共查询到20条相似文献,搜索用时 15 毫秒
1.
Atherosclerosis is a pathologic process occurring within the artery, in which many cell types, including T cell, macrophages, endothelial cells, and smooth muscle cells, interact, and cause chronic inflammation, in response to various inner- or outer-cellular stimuli. Atherosclerosis is characterized by a complex interaction of inflammation, lipid deposition, vascular smooth muscle cell proliferation, endothelial dysfunction, and extracellular matrix remodeling, which will result in the formation of an intimal plaque. Although the regulation and function of vascular smooth muscle cells are important in the progression of atherosclerosis, the roles of smooth muscle cells in regulating vascular inflammation are rarely focused upon, compared to those of endothelial cells or inflammatory cells. Therefore, in this review, we will discuss here how smooth muscle cells contribute or regulate the inflammatory reaction in the progression of atherosclerosis, especially in the context of the activation of various membrane receptors, and how they may regulate vascular inflammation. [BMB Reports 2014; 47(1): 1-7] 相似文献
2.
Nagao S Murao K Imachi H Cao WM Yu X Li J Matsumoto K Nishiuchi T Ahmed RA Wong NC Ueda K Ishida T 《FEBS letters》2006,580(18):4371-4376
The ATP-binding cassette transporter A1 (ABCA1) regulates lipid efflux from peripheral cells to High-density lipoprotein. The platelet-derived growth factor (PDGF) is a potent mitogen that enables vascular smooth muscle cells to participate in atherosclerosis. In this report, we showed that PDGF suppressed endogenous expression of ABCA1 in cultured vascular smooth muscle cells. Exposure of CRL-208 cells to PDGF elicited a rapid phosphorylation of a kinase downstream from PI3-K, Akt. The constitutively active form of both p110, a subunit of PI3-K, and Akt inhibited activity of the ABCA1 promoter. In conclusion, PI3-K-Akt pathways participate in PDGF-suppression of ABCA1 expression. 相似文献
3.
4.
Jeong SO Pae HO Oh GS Jeong GS Lee BS Lee S Kim du Y Rhew HY Lee KM Chung HT 《Biochemical and biophysical research communications》2006,345(3):938-944
Hydrogen sulfide (H(2)S) and nitric oxide (NO) are endogenously synthesized from l-cysteine and l-arginine, respectively. They might constitute a cooperative network to regulate their effects. In this study, we investigated whether H(2)S could affect NO production in rat vascular smooth muscle cells (VSMCs) stimulated with interleukin-1beta (IL-1beta). Although H(2)S by itself showed no effect on NO production, it augmented IL-beta-induced NO production and this effect was associated with increased expression of inducible NO synthase (iNOS) and activation of nuclear factor (NF)-kappaB. IL-1Beta activated the extracellular signal-regulated kinase 1/2 (ERK1/2), and this activation was also enhanced by H(2)S. Inhibition of ERK1/2 activation by the selective inhibitor U0126 inhibited IL-1beta-induced NF-kappaB activation, iNOS expression, and NO production either in the absence or presence of H(2)S. Our findings suggest that H(2)S enhances NO production and iNOS expression by potentiating IL-1beta-induced NF-kappaB activation through a mechanism involving ERK1/2 signaling cascade in rat VSMCs. 相似文献
5.
Honokiol, an active component in extracts of Magnolia officinalis, has been proposed to play a role in anti-inflammatory, antioxidant activity, anti-angiogenic and anti-tumor activity. Although honokiol has a variety of pharmacological effects on certain cell types, its effects on vascular smooth muscle cells (VSMC) are unclear. This issue was investigated in the present study, honokiol was found to inhibit cell viability and DNA synthesis in cultured VSMC. These inhibitory effects were associated with G1 cell cycle arrest. Treatment with honokiol blocks the cell cycle in the G1 phase, down-regulates the expression of cyclins and CDKs and up-regulates the expression of p21WAF1, a CDK inhibitor. While honokiol did not up-regulate p27, it caused an increase in the promoter activity of the p21WAF1 gene. Immunoblot and deletion analysis of the p21WAF1 promoter showed that honokiol induced the expression of p21WAF1 and that this expression was independent of the p53 pathway. Furthermore, the honokiol-mediated signaling pathway involved in VSMC growth inhibition was examined. Among the relevant pathways, honokiol induced a marked activation of p38 MAP kinase and JNK. The expression of dominant negative p38 MAP kinase and SB203580, a p38 MAP kinase specific inhibitor, blocked the expression of honokiol-dependent p38 MAP kinase and p21WAF1. Consistently, blockade of p38 MAPK kinase function reversed honokiol-induced VSMC proliferation and cell cycle proteins. These data demonstrate that the p38 MAP kinase pathway participates in p21WAF1 induction, subsequently leading to a decrease in the levels of cyclin D1/CDK4 and cyclin E/CDK2 complexes and honokiol-dependent VSMC growth inhibition. In conclusion, these findings concerning the molecular mechanisms of honokiol in VSMC provides a theoretical basis for clinical approaches to the use therapeutic agents in treating atherosclerosis. 相似文献
6.
Balagopalakrishna Chavali Bhunia Anil K. Rifkind Joseph M. Chatterjee Subroto 《Molecular and cellular biochemistry》1997,170(1-2):85-89
We have investigated the effects of modifying LDL by Cu++ and various hemoglobin preparations on aortic smooth muscle cell proliferation and on the activation of mitogen activated protein kinase. We found that at very low concentrations (10 g/ml), LDL modified by all of the above agonists markedly stimulated cell proliferation (5–10 fold). This was accompanied by a 2–3 fold stimulation in mitogen activated protein kinase (MAPK) activity. We conclude that modification of LDL under situations that are closer to those found in vivo (i.e. hypoxic conditions), may involve the activation of MAPK as a common biochemical mechanism of action. This in turn, contributes to aortic smooth muscle cell proliferation. 相似文献
7.
Cell sheet movement during epithelial wound closure is a complex process involving collective cell migration. We have found that glycogen synthase kinase-3 (GSK-3) activity is required for membrane protrusion and crawling of cells at the wound edge and those behind it in wounded Madin-Darby canine kidney (MDCK) epithelial cell monolayers. RNA interference-based silencing of GSK-3alpha and GSK-3beta expression also results in slowed cell sheet migration, with the effect being more pronounced with knockdown of GSK-3beta. Both GSK-3alpha and GSK-3beta are in activated states during the most active phase of cell migration. In addition to having a positive control or permissive, rather than negative, function in MDCK cell migration, GSK-3 appears to act upstream of the small GTPases ADP-ribosylation factor 6 (ARF6) and Rac1. Expression of constitutively active ARF6 restores a protrusive, migratory phenotype in cells treated with GSK-3 inhibitors. It does not, however, restore to normal levels the directional polarization of cells behind the wound edge toward the wound area, implying the existence of a separate ARF6-independent branch of the GSK-3 pathway that regulates proper wound-directed polarization of these cells. Finally, inhibition of GSK-3 also strongly reduces activation of Rac1 and cell scatter in response to hepatocyte growth factor/scatter factor, which triggers dispersal and migration of cells in monolayer culture as fibroblast-like individual cells, a mode of epithelial cell motility distinct from the collective migration of wound closure. 相似文献
8.
Miyata K Oike Y Hoshii T Maekawa H Ogawa H Suda T Araki K Yamamura K 《Biochemical and biophysical research communications》2005,329(1):296-304
Multiple steps, including the migration of vascular smooth muscle cells (SMCs), are involved in the pathogenesis of atherosclerosis. To discover genes which are involved in these steps, we screened mutant mouse lines established by the exchangeable gene trap method utilizing X-gal staining during their embryonic development. One of these lines showed strong reporter gene expression in the vitelline vessels of yolk sacs at embryonic day (E) 12.5. The trap vector was inserted into the fifth intron of alpha/beta hydrolase domain containing 2 (Abhd2) gene which was shown to be expressed in vascular and non-vascular SMCs of adult mice. Although homozygous mutant mice were apparently normal, enhanced SMC migration in the explants SMCs culture and marked intimal hyperplasia after cuff placement were observed in homozygous mice in comparison with wild-type mice. Our results show that Abhd2 is involved in SMC migration and neointimal thickening on vascular SMCs. 相似文献
9.
Zinc is an essential catalytic and structural element of many proteins and a signaling messenger that is released by neuronal activity at many central excitatory synapses. Excessive synaptic release of zinc followed by entry into vulnerable neurons contributes severe neuronal cell death. We have previously observed that zinc-induced neuronal cell death is accompanied by Akt activation in embryonic hippocampal progenitor (H19-7) cells. In the present study, we examined the role of Akt activation and its downstream signaling events during extracellular zinc-induced neuronal cell death. Treatment of H19-7 cells with 10 microM of zinc plus zinc ionophore, pyrithione, led to increased phosphorylation of Akt at Ser-473/Thr-308 and increased Akt kinase activity. Zinc-induced Akt activation was accompanied by increased Tyr-phosphorylated GSK-3beta as well as increased GSK-3beta kinase activity. Transient overexpression of a kinase-deficient Akt mutant remarkably suppressed GSK-3beta activation and cell death. Furthermore, tau phosphorylation, but not the degradation of beta-catenin, was dependent upon zinc-induced GSK-3beta activation and contributed to cell death. The current data suggest that, following exposure to zinc, the sequential activation of Akt and GSK-3beta plays an important role directing hippocampal neural precursor cell death. 相似文献
10.
11.
12.
Glycogen synthase kinase 3beta together with 14-3-3 protein regulates diabetic cardiomyopathy: effect of losartan and tempol 总被引:8,自引:0,他引:8
Gurusamy N Watanabe K Ma M Prakash P Hirabayashi K Zhang S Muslin AJ Kodama M Aizawa Y 《FEBS letters》2006,580(8):1932-1940
Glycogen synthase kinase (GSK) 3beta is a multifunctional protein that positively regulates myocardial apoptosis and negatively regulates hypertrophy. However, the role of GSK3beta in the diabetic myocardium is largely unknown. We found that GSK3beta became more active (less phosphorylated at serine 9) via decreased Akt phosphorylation, in parallel to c-Jun NH2 terminal kinase activation, which correlated with increased activated caspase 3 and myocardial apoptosis 3 days after streptozotocin (STZ) injection in mice. However, 28 days after STZ injection, GSK3beta became inactive, which correlated with the enhanced protein kinase C beta2 and p38 mitogen activated protein kinase expression, nuclear translocation of nuclear factor of activated T cells c3, cardiac hypertrophy and fibrosis. All of the above parameters were exacerbated in dominant-negative 14-3-3 transgenic mice. Our results suggest that GSK3beta together with 14-3-3 protein plays essential roles in the signaling of diabetic cardiomyopathy, and treatment with either losartan or tempol prevents these changes. 相似文献
13.
14.
15.
Summary Differentiation of skeletal muscle cells involves two distinct events: exit from the cell cycle and expression of musclespecific
contractile genes and formation of multinucleated myocytes. Although many studies have shown that growth factors regulate
the initial step of differentiation, little is known about regulation of fusion. BC3H1 cells are a skeletal muscle cell line
characterized by a nonfusing phenotype and an ability to dedifferentiate. When subjected to serum or growth factors, differentiated
BC3H1 cells lose muscle-specific gene expression and re-enter the cell cycle. In this study, we describe a spontaneously fusing
clone of BC3H1 cells. We demonstrate that this fusion capability is not due to altered muscle regulatory factor or adhesion
molecule expression. Furthermore, we show that fusion inhibits dedifferentiation. Multinucleated BC3H1 cells do not lose myosin
expression, nor do they re-enter the cell cycle. Fused BC3H1 cells react to serum stimulation with a hypertrophic response.
Our results suggest that the state of differentiation, mono- or multinucleated, is essential to how myocytes react to growth
stimulation and may provide a mechanism for how differentiation, fusion, and hypertrophy are regulated in vivo. 相似文献
16.
17.
Kim-Kaneyama JR Wachi N Sata M Enomoto S Fukabori K Koh K Shibanuma M Nose K 《Biochemical and biophysical research communications》2008,376(4):682-687
Focal adhesion components are targets for biochemical and mechanical stimuli that evoke crucial injury. Hic-5 (hydrogen peroxide-inducible clone 5) is a multidomain adaptor protein which is implicated in the regulation of integrin signaling in focal adhesion. The aim of this research was to test the hypothesis that Hic-5, a focal adhesion LIM protein expressed in smooth muscle cells, is involved in dynamic processes by pathological stimuli in the vessel wall. Here, we describe the analysis of the function of Hic-5 using a mouse model of vascular injury that may mimic balloon angioplasty. At 4 days after vascular injury, marked down-regulation of the Hic-5 expression was observed in the smooth muscle layer, and local delivery of the Hic-5 using adenovirus vectors repressed injury-induced neointimal expansion. In addition, Hic-5 reduced cells migration into three-dimensional collagen gels, and the forced expression of Hic-5 in cells embedded in the collagen gel matrix repressed the expression of uPA that participates in smooth muscle cell migration. These results suggest that Hic-5 modulates cellular responses to pathological stimuli in the vessel wall. 相似文献
18.
Chiara Donati Francesca Cencetti Paola Bruni 《Biochimica et Biophysica Acta (BBA)/Molecular and Cell Biology of Lipids》2013,1831(1):176-184
Lysophospholipids are bioactive molecules that are implicated in the control of fundamental biological processes such as proliferation, differentiation, survival and motility in different cell types. Here we review the role of sphingosine 1-phosphate (S1P) and lysophosphatidic acid (LPA) in the regulation of skeletal muscle biology. Indeed, a wealth of experimental data indicate that these molecules are crucial players in the skeletal muscle regeneration process, acting by controllers of activation, proliferation and differentiation not only of muscle-resident satellite cells but also of mesenchymal progenitors that originate outside the skeletal muscle. Moreover, S1P and LPA are clearly involved in the regulation of skeletal muscle metabolism, muscle adaptation to different physiological needs and resistance to muscle fatigue. Notably, studies accomplished so far, have highlighted the complexity of S1P and LPA signaling in skeletal muscle cells that appears to be further complicated by their close dependence on functional cross-talks with growth factors, hormones and cytokines. Our increasing understanding of bioactive lipid signaling can individuate novel molecular targets aimed at enhancing skeletal muscle regeneration and reducing the fibrotic process that impairs full functional recovery of the tissue during aging, after a trauma or skeletal muscle diseases. This article is part of a Special Issue entitled Advances in Lysophospholipid Research. 相似文献
19.
We report that glycogen synthase kinase (GSK)-3beta is phosphorylated at ser9 and inactivated in uterine epithelial cells from E(2)-treated cyclin D1 null mutant mice. Simultaneous administration of P(4) together with E(2) blocked this effect. Pharmacological inhibition of GSK-3beta activity in mice treated with P(4)E(2) reversed the nuclear exclusion of cyclin D2 in the uterine epithelial cells and this caused phosphorylation of Rb protein and progression of cells towards S-phase. Our results indicate that GSK-3beta is a major target of E(2) and P(4) in regulation of cyclin D2 localization in the mouse uterine epithelium. 相似文献
20.
Yoji Kyotani Hiroyo Ota Asako Itaya-Hironaka Akiyo Yamauchi Sumiyo Sakuramoto-Tsuchida Jing Zhao Kentaro Ozawa Kosuke Nagayama Satoyasu Ito Shin Takasawa Hiroshi Kimura Masayuki Uno Masanori Yoshizumi 《Experimental cell research》2013
Obstructive sleep apnea is characterized by intermittent hypoxia (IH), and associated with cardiovascular diseases, such as stroke and heart failure. These cardiovascular diseases have a relation to atherosclerosis marked by the proliferation of vascular smooth muscle cells (VSMCs). In this study, we investigated the influence of IH on cultured rat aortic smooth muscle cell (RASMC). The proliferation of RASMC was significantly increased by IH without changing the level of apoptosis. In order to see what induces RASMC proliferation, we investigated the influence of normoxia (N)-, IH- and sustained hypoxia (SH)-treated cell conditioned media on RASMC proliferation. IH-treated cell conditioned medium significantly increased RASMC proliferation compared with N-treated cell conditioned medium, but SH-treated cell conditioned medium did not. We next investigated the epidermal growth factor (EGF) family as autocrine growth factors. Among the EGF family, we found significant increases in mRNAs for epiregulin (ER), amphiregulin (AR) and neuregulin-1 (NRG1) in IH-treated cells and mature ER in IH-treated cell conditioned medium. We next investigated the changes in erbB family receptors that are receptors for ER, AR and NRG1, and found that erbB2 receptor mRNA and protein expressions were increased by IH, but not by SH. Phosphorylation of erbB2 receptor at Tyr-1248 that mediates intracellular signaling for several physiological effects including cell proliferation was increased by IH, but not by SH. In addition, inhibitor for erbB2 receptor suppressed IH-induced cell proliferation. These results provide the first demonstration that IH induces VSMC proliferation, and suggest that EGF family, such as ER, AR and NRG1, and erbB2 receptor could be involved in the IH-induced VSMC proliferation. 相似文献