs between dry seeds and young seedlings. High expression levels of a restricted number of tonoplast intrinsic protein (TIP) isoforms (TIP3;1 and/or TIP3;2, and TIP5;1) together with a low expression of all 13 plasma membrane aquaporin (PIP) isoforms was observed in dry and germinating materials. In contrast, prevalent expression of aquaporins of the TIP1, TIP2 and PIP subgroups was induced during seedling establishment. Mercury (5 microM HgCl(2)), a general blocker of aquaporins in various organisms, reduced the speed of seed germination and induced a true delay in maternal seed coat (testa) rupture and radicle emergence, by 8-9 and 25-30 h, respectively. Most importantly, mercury did not alter seed lot homogeneity nor the seed germination developmental sequence, and its effects were largely reversed by addition of 2 mM dithiothreitol, suggesting that these effects were primarily due to oxidation of cell components, possibly aquaporins, without irreversible alteration of cell integrity. Measurements of water uptake in control and mercury-treated seeds suggested that aquaporin functions are not involved in early seed imbibition (phase I) but would rather be associated with a delayed initiation of phase III, i.e. water uptake accompanying expansion and growth of the embryo. A possible role for aquaporins in germinating seeds and more generally in plant tissue growth is discussed.  相似文献   

18.
19.
Previous studies have shown that subunits E (eIF3e), F (eIF3f) and H (elF3h) of eukaryotic translation initiation factor 3 play important roles in cell development in humans and yeast. eIF3e and eIF3h have also been reported to be important for normal cell growth in Arabidopsis. However, the functions of subunit eIF3f remain largely unknown in plant species. Here we report characterization of mutants for the Arabidopsis eIF3f (AteIF3f) gene. AteIF3f encodes a protein that is highly expressed in pollen grains, developing embryos and root tips, and interacts with Arabidopsis eIF3e and eIF3h proteins. A Ds insertional mutation in AteIF3f disrupted pollen germination and embryo development. Expression of some of the genes that are essential for pollen tube growth and embryogenesis is down‐regulated in ateif3f‐1 homozygous seedlings obtained by pollen rescue. These results suggested that AteIF3f might play important roles in Arabidopsis cell growth and differentiation in combination with eIF3e and eIF3h.  相似文献   

20.
Yang L  Peng X  Sun MX 《Plant science》2011,181(4):457-464
The pentatricopeptide repeat (PPR) family of eukaryotic proteins has numerous members in plants and is important for plant development. In the present study, we cloned a novel PPR gene, designated AtNG1, and characterized the ng1 Arabidopsis mutant. Morphological and structural observation of an ng1 mutant revealed that its sexual reproduction and seed formation processes are essentially normal. The mature embryonic root of ng1 is fully developed and has a well-differentiated structure; however, ng1 seeds cannot germinate, even when supplied with supplemental hormones and nutrition. Further investigation showed that embryo expansion and root cell elongation fails to occur after water imbibitions. Transient gene expression analysis indicated that AtNG1 localizes in mitochondrion. This implies that the deficiency of mitochondrion function might be the reason for the failed seed germination. Thus, our finding confirmed that AtNG1 plays a critical role in the early process of seed germination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号