首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
14-3-3 proteins are important negative regulators of cell death pathways. Recent studies have revealed alterations in 14-3-3s in Parkinson''s disease (PD) and the ability of 14-3-3s to interact with α-synuclein (α-syn), a protein central to PD pathophysiology. In a transgenic α-syn mouse model, we found reduced expression of 14-3-3θ, -ɛ, and -γ. These same isoforms prevent α-syn inclusion formation in an H4 neuroglioma cell model. Using dopaminergic cell lines stably overexpressing each 14-3-3 isoform, we found that overexpression of 14-3-3θ, -ɛ, or -γ led to resistance to both rotenone and 1-methyl-4-phenylpyridinium, whereas other isoforms were not protective against both toxins. Inhibition of a single protective isoform, 14-3-3θ, by shRNA did not increase vulnerability to neurotoxic injury, but toxicity was enhanced by broad-based inhibition of 14-3-3 action with the peptide inhibitor difopein. Using a transgenic C. elegans model of PD, we confirmed the ability of both human 14-3-3θ and a C. elegans 14-3-3 homologue (ftt-2) to protect dopaminergic neurons from α-syn toxicity. Collectively, these data show a strong neuroprotective effect of enhanced 14-3-3 expression – particularly of the 14-3-3θ, -ɛ, and -γ isoforms – in multiple cellular and animal models of PD, and point to the potential value of these proteins in the development of neuroprotective therapies for human PD.  相似文献   

2.
3.
Proteins of the 14-3-3 family are universal participate in multiple cellular processes. However, their exact role in the pathogenesis of prion diseases remains unclear. In this study, we proposed that human PrP was able to form molecular complex with 14-3-3β. The domains responsible for the interactions between PrP and 14-3-3β were mapped at the segments of amino acid (aa) residues 106–126 within PrP and aa 1–38 within 14-3-3β. Homology modeling revealed that the key aa residues for molecular interaction were D22 and D23 in 14-3-3β as well as K110 in PrP. Mutations in these aa residues inhibited the interaction between the two proteins in vitro. Our results also showed that recombinant PrP encouraged 14-3-3β dimer formation, whereas PrP106–126 peptide inhibited it. Recombinant 14-3-3β disaggregated the mature PrP106–126 fibrils in vitro. Moreover, the PrP–14-3-3 protein complexes were observed in the brain tissues of normal and scrapie agent 263 K infected hamsters. Colocalization of PrP and 14-3-3 was seen in the cytoplasm of human neuroblastoma cell line SH-SY5Y, as well as human cervical cancer cell line HeLa transiently expressing full-length human PrP. Our current data suggest the neuroprotection of PrPC and neuron damage caused by PrPSc may be associated with their functions of 14-3-3 dimerization regulation.  相似文献   

4.
14-3-3 proteins are a family of highly conserved polypeptides that function as small adaptors that facilitate a diverse array of cellular processes by binding phosphorylated target proteins. One of these processes is the regulation of the cell cycle. Here we characterized the role of Bmh1, a 14-3-3 protein, in the cell cycle regulation of the fungus Ustilago maydis. We found that this protein is essential in U. maydis and that it has roles during the G2/M transition in this organism. The function of 14-3-3 in U. maydis seems to mirror the proposed role for this protein during Schizosaccharomyces pombe cell cycle regulation. We provided evidence that in U. maydis 14-3-3 protein binds to the mitotic regulator Cdc25. Comparison of the roles of 14-3-3 during cell cycle regulation in other fungal system let us to discuss the connections between morphogenesis, cell cycle regulation and the evolutionary role of 14-3-3 proteins in fungi.  相似文献   

5.
14-3-3蛋白家族是一组高度保守的可溶性酸性蛋白质,分子量在28~33kD之间,广泛分布于各种真核生物之中。该蛋白能够特异地结合含有磷酸化丝氨酸或苏氨酸的肽段,参与多种信号转导途径。14-3-3蛋白调节着许多重要细胞生命活动,如:新陈代谢、细胞周期、细胞生长发育、细胞的存活和凋亡以及基因转录,该蛋白家族异常与疾病的发生密切相关,尤其是14-3-3蛋白在脑脊液中的分布与一些神经系统疾病密切相关。14-3-3蛋白已成为一些疾病的临床诊断指标,其作为疾病治疗的靶点也在研究之中。主要阐述了14-3-3蛋白的结构、功能、及其在疾病治疗中的应用。  相似文献   

6.
14-3-3s are a family of phosphoserine/phosphothreonine binding proteins directly affecting many protein functions by regulating enzyme activity, intracellular localisation or mediating protein-protein interaction. The single 14-3-3 (g14-3-3) of the flagellated parasite Giardia duodenalis is phosphorylated at residue threonine 214 (T214) and polyglycylated at the extreme C-terminus in a stage-specific manner. To define the role of each post-translational modification, Giardia transgenic lines expressing a N-terminally FLAG-tagged g14-3-3, or the single point mutant T214A, or the E246A and the E247A mutants of the putative polyglycylation sites, were generated in this study. By affinity chromatography and MALDI-MS analysis, Glu246 was identified as the only site of polyglycylation. The absence of a polyglycine chain results in the nuclear localisation of the protein at any parasite life-stage, suggesting a role for polyglycylation in 14-3-3 nucleo/cytoplasm shuttling. Moreover, cyst formation was strongly induced in parasites expressing the E246A mutant and delayed in those harbouring the T214A mutant. Finally, in vitro overlay assays with a GST_T214E mutant indicated that phosphorylation can alter in vitro the binding properties of 14-3-3. The present data suggest that g14-3-3 post-translational modifications act in combination to affect encystation efficiency in Giardia.  相似文献   

7.
14-3-3是一个在真核细胞中广泛表达、功能复杂的蛋白家族,主要通过磷酸化依赖的方式与靶蛋白结合,从而发挥其调控作用。细胞周期的调节对维持基因组的稳定性至关重要。近年来的研究发现,14-3—3蛋白可以和越来越多的细胞周期调节蛋白相互作用,调节G2/M期和G1/S期转换,从而对细胞周期起调控作用。简要综述了14—3—3蛋白在细胞周期调节中的作用。  相似文献   

8.
The 14-3-3 proteins are a large family of approximately 30 kDa acidic proteins and acting in the regulation of many biological processes. In this study, a 14-3-3 zeta (Pi14-3-3z) gene from the Indian meal moth, Plodia interpunctella (Lepidoptera, Pyralidae) was isolated and characterized. The full-length cDNA of Pi14-3-3z is 1382 bp, including a 5'-untranslated region (UTR) of 141 bp, 3′-UTR of 497 bp and an open reading frame (ORF) of 744 bp encoding a polypeptide of 247 amino acids which contains a 14-3-3 homologues domain (PF00244). The deduced Pi14-3-3z protein sequence has 81%–100% identity with the homologues in comparison to with other individuals. qPCR analysis revealed that Pi14-3-3z was expressed at the four developmental stages and in all tissues tested. Based on the amino acid of 14-3-3z, phylogenetic analysis demonstrated a similar topology with the traditional classification, suggesting 14-3-3z protein has the potential value in phylogenetic inference.  相似文献   

9.
Bloodstream-form Trypanosoma brucei have two 14-3-3 proteins, which are required for parasite multiplication. We here describe the effects of 14-3-3 depletion on vesicular transport of variant surface glycoprotein (VSG). 14-3-3 depletion had no detectable effect on de novo synthesis and trafficking of VSG to the cell surface, or on VSG endocytosis. Despite strong inhibition of cell division, the flagellar pocket was not enlarged and the ultrastructure of internal organelles appeared normal. The Rab11-positive recycling endosome compartment was, however, fivefold smaller than normal, and the rate of return of recycling VSG to the surface was correspondingly reduced. Down-regulating 14-3-3 also prevented enlargement of the flagellar pocket by clathrin depletion. These results suggest that there is a remarkably specific requirement for 14-3-3 in normal functioning of the Rab11-positive recycling endosome compartment.  相似文献   

10.
11.
Phototropin receptor kinases play an important role in optimising plant growth in response to blue light. Much is known regarding their photochemical reactivity, yet little progress has been made to identify downstream signalling components. Here, we isolated several interacting proteins for Arabidopsis phototropin 1 (phot1) by yeast two-hybrid screening. These include members of the NPH3/RPT2 (NRL) protein family, proteins associated with vesicle trafficking, and the 14-3-3 lambda (λ) isoform from Arabidopsis. 14-3-3λ and phot1 were found to colocalise and interact in vivo. Moreover, 14-3-3 binding to phot1 was limited to non-epsilon 14-3-3 isoforms and was dependent on key sites of receptor autophosphorylation. No 14-3-3 binding was detected for Arabidopsis phot2, suggesting that 14-3-3 proteins are specific to phot1 signalling.

Structured summary

MINT-7146953: PHOT1 (uniprotkb:O48963) physically interacts (MI:0915) with ARF7 (uniprotkb:Q9LFJ7) by two hybrid (MI:0018)MINT-7147335: PHOT1 (uniprotkb:O48963) physically interacts (MI:0914) with 14-3-3 phi (uniprotkb:P46077) by far Western blotting (MI:0047)MINT-7146854: PHOT1 (uniprotkb:O48963) physically interacts (MI:0915) with RPT2 (uniprotkb:Q682S0) by two hybrid (MI:0018)MINT-7147215: PHOT1 (uniprotkb:O48963) physically interacts (MI:0914) with 14-3-3 lambda (uniprotkb:P48349) by anti tag coimmunoprecipitation (MI:0007)MINT-7147044, MINT-7147185, MINT-7147200, MINT-7147413: PHOT1 (uniprotkb:O48963) physically interacts (MI:0914) with 14-3-3 lambda (uniprotkb:P48349) by far Western blotting (MI:0047)MINT-7146983: PHOT1 (uniprotkb:O48963) physically interacts (MI:0915) with 14-3-3 lambda (uniprotkb:P48349) by two hybrid (MI:0018)MINT-7146871: PHOT1 (uniprotkb:O48963) physically interacts (MI:0915) with NPH3-like (uniprotkb:Q9S9Q9) by two hybrid (MI:0018)MINT-7146905: PHOT1 (uniprotkb:O48963) physically interacts (MI:0915) with ARF2 (uniprotkb:Q9M1P5) by two hybrid (MI:0018)MINT-7147364: PHOT1 (uniprotkb:O48963) physically interacts (MI:0914) with 14-3-3 upsilon (uniprotkb:P42645) by far Western blotting (MI:0047)MINT-7147234: PHOT1 (uniprotkb:O48963) physically interacts (MI:0914) with 14-3-3 kappa (uniprotkb:P48348) by far Western blotting (MI:0047)  相似文献   

12.
14-3-3 proteins, which have been identified in a wide variety of eukaryotes, are highly conserved acidic proteins. In this study, we identified two genes in silkworm that encode 14-3-3 proteins (Bm14-3-3ζ and Bm14-3-3ε). Category of two 14-3-3 proteins was identified according to phylogenetic analysis. Bm14-3-3ζ shared 90% identity with that in Drosophila, while Bm14-3-3ε shared 86% identity with that in Drosophila. According to Western blot and real time PCR analysis, the Bm14-3-3ζ expression levels are higher than Bm14-3-3ε in seven tissues and in four silkworm developmental stages examined. Bm14-3-3ζ was expressed during every stage of silkworm and in every tissue of the fifth instar larvae that was examined, but Bm14-3-3ε expression was not detected in eggs or heads of the fifth instar larvae. Both 14-3-3 proteins were highly expressed in silk glands. These results suggest that Bm14-3-3ζ expression is universal and continuous, while Bm14-3-3ε expression is tissue and stage-specific. Based on tissue expression patterns and the known functions of 14-3-3 proteins, it may be that both 14-3-3 proteins are involved in the regulation of gene expression in silkworm silk glands.  相似文献   

13.
14.
The 14-3-3 protein family interacts with more than 2000 different proteins in mammals, as a result of its specific phospho-serine/phospho-threonine binding activity. Seven paralogs are strictly conserved in mammalian species. Here, we show that during adipogenic differentiation of 3T3-L1 preadipocytes, the level of each 14-3-3 protein paralog is regulated independently. For instance 14-3-3β, γ, and η protein levels are increased compared to untreated cells. In contrast, 14-3-3ε protein levels decreased after differentiation while others remained constant. In silico analysis of the promoter region of each gene showed differences that explain the results obtained at mRNA and protein levels.  相似文献   

15.
The 14-3-3 protein family is a family of regulatory proteins involved in diverse cellular processes. In a previous study of regulation of individual 14-3-3 isoforms in the germinating barley embryo, we found that a post-translationally modified, 28 kDa form of 14-3-3A was present in specific cell fractions of the germinated embryo. In the present study, we identify the nature of the modification of 14-3-3A, and show that the 28 kDa doublet is the result of cleavage of the C-terminus. The 28 kDa forms of 14-3-3A lack ten or twelve amino acid residues at the non-conserved C-terminus of the protein, respectively. Barley 14-3-3B and 14-3-3C are not modified in a similar way. Like the 30 kDa form, in vitro produced 28 kDa 14-3-3A is still capable of binding AHA2 H+-ATPase in an overlay assay. Our results show a novel isoform-specific post-translational modification of 14-3-3 proteins that is regulated in a tissue-specific and developmental way.  相似文献   

16.
17.
14-3-3 proteins regulate cellular responses to stimuli by docking onto pairs of phosphorylated residues on target proteins. The present study shows that the human 14-3-3-binding phosphoproteome is highly enriched in 2R-ohnologues, which are proteins in families of two to four members that were generated by two rounds of whole genome duplication at the origin of the vertebrates. We identify 2R-ohnologue families whose members share a 'lynchpin', defined as a 14-3-3-binding phosphosite that is conserved across members of a given family, and aligns with a Ser/Thr residue in pro-orthologues from the invertebrate chordates. For example, the human receptor expression enhancing protein (REEP) 1-4 family has the commonest type of lynchpin motif in current datasets, with a phosphorylatable serine in the -2 position relative to the 14-3-3-binding phosphosite. In contrast, the second 14-3-3-binding sites of REEPs 1-4 differ and are phosphorylated by different kinases, and hence the REEPs display different affinities for 14-3-3 dimers. We suggest a conceptual model for intracellular regulation involving protein families whose evolution into signal multiplexing systems was facilitated by 14-3-3 dimer binding to lynchpins, which gave freedom for other regulatory sites to evolve. While increased signalling complexity was needed for vertebrate life, these systems also generate vulnerability to genetic disorders.  相似文献   

18.
Plants and protozoa contain a unique family of calcium-dependent protein kinases (CDPKs) which are defined by the presence of a carboxyl-terminal calmodulin-like regulatory domain. We present biochemical evidence indicating that at least one member of this kinase family can be stimulated by 14-3-3 proteins. Isoform CPK-1 from the model plant Arabidopsis thaliana was expressed as a fusion protein in E. coli and purified. The calcium-dependent activity of this recombinant CPK-1 was shown to be stimulated almost twofold by three different 14-3-3 isoforms with 50% activation around 200 nM. 14-3-3 proteins bound to the purified CPK-1, as shown by binding assays in which either the 14-3-3 or CPK-1 were immobilized on a matrix. Both the 14-3-3 binding and activation of CPK-1 were specifically disrupted by a known 14-3-3 binding peptide LSQRQRSTpSTPNVHMV (IC50=30 μM). These results raise the question of whether 14-3-3 can modulate the activity of CDPK signal transduction pathways in plants.  相似文献   

19.
14-3-3s are abundant proteins that regulate essentially all aspects of cell biology, including cell cycle, motility, metabolism, and cell death. 14-3-3s work by docking to phosphorylated Ser/Thr residues on a large network of client proteins and modulating client protein function in a variety of ways. In recent years, aided by improvements in proteomics, the discovery of 14-3-3 client proteins has far outpaced our ability to understand the biological impact of individual 14-3-3 interactions. The rate-limiting step in this process is often the identification of the individual phospho-serines/threonines that mediate 14-3-3 binding, which are difficult to distinguish from other phospho-sites by sequence alone. Furthermore, trial-and-error molecular approaches to identify these phosphorylations are costly and can take months or years to identify even a single 14-3-3 docking site phosphorylation. To help overcome this challenge, we used machine learning to analyze predictive features of 14-3-3 binding sites. We found that accounting for intrinsic protein disorder and the unbiased mass spectrometry identification rate of a given phosphorylation significantly improves the identification of 14-3-3 docking site phosphorylations across the proteome. We incorporated these features, coupled with consensus sequence prediction, into a publicly available web app, called “14-3-3 site-finder”. We demonstrate the strength of this approach through its ability to identify 14-3-3 binding sites that do not conform to the loose consensus sequence of 14-3-3 docking phosphorylations, which we validate with 14-3-3 client proteins, including TNK1, CHEK1, MAPK7, and others. In addition, by using this approach, we identify a phosphorylation on A-kinase anchor protein-13 (AKAP13) at Ser2467 that dominantly controls its interaction with 14-3-3.  相似文献   

20.
Higher plants adapt to phosphorus deficiency through a complex of biological processes. Among of them, two adaptive processes are very important for the response of higher plants to phosphorus deficiency. One is the enhancement of root growth by regulating carbohydrate metabolism and allocation, and the other is rhizosphere acidification to acquire phosphorus efficiently from soil. TFT6 and TFT7, two different members of tomato 14-3-3 gene family, play the distinct roles in the adaption of plants to phosphorus deficiency by taking part in the two processes respectively. TFT6 which acts mainly in leaves is involved in the systemic response to phosphorus deficiency by regulating leaf carbon allocation and increasing phloem sucrose transport to promote root growth, while TFT7 directly functions in root by activating root plasma membrane H+-ATPase to release more protons under phosphorus deficiency. Based on these results, we propose that 14-3-3 proteins play the smart role in response to phosphorus deficiency in higher plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号