首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
2.
The study of giant cells in populations of different tumor cells and evaluation of their role in cancer development is an expanding field. The formation of giant cells has been shown to be followed by mitotic catastrophe, apoptosis, necrosis, and other types of cell elimination. Reports also demonstrate that giant cells can escape cell death and give rise to new cancer cells. However, it is not known if the programmed cell death is involved in this type of cell cycle disorders. Here we describe principal events that are observed during giant cell formation. We also consider the role of giant cells in cancer development, taking into account both published work and our own recent data in this field.  相似文献   

3.
The skeletal muscle satellite cell: stem cell or son of stem cell?   总被引:18,自引:0,他引:18  
The concept of the adult tissue stem cell is fundamental to models of persistent renewal in functionally post-mitotic tissues. Although relatively ignored by stem cell biology, skeletal muscle is a prime example of an adult tissue that can generate terminally differentiated cells uniquely specialized to carry out tissue-specific functions. This capacity is attributed to satellite cells, a population of undifferentiated, quiescent precursors that become activated to divide and differentiate in response to the demands of growth or damage. The aim of this review is to discuss the role of the satellite cell as an adult tissue-specific stem cell. We examine evidence for the presence of behaviourally and phenotypically distinct subpopulations of precursor within the satellite cell pool. Further, we speculate on the possible identity, origins and relevance of multipotent muscle stem cells, a population with both myogenic and hematopoietic potentials that has been isolated from whole muscle. Taken together, current evidence suggests the possibility that the regenerative compartment of adult skeletal muscle may conform to an archetypal stem cell-based hierarchy, maintained within a stem cell niche. It therefore remains to be seen whether all satellite cells are skeletal muscle-specific stem cells, or whether some or all are the progeny of an as yet unidentified muscle stem cell.  相似文献   

4.
Fas (Apo-1/CD95) is a cell-surface protein that is responsible for initiating a cascade of proteases (caspases) culminating in apoptotic cell death in a variety of cell types. The function of the Fas/FasL system in the dampening of immune responses to infectious agents through the autocrine deletion of activated T cells has been well documented. More recently, it has been proposed that tumor cells express FasL, presumably to avoid immune detection. In this review, we focus on the role of the interaction of Fas and FasL in the modulation of antitumor responses. We critically examine the evidence that FasL is expressed by tumor cells and explore alternative explanations for the observed phenomena in vitro and in vivo. By reviewing data that we have generated in our laboratory as well as reports from the literature, we will argue that the Fas/FasL system is a generalized mechanism used in an autocrine fashion to regulate cell survival and expansion in response to environmental and cellular cues. We propose that FasL expression by tumor cells, when present, is indicative of a perturbed balance in the control of proliferation while “immune privilege” is established by “suicide” of activated antitumor T cells, a form of activation-induced cell death. Received: 5 May 1998 / Accepted: 20 May 1998  相似文献   

5.
T cells developing in the adult thymus ultimately derive from haematopoietic stem cells in the bone marrow. Here, we summarize research into the identity of the haematopoietic progenitors that leave the bone marrow, migrate through the blood and settle in the thymus to generate T cells. Accumulating data indicate that various different bone-marrow progenitors are T-cell-lineage competent and might contribute to intrathymic T-cell development. Such developmental flexibility implies a mechanism of T-cell-lineage commitment that can operate on a range of T-cell-lineage-competent progenitors, and further indicates that only those T-cell-lineage-competent progenitors able to migrate to, and settle in, the thymus should be considered physiological T-cell progenitors.  相似文献   

6.
Dendritic cells (DC) are professional antigen-presenting cells currently being used as a cellular adjuvant in cancer immunotherapy strategies. Unfortunately, DC-based vaccines have not demonstrated spectacular clinical results. DC loading with tumor antigens and DC differentiation and activation still require optimization. An alternative technique for providing antigens to DC consists of the direct fusion of dendritic cells with tumor cells. These resulting hybrid cells may express both major histocompatibility complex (MHC) class I and II molecules associated with tumor antigens and the appropriate co-stimulatory molecules required for T-cell activation. Initially tested in animal models, this approach has now been evaluated in clinical trials, although with limited success. We summarize and discuss the results from the animal studies and first clinical trials. We also present a new approach to inducing hybrid formation by expression of viral fusogenic membrane glycoproteins.  相似文献   

7.
8.
Over the past several years, it has become apparent that enteropathogens activate cell death programs. For Salmonella and Shigella species, the induction of cell death is required for pathogenesis, and the mechanisms by which these bacteria induce cell death is an area of intense investigation. Although initial studies suggested that Salmonella induce cell death through an apoptotic pathway, recent studies demonstrate that cell death occurs through a unique caspase 1-dependent mechanism.  相似文献   

9.
10.
There is a clear need for improved cancer therapy and survival rates. Effective immunotherapy would be the treatment modality of choice from several viewpoints, and dendritic cell (DC)-based immunotherapy is emerging as the most promising approach to cancer immunotherapy. However, the plethora of approaches to DC-based cancer therapy now threatens to impede the development of an effective immunotherapy regime, as competing egos and commercial interests masquerade as scientific rigour. Here, I argue that the current controversies regarding the numerous approaches reflect the paucity of our immunological understanding, and present a simple cell biological analysis that defines the rationale for the development of effective cancer immunotherapy.  相似文献   

11.
We present a new concept of cardiac cells based on an analogy with lasers, practical implementations of quantum resonators. In this concept, each cardiac cell comprises a network of independent nodes, characterised by a set of discrete energy levels and certain transition probabilities between them. Interaction between the nodes is given by threshold-limited energy transfer, leading to quantum-like behaviour of the whole network. We propose that in cardiomyocytes, during each excitation-contraction coupling cycle, stochastic calcium release and the unitary properties of ionic channels constitute an analogue to laser active medium prone to "population inversion" and "spontaneous emission" phenomena. This medium, when powered by an incoming threshold-reaching voltage discharge in the form of an action potential, responds to the calcium influx through L-type calcium channels by stimulated emission of Ca2+ ions in a coherent, synchronised and amplified release process known as calcium-induced calcium release. In parallel, phosphorylation-stimulated molecular amplification in protein cascades adds tuneable features to the cells. In this framework, the heart can be viewed as a coherent network of synchronously firing cardiomyocytes behaving as pulsed laser-like amplifiers, coupled to pulse-generating pacemaker master-oscillators. The concept brings a new viewpoint on cardiac diseases as possible alterations of "cell lasing" properties.  相似文献   

12.
13.
  1. Download : Download high-res image (160KB)
  2. Download : Download full-size image
  相似文献   

14.
15.
16.
Follicle cell processes (FCP) are identified in two species of carcharhinid shark (Selachii) but are absent in the little skate Leucoraja erinacea (Batoidea). This suggests that FCPs are either a unique structure that evolved in selachians or were lost by the batoids after their divergence, some 280 mya . The presence of FCPs in the selachians would be consistent with the evolution of large oocytes in this group of animals.  相似文献   

17.
Epithelial cells often produce extensions, known variously as filopodia, cell feet or cytonemes, which can extend across many cell diameters to directly contact non-adjacent cells. Do they function in morphogenesis, cell–cell signaling or both?.  相似文献   

18.
The flexibility displayed by apicomplexan parasites to vary their mode of replication has intrigued biologists since their discovery by electron microscopy in the 1960s and 1970s. Starting in the 1990s we began to understand the cell biology of the cytoskeleton elements driving cytokinesis. By contrast, the molecular mechanisms that regulate the various division modes and how they translate into the budding process that uniquely characterizes this parasite family are much less understood. Although growth mechanisms are a neglected area of study, it is an important pathogenic parameter as fast division rounds are associated with fulminant infection whereas slower growth attenuates virulence, as is exploited in some vaccine strains. In this review we summarize a recent body of cell biological experiments that are rapidly leading to an understanding of the events that yield successful mitosis and cytokinesis in Toxoplasma. We place these observations within a cell cycle context with comments on how these events may be regulated by known eukaryotic checkpoints active in fission and budding yeasts as well as mammalian cells. The presence of cell cycle control mechanisms in the Apicomplexa is supported by our findings that identify several cell cycle checkpoints in Toxoplasma. The progress of the cell cycle is ultimately controlled by cyclin-Cdk pair activities, which are present throughout the Apicomplexa. Although many of the known controllers of cyclin-Cdk activity are present, several key controls cannot readily be identified, suggesting that apicomplexan parasites deviate at these points from the higher eukaryotic models. Altogether, new insights in Toxoplasma replication are reciprocally applied to hypothesize how other division modes in the Toxoplasma life cycle and in other Apicomplexa species could be controlled in terms of cell cycle checkpoint regulation.  相似文献   

19.
The development of ascomycete fungal colonies involves cell–cell fusion at different growth stages. In the model fungus Neurospora crassa, communication of two fusing cells is mediated by an unusual signaling mechanism, in which the two partners take turns in signal sending and receiving. In recent years, the molecular basis of this unusual cellular behavior has started to unfold, indicating the presence of an excitable signaling network. New evidence suggests that this communication system is highly conserved in ascomycete fungi and, unexpectedly, even mediates interspecies interactions. At the same time, intricate allorecognition mechanisms were identified, which prevent the fusion of genetically unlike individuals. These observations suggest that signal specificity during fungal social behavior has not evolved on the level of signals and receptors, but is achieved at downstream checkpoints. Despite growing insight into the molecular mechanisms controlling self and non-self fungal interactions, their role in natural environments remains largely unknown.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号