首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Atherosclerosis is a pathologic process occurring within the artery, in which many cell types, including T cell, macrophages, endothelial cells, and smooth muscle cells, interact, and cause chronic inflammation, in response to various inner- or outer-cellular stimuli. Atherosclerosis is characterized by a complex interaction of inflammation, lipid deposition, vascular smooth muscle cell proliferation, endothelial dysfunction, and extracellular matrix remodeling, which will result in the formation of an intimal plaque. Although the regulation and function of vascular smooth muscle cells are important in the progression of atherosclerosis, the roles of smooth muscle cells in regulating vascular inflammation are rarely focused upon, compared to those of endothelial cells or inflammatory cells. Therefore, in this review, we will discuss here how smooth muscle cells contribute or regulate the inflammatory reaction in the progression of atherosclerosis, especially in the context of the activation of various membrane receptors, and how they may regulate vascular inflammation. [BMB Reports 2014; 47(1): 1-7]  相似文献   

2.
The increased level of LDL and its modification into oxLDL has been regarded as an important risk factor for the development of cardiovascular diseases such as atherosclerosis. Although some scavenger receptors including CD36 and RAGE have been considered as target receptors for oxLDL, involvement of other receptors should be investigated for oxLDL-induced pathological responses. In this study, we found that oxLDL-induced foam cell formation was inhibited by formyl peptide receptor 2 (FPR2) antagonist WRW4. oxLDL also stimulated calcium signaling and chemotactic migration in FPR2-expressing RBL-2H3 cells but not in vector-expressing RBL-2H3 cells. Moreover, oxLDL stimulated TNF-α production, which was also almost completely inhibited by FPR2 antagonist. Our findings therefore suggest that oxLDL stimulates macrophages, resulting in chemotactic migration, TNF-α production, and foam cell formation via FPR2 signaling, and thus likely contributes to atherogenesis.  相似文献   

3.
Atherosclerosis, the leading cause of death in developed countries, has been linked to hypercholesterolemia for decades. More recently, atherosclerotic lesion progression has been shown to depend on persistent, chronic inflammation in the artery wall. Although several studies have implicated infectious agents in this process, the role of infection in atherosclerosis remains controversial. Because the involvement of monocytes and macrophages in the pathogenesis of atherosclerosis is well established, we investigated the possibility that macrophage innate immunity signaling pathways normally activated by pathogens might also be activated in response to hyperlipidemia. We examined atherosclerotic lesion development in uninfected, hyperlipidemic mice lacking expression of either lipopolysaccharide (LPS) receptor CD14 or myeloid differentiation protein-88 (MyD88), which transduces cell signaling events downstream of the Toll-like receptors (TLRs), as well as receptors for interleukin-1 (IL-1) and IL-18. Whereas the MyD88-deficient mice evinced a marked reduction in early atherosclerosis, mice deficient in CD14 had no decrease in early lesion development. Inactivation of the MyD88 pathway led to a reduction in atherosclerosis through a decrease in macrophage recruitment to the artery wall that was associated with reduced chemokine levels. These findings link elevated serum lipid levels to a proinflammatory signaling cascade that is also engaged by microbial pathogens.  相似文献   

4.
Plasma high density lipoprotein (HDL)-cholesterol levels are inversely correlated to the risk of atherosclerotic cardiovascular diseases. Reverse cholesterol transport (RCT) is one of the major protective systems against atherosclerosis, in which HDL particles play a crucial role to carry cholesterol derived from peripheral tissues to the liver. Recently, ATP-binding cassette transporters (ABCA1, ABCG1) and scavenger receptor (SR-BI) have been identified as important membrane receptors to generate HDL by removing cholesterol from foam cells. Adiponectin (APN) secreted from adipocytes is one of the important molecules to inhibit the development of atherosclerosis. Epidemiological studies have revealed a positive correlation between plasma HDL-cholesterol and APN concentrations in humans, although its mechanism has not been clarified. Therefore, in the present study, we investigated the role of APN on RCT, in particular, cellular cholesterol efflux from human monocyte-derived and APN-knockout (APN-KO) mice macrophages. APN up-regulated the expression of ABCA1 in human macrophages, respectively. ApoA-1-mediated cholesterol efflux from macrophages was also increased by APN treatment. Furthermore, the mRNA expression of LXRα and PPARγ was increased by APN. In APN-KO mice, the expression of ABCA1, LXRα, PPARγ, and apoA-I-mediated cholesterol efflux was decreased compared with wild-type mice. In summary, APN might protect against atherosclerosis by increasing apoA-I-mediated cholesterol efflux from macrophages through ABCA1-dependent pathway by the activation of LXRα and PPARγ.  相似文献   

5.
The mitochondrion plays a crucial role in the immune system particularly in regulating the responses of monocytes and macrophages to tissue injury, pathogens, and inflammation. In systemic diseases such as atherosclerosis and chronic kidney disease (CKD), it has been established that disruption of monocyte and macrophage function can lead to chronic inflammation. Polarization of macrophages into the pro-inflammatory (M1) and anti-inflammatory (M2) phenotypes results in distinct metabolic reprograming which corresponds to the progression and resolution of inflammation. In this review, we will discuss the role of the mitochondrion in monocyte and macrophage function and how these cells specifically influence the pathophysiology of atherosclerosis and CKD. We propose that assessing monocyte bioenergetics in different disease states could (1) enhance our understanding of the energetic perturbations occurring in systemic inflammatory conditions and (2) aid in identifying therapeutic interventions to mitigate these disorders in patients.  相似文献   

6.
Oxidized LDL (oxLDL) performs critical roles in atherosclerosis by inducing macrophage foam cell formation and promoting inflammation. There have been reports showing that oxLDL modulates macrophage cytoskeletal functions for oxLDL uptake and trapping, however, the precise mechanism has not been clearly elucidated. Our study examined the effect of oxLDL on non-muscle myosin heavy chain IIA (MHC-IIA) in macrophages. We demonstrated that oxLDL induces phosphorylation of MHC-IIA (Ser1917) in peritoneal macrophages from wild-type mice and THP-1, a human monocytic cell line, but not in macrophages deficient for CD36, a scavenger receptor for oxLDL. Protein kinase C (PKC) inhibitor-treated macrophages did not undergo the oxLDL-induced MHC-IIA phosphorylation. Our immunoprecipitation revealed that oxLDL increased physical association between PKC and MHC-IIA, supporting the role of PKC in this process. We conclude that oxLDL via CD36 induces PKC-mediated MHC-IIA (Ser1917) phosphorylation and this may affect oxLDL-induced functions of macrophages involved in atherosclerosis. [BMB Reports 2015; 48(1): 48-53]  相似文献   

7.
8.
In the pathogenesis of atherosclerosis, macrophages become activated and play a crucial role in plaque formation. Activated synovial macrophages have recently been shown to express receptors for folic acid. We have determined whether activated macrophages also over-express folate receptor (FR) in atherosclerosis. Most normal cells express little or no FR, and, if FR is present on activated macrophages, folate-linked compounds and drugs could be selectively targeted to those cells that do express FR. To evaluate the FR on macrophages of atherosclerotic animals, golden Syrian hamsters were maintained on a hyperlipidemic diet until extensive vascular lesions had developed. Uptake of folic acid conjugated to fluorescent tags was then examined in tissue fragments from lesion-prone areas, and peritoneal activated macrophages were harvested from the same animals. Spectrofluorimetric and fluorescence microscopic analyses showed a significantly greater uptake of folate-conjugates by peritoneal macrophages of hyperlipidemic hamsters compared with those of hamsters fed a normal or folate-deficient diet. Systemically administered folate-fluorescent conjugates were found to accumulate as bright spots in protrusions of atherosclerotic plaques populated by macrophages, whereas a low level of fluorescence was detected uniformly dispersed across the lesion. The uptake of the folate conjugate by U937 macrophage cells grown in a high-lipid culture medium was significantly higher than in controls. Our data thus indicate that hyperlipidemic conditions induce an increased uptake of folate attributable to the over-expression of FRs on activated macrophages. This increase in FR expression can be exploited to deliver folate-linked compounds selectively to atherosclerotic lesions. This work was supported by a grant from the Romanian Academy and Ministry of Education, Research and Technology, Bucharest, Romania, and partially by a grant from Endocyte and the Indiana 21st Century Fund.  相似文献   

9.
Inflammation and insulin resistance   总被引:10,自引:0,他引:10  
de Luca C  Olefsky JM 《FEBS letters》2008,582(1):97-105
Obesity-induced chronic inflammation is a key component in the pathogenesis of insulin resistance and the Metabolic syndrome. In this review, we focus on the interconnection between obesity, inflammation and insulin resistance. Pro-inflammatory cytokines can cause insulin resistance in adipose tissue, skeletal muscle and liver by inhibiting insulin signal transduction. The sources of cytokines in insulin resistant states are the insulin target tissue themselves, primarily fat and liver, but to a larger extent the activated tissue resident macrophages. While the initiating factors of this inflammatory response remain to be fully determined, chronic inflammation in these tissues could cause localized insulin resistance via autocrine/paracrine cytokine signaling and systemic insulin resistance via endocrine cytokine signaling all of which contribute to the abnormal metabolic state.  相似文献   

10.
11.
Usui R  Shibuya M  Ishibashi S  Maru Y 《EMBO reports》2007,8(12):1155-1161
Elevated serum low-density lipoprotein (LDL) is a risk factor for atherosclerotic disorders. However, prominent atherosclerosis, which has been observed in LDL receptor (LDLR)-knockout mice, has diminished the significance of LDLR as a cause of atherosclerosis, while elaborate studies have focused on the receptors for denatured LDL. Here we report that native LDL (nLDL) activates vascular endothelial growth factor (VEGF) receptor 1 (VEGFR1) but not VEGFR2 through LDLR and is as potent as VEGF in macrophage migration. Binding and co-endocytosis of VEGFR1 and LDLR were enhanced by nLDL, which is concomitant with ubiquitination-mediated degradation of VEGFR1. We propose that LDLR-mediated use of VEGFR1 by nLDL could be a potential therapeutic target in atherosclerotic disorders.  相似文献   

12.
The oxidative modification of human LDL has been implicated in atherosclerosis, but the mechanisms by which such modification occurs in vivo are not fully understood. In the present study, we have isolated LDL from knee-joint synovial fluid of patients with rheumatoid arthritis. We demonstrate that such LDL is oxidatively modified as evidenced by an increased negative charge, distorted particulate nature and more rapid degradation by cultured macrophages. These results indicate that formation of oxidised LDL is associated with the local inflammatory response. Because the cellular interactions in rheumatoid arthritis have analogies with those in atherogenesis, we suggest that the rheumatoid joint is a useful model of atherosclerosis in which the in vivo process of LDL oxidation may be readily studied.  相似文献   

13.
14.
In some settings increasing high density lipoprotein (HDL) levels has been associated with a reduction in experimental atherosclerosis. This has been most clearly seen in apolipoprotein A-I (apoA-I) transgenic mice or in animals infused with HDL or its apolipoproteins. A major mechanism by which these treatments are thought to delay progression or cause regression of atherosclerosis is by promoting efflux of cholesterol from macrophage foam cells. In addition, HDL has been described as having anti-inflammatory and other beneficial effects. Some recent research has linked anti-inflammatory effects to cholesterol efflux pathways but likely multiple mechanisms are involved. Macrophage cholesterol efflux may have a role in facilitating emigration of macrophages from lesions during regression. While macrophages can mediate cholesterol efflux by several pathways, studies in knockout mice or cells point to the importance of active efflux mediated by ATP binding cassette transporter (ABC) A1 and G1. In addition to traditional roles in macrophages, these transporters have been implicated in the control of hematopoietic stem cell proliferation, monocytosis and neutrophilia, as well as activation of monocytes and neutrophils. Thus, HDL and cholesterol efflux pathways may have important anti-atherogenic effects at all stages of the myeloid cell/monocyte/dendritic cell/macrophage lifecycle. This article is part of a Special Issue entitled Advances in High Density Lipoprotein Formation and Metabolism: A Tribute to John F. Oram (1945-2010).  相似文献   

15.
16.
Discoidin domain receptors, DDR1 and DDR2, lie at the intersection of two large receptor families, namely the extracellular matrix and tyrosine kinase receptors. As such, DDRs are uniquely positioned to function as sensors for extracellular matrix and to regulate a wide range of cell functions from migration and proliferation to cytokine secretion and extracellular matrix homeostasis/remodeling. While activation of DDRs by extracellular matrix collagens is required for normal development and tissue homeostasis, aberrant activation of these receptors following injury or in disease is detrimental. The availability of mice lacking DDRs has enabled us to identify key roles played by these receptors in disease initiation and progression. DDR1 promotes inflammation in atherosclerosis, lung fibrosis and kidney injury, while DDR2 contributes to osteoarthritis. Furthermore, both DDRs have been implicated in cancer progression. Yet the mechanisms whereby DDRs contribute to disease progression are poorly understood. In this review we highlight the mechanisms whereby DDRs regulate two important processes, namely inflammation and tissue fibrosis. In addition, we discuss the challenges of targeting DDRs in disease. Selective targeting of these receptors requires understanding of how they interact with and are activated by extracellular matrix, and whether their cellular function is dependent on or independent of receptor kinase activity.  相似文献   

17.
18.
AMP-activated kinase is a cellular energy sensor which is activated in stages of increased ATP consumption. Its activation has been associated with a number of beneficial effects such as decreasing inflammatory processes and the disease progress of diabetes and obesity, respectively. Furthermore, AMPK activation has been linked with induction of cell cycle arrest and apoptosis in cancer and vascular cells, indicating that it might have a therapeutic impact for the treatment of cancer and atherosclerosis. However, the impact of AMPK on the proliferation of macrophages, which also play a key role in the formation of atherosclerotic plaques and in inflammatory processes, has not been focused so far. We have assessed the influence of AICAR- and metformin-induced AMPK activation on cell viability of macrophages with and without inflammatory stimulation, respectively. In cells without inflammatory stimulation, we found a strong induction of caspase 3-dependent apoptosis associated with decreased mTOR levels and increased expression of p21. Interestingly, these effects could be inhibited by co-stimulation with bacterial lipopolysaccharide (LPS) but not by other proinflammatory cytokines suggesting that AICAR induces apoptosis via AMPK in a TLR4-pathway dependent manner.  相似文献   

19.
Ligand activation of liver X receptors (LXRs) has been shown to impact both lipid metabolism and inflammation. One complicating factor in studies utilizing synthetic LXR agonists is the potential for pharmacologic and receptor-independent effects. Here, we describe an LXR gain-of-function system that does not depend on the addition of exogenous ligand. We generated transgenic mice expressing a constitutively active VP16-LXRα protein from the aP2 promoter. These mice exhibit increased LXR signaling selectively in adipose and macrophages. Analysis of gene expression in primary macrophages derived from two independent VP16-LXRα transgenic lines confirmed the ability of LXR to drive expression of genes involved in cholesterol efflux and fatty acid synthesis. Moreover, VP16-LXRα expression also suppressed the induction of inflammatory genes by lipopolysaccharide to a comparable degree as synthetic agonist. We further utilized VP16-LXRα-expressing macrophages to identify and validate new targets for LXRs, including the gene encoding ADP-ribosylation factor-like 7 (ARL7). ARL7 has previously been shown to transport cholesterol to the membrane for ABCA1-associated removal and thus may be integral to the LXR-dependent efflux pathway. We show that the ARL7 promoter contains a functional LXRE and can be transactivated by LXRs in a sequence-specific manner, indicating that ARL7 is a direct target of LXR. These findings provide further support for an important role of LXRs in the coordinated regulation of lipid metabolic and inflammatory gene programs in macrophages.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号