首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Freeze-tolerant organisms accumulate a diversity of low molecular weight compounds to combat negative effects of ice formation. Previous studies of anuran freeze tolerance have implicated urea as a cryoprotectant in the wood frog (Lithobates sylvatica). However, a cryoprotective role for urea has been identified only for wood frogs, though urea accumulation is an evolutionarily conserved mechanism for coping with osmotic stress in amphibians. To identify whether multiple solutes are involved in freezing tolerance in the boreal chorus frog (Pseudacris maculata), we examined seasonal and freezing-induced variation in several potential cryoprotectants. We further tested for a cryoprotective role for urea by comparing survival and recovery from freezing in control and urea-loaded chorus frogs. Tissue levels of glucose, urea, and glycerol did not vary significantly among seasons for heart, liver, or leg muscle. Furthermore, no changes in urea or glycerol levels were detected with exposure to freezing temperatures in these tissues. Urea-loading increased tissue urea concentrations, but failed to enhance freezing survival or facilitate recovery from freezing in chorus frogs in this study, suggesting little role for urea as a natural cryoprotectant in this species. These data suggest that urea may not universally serve as a primary cryoprotectant among freeze-tolerant, terrestrially hibernating anurans.  相似文献   

2.
A small number of vertebrate species, including some frogs, are freezing tolerant and survive ice forming in their bodies under ecologically relevant conditions. Habitat use information is critical for interpreting laboratory studies of freezing tolerance, but there is often little known about the winter habitat and behaviours of the species under study. This work describes microhabitats used by the freezing‐tolerant frog Litoria ewingii Duméril and Bibron 1841 and their temperature characteristics. In winter, L. ewingii used microhabitats with wood, located further away from water than in summer. Microhabitat temperature records showed that frog microhabitats regularly fell below the temperature at which frog body fluids freeze (?1°C), and cooled substantially more slowly than did the air temperature. Temperatures were highly variable between microhabitats, seasons and years, with a minimum of ?2.4°C and a maximum cooling rate of 0.77°C h?1. Frozen frogs were observed to recover in the field, demonstrating freezing tolerance. Both the characteristics of microhabitats and their selection are important in ensuring freezing survival.  相似文献   

3.
Freeze tolerance and ice content of Hyla versicolor showed pronounced variation between summer (June) and winter (December). Summer frogs survived freezing at -3 degrees C for up to 9 hr and ice accumulation up to 50% of their total body water. A time course of ice formation indicated that an equilibrium level was reached in approximately 15 hr. Thus, the lethal ice content was less than the equilibrium ice content for these conditions (63.1%). A second group was induced to enter an overwintering condition by holding them through the summer and then subjecting them to a progressive reduction in temperature and photoperiod for 2 months. These frogs survived freezing for 48 hr at -3 degrees C. Their equilibrium ice content at this temperature was significantly lower (52.5%) than comparably treated summer animals. In the winter acclimatized group, frozen frogs had substantially higher blood glucose levels than unfrozen frogs (22.7 mumol/ml vs. 1.33 mumol/ml), but glycerol levels were not elevated after freezing. Freezing frogs conditioned for overwintering at -7 degrees C resulted in a higher equilibrium ice content (62.6%), but none survived. It is evident that in preparation for overwintering, frogs reduce the amount of ice formed at a given subzero temperature, but there is little indication of a substantial change in the total amount of ice tolerated.  相似文献   

4.
Freeze tolerance in the frog Rana sylvatica is supported by nonanticipatory mobilization of cryoprotectant (glucose) and redistribution of organ water. Other freeze-tolerant frogs may manifest these responses but differences exist. For example, the gray treefrog (Hyla versicolor) accumulates mostly glycerol as opposed to glucose. The current study reports additional novel features about cryoprotection in H. versicolor. Frogs were acclimated to low temperature for 12 weeks and frozen for 3 days at -2.4 degrees C. Some frogs were then thawed at 3 degrees C for 4 hr. Calorimetry revealed that frozen frogs had 53.9% +/- 11.1% of their body water in ice, and all frogs recovered following this procedure. Plasma glucose was low prior to the onset of freezing (1.1 +/- 0.9 micromol/ml) and it was 20x higher in postfreeze frogs. Constituting nearly 30% of plasma solute, glycerol was 117.2 +/- 13.6 micromol/ml prior to freezing and it remained equally high in postfreeze frogs. Liver water content was moderately lower in frozen frogs when compared to controls (62.9% +/- 3.7% vs. 68.6% +/- 1.7%), whereas postfreeze frogs excessively hydrated their livers (75.7% +/- 2.1%). Less-pronounced changes were seen in muscle water content. H. versicolor can mobilize its major cryoprotectant, glycerol, in response to extended cold acclimation, which is unique in comparison to other freeze-tolerant frogs, and it experiences only moderate organ dehydration during freezing. This species conforms with other freeze-tolerant frogs, however, by mobilizing glucose as a direct response to tissue freezing.  相似文献   

5.
The freeze tolerant wood frog Rana sylvatica was studied to determine the impact of the freezing and thawing of this frog on the activity of γ-glutamyltranspeptidase in the liver. On exposure to ?2·5°C, for 1, 12 and 24 h, frogs were found to be cool, covered with ice crystals and frozen, respectively. Thawing for 24 h at 4°C recovered the frogs completely. A 45 per cent decrease in the liver weight: body weight ratio was notable after 1 h at ?2·5°C, suggestive of an early hepatic capacitance response. A glycemic response to freezing was observed: blood glucose levels exhibited a 55 per cent decrease after 1 h at ?2·5°C on cooling; a 10·5-fold increase after 12 h at ?2·5°C on the initiation of freezing; and a 22-fold increase after 24 h at ?2·5°C in the fully frozen state. Blood glucose levels remained elevated four-fold in the thawed state. Plasma insulin levels were increased twofold in the frozen state and 1·8-fold in the thawed state, while plasma ketone levels were increased 1·8-fold in the frozen state and 1·5-fold in the thawed state. Plasma total T3 levels were decreased by 22 per cent in the frozen state and normalized on thawing. In homogenates and plasma membranes isolated from the livers of Rana sylvatica, the activity of γ-glutamyltranspeptidase was found to be elevated at all stages of the freeze–thaw process. After 1, 12 and 24 h at ?2·5°C, activities were increased 2·5-, 2·3-, 2·4-fold respectively in the homogenates and 2·5-, 2·2-, 2·4-fold respectively in the plasma membranes. After thawing, activities were still increased 1·9-fold in both homogenates and plasma membranes. In homogenates prepared from the kidneys of Rana sylvatica, the activity of γ-glutamyltranspeptidase was increased 1·4-fold after 1 h at ?2·5°C after which it returned to normal. The role of thyroid hormone in producing the increase in γ-glutamyltranspeptidase in the liver of Rana sylvatica in response to freezing is discussed as is the significance of the enzyme increase in terms of hepatic cytoprotection and freeze tolerance.  相似文献   

6.
This study documents post-thaw recovery of jump distance and cryoprotectant mobilization in the freeze-tolerant frog Hyla versicolor over two successive years. Cold acclimated frogs had plasma glycerol levels near 1.0 mM in 2004 but it was nearly 70× higher during 2005. Freezing of frogs induced nearly identical levels of plasma glycerol (ca. 177 mM) during 2004 and 2005. Plasma glucose was only mobilized upon somatic freezing, with averages ranging between 21 and 36 mM. Control jump distance showed no difference between the two years of the study. The post-thaw jump response was identical during the first 2 years despite large differences in glycerol mobilization between these 2 years. Recovery proceeded much faster in 2005 when frogs mobilized glycerol prior to freeze exposure. Frogs were more impaired in their locomotion performance during the initial stages of recovery period when they were frozen at a lower temperature (−3 vs. −1.5°C) but they eventually recovered. Moderate lengthening of the freeze duration (3 vs. 7 days) with the 2004 collection group did not affect recovery of jump distance when frogs were frozen at −1.5°C. Hence, postfreeze impairment of locomotion is dependent of the intensity of the freeze temperature but it is a reversible process that is mitigated when glycerol is more freely distributed to body tissues.  相似文献   

7.
In this paper we present the results of physiological responses to winter acclimation and tissue freezing in a freeze-tolerant Siberian earthworm, Eisenia nordenskioeldi, and two freeze-intolerant, temperate earthworm species, Lumbricus rubellus and Aporrectodea caliginosa. By analysing the physiological responses to freezing of both types we sought to identify some key factors promoting freeze tolerance in earthworms. Winter acclimation was followed by a significant increase in osmolality of body fluids in E. nordenskioeldi, from 197 mosmol kg−1 in 10 °C-acclimated animals to 365 mosmol kg−1 in animals acclimated to 0 °C. Cold acclimation did not cause any change in body fluid osmolality in the two freeze-intolerant species. As a response to ice formation in the body, the freeze-intolerant species produced copious amounts of slime and expulsion of coelomic fluids, and thereby lost 10–30% of their total water content. Contrary to this, the freeze-tolerant species did not lose water upon freezing. At temperatures down to −6.5 °C, the ice content in the freeze-tolerant E. nordenskioeldi was significantly lower than in L. rubellus. At lower temperatures there were no differences in ice content between the two species. Cold acclimated, but unfrozen, specimens of all three species had low levels of ammonia, urea, lactate, glycerol and glucose. As a response to ice formation, glucose levels significantly increased within the first 24 h of freezing. This was most pronounced in E. nordenskioeldi where a 153-fold increase of glucose was seen (94 mmol · l−1). In L. rubellus and A. caliginosa a 19-fold and 17-fold increase in glucose was seen. This is the first study on physiological mechanisms promoting freeze tolerance in E. nordenskioeldi, or any other oligochaete. Our results suggest that the cryoprotective system of this species more closely resembles that of freeze-tolerant anurans, which synthesize cryoprotectants only after tissues begin to freeze, than that of cold-hardy invertebrates which exhibit a preparatory accumulation of cryoprotectants during seasonal exposure to low temperature. Accepted: 10 February 1999  相似文献   

8.
The accumulation of cryoprotectants and the redistribution of water between body compartments play central roles in the capacity of insects to survive freezing. Aquaporins (AQPs) allow for rapid redistribution of water and small solutes (e.g. glycerol) across the cell membrane and were recently implicated in promoting freeze tolerance. Here, we examined whether aquaporin-like protein abundance correlated with the seasonal acquisition of freezing tolerance in the goldenrod gall fly, Eurosta solidaginis (Diptera: Tephritidae). Through the autumn, larvae became tolerant of freezing at progressively lower temperatures and accumulated the cryoprotectant glycerol. Furthermore, larvae significantly increased the abundance of membrane-bound aquaporin and aquaglyceroporin-like proteins from July through January. Acute exposure of larvae to cold and desiccation resulted in upregulation of the AQP3-like proteins in October, suggesting that their abundance is regulated by environmental cues. The seasonal increase in abundance of both putative aquaporins and aquaglyceroporins supports the hypothesis that these proteins are closely tied to the seasonal acquisition of freeze tolerance, functioning to permit cells to quickly lose water and take-up glycerol during extracellular ice formation, as well as reestablish water and glycerol concentrations upon thawing.  相似文献   

9.
Hybrid zones provide a rare opportunity to explore the processes involved in reproductive isolation and speciation. The southern hybrid zone between the southeastern Australian tree frogs Litoria ewingii and L. paraewingi has been comprehensively studied over the last 40 years, primarily using reproductive compatibility experiments and male advertisement calls. We used mitochondrial DNA (mtDNA) and eight nuclear microsatellite markers to characterize this hybrid zone along a historically studied transect and to test various dispersal‐dependent and dispersal‐independent hybrid zone models. The species are genetically distinct and the level of hybridization within the contact zone is low, with the majority of admixed individuals representing later‐generation hybrids. Based on previous experimental genetic compatibility studies, we predicted that hybrids with L. paraewingi mtDNA would be more frequent than hybrids with L. ewingii mtDNA. Surprisingly, a greater proportion of the identified hybrids had L. ewingii mtDNA. Geographical cline analyses showed a sharp transition in allele frequencies across the transect, and both the mtDNA and microsatellite data showed concordant cline centres, but were best supported by a model that allowed width to vary. Overall, the L. ewingiiL. paraewingi hybrid zone is best characterized as a tension zone, due to the narrow cline width, concordant genetic clines and low levels of hybridization.  相似文献   

10.
We investigated the restoration of peripheral nerve function and simple neurobehavioral reflexes in the freeze-tolerant wood frog (Rana sylvatica). Thirty-two specimens, allowed to freeze for 39 h and ultimately cooled to-2.2°C, were sampled at various time intervals up to 60 h after thawing at 5°C was initiated. The sciatic nerves of treated frogs were initially unresponsive to stimulation, but usually regained excitability within 5 h. Except for a slight reduction in nerve excitability characteristics of the compound action potentials of treated frogs were indistinguishable from those of control frogs. Recovery times for the hindlimb retraction and righting reflexes were 8 h and 14 h, respectively. Concentrations of the cryoprotectant glucose increased 8.2-fold in the sciatic nerve and 10.5-fold in the underlying semimembranosis muscle of treated frogs, and remained elevated for at least 60 h after thawing was initiated. These organs lost 47.2% and 15.9%, respectively, of their water during freezing, but were rehydrated within 2 h of the onset of thawing. The accumulation of glucose and the withdrawal of tissue water apparently are cryoprotective responses which enable this species to survive freezing.  相似文献   

11.
We compared liver glycogen stores and glucose mobilization during freezing among winters in chorus frogs, Pseudacris triseriata, where populations varied in freezing survival. We also characterized tissue glycogen levels across the annual cycle. Frogs with low liver glycogen stores mobilized low amounts of glucose during freezing, and these were correlated with population variation in freezing survival. Moreover, liver glycogen stores were significantly and positively related to body mass. These data suggest that chorus frogs store liver glycogen in preparation for hibernation and that body size and glycogen stores must reach threshold levels for successful survival of freezing bouts during the winter.  相似文献   

12.
The terrestrial midge, Belgica antarctica, occupies a diverse range of microhabitats along the Antarctic Peninsula. Although overwintering larvae have the physiological potential to survive by freezing or cryoprotective dehydration, use of the latter strategy may be constrained by inoculative freezing within hibernacula. To investigate the influence of microhabitat type on larval overwintering, we selected four substrate types that differed markedly in their composition and hydric characteristics. Organic content of these substrates ranged from 14 to 89 %. High organic content was associated with higher values for saturation moisture content (up to 2.0 H2O g?1 dry mass) as well as elevated levels of field moisture content. Seasonal values of field moisture content remained near or above the saturation moisture value for each microhabitat type, and when larvae were cooled in substrates rehydrated to field-based levels, they were unable to avoid inoculation by environmental ice, regardless of substrate type. Consequently, our data suggest that wet hibernacula would force most larvae to overwinter in a frozen state. Yet, dehydrated larvae were collected in April during the seasonal transition to winter suggesting that spatial and temporal variations in precipitation and microhabitat conditions may expose larvae to dehydration and promote larval overwintering in a cryoprotectively dehydrated state.  相似文献   

13.
Steinernema feltiae is a moderately freeze-tolerant entomopathogenic nematode which survives intracellular freezing. We have detected by gas chromatography that infective juveniles of S. feltiae produce cryoprotectants in response to cold acclimation and to freezing. Since the survival of this nematode varies with temperature, we analyzed their cryoprotectant profiles under different acclimation and freezing regimes. The principal cryoprotectants detected were trehalose and glycerol with glucose being the minor component. The amount of cryoprotectants varied with the temperature and duration of exposure. Trehalose was accumulated in higher concentrations when nematodes were acclimated at 5°C for two weeks whereas glycerol level decreased from that of the non-acclimated controls. Nematodes were seeded with a small ice crystal and held at -1°C, a regime that does not produce freezing of the nematodes but their bodies lose water to the surrounding ice (cryoprotective dehydration). This increased the levels of both trehalose and glycerol, with glycerol reaching a higher concentration than trehalose. Nematodes frozen at -3°C, a regime that produces freezing of the nematodes and results in intracellular ice formation, had elevated glycerol levels while trehalose levels did not change. Steinernema feltiae thus has two strategies of cryoprotectant accumulation: one is an acclimation response to low temperature when the body fluids are in a cooled or supercooled state and the infective juveniles produce trehalose before freezing. During this process a portion of the glycerol is converted to trehalose. The second strategy is a rapid response to freezing which induces the production of glycerol but trehalose levels do not change. These low molecular weight compounds are surmised to act as cryoprotectants for this species and to play an important role in its freezing tolerance.  相似文献   

14.
Although it is often assumed that survival of freezing requires that ice formation must be restricted to extracellular compartments, fat body cells from freeze-tolerant larvae of the gall fly, Eurosta solidaginis (Diptera, Tephritidae) survive intracellular freezing. Furthermore, these cells are highly susceptible to inoculative freezing by external ice, undergo extensive lipid coalescence upon thawing, and survive freezing better when glycerol is added to the suspension medium. To determine whether these traits are required for intracellular freeze tolerance or whether they are incidental and possessed by fat body cells in general, we investigated the capacity of fat body cells from nondiapause-destined and diapause-destined (i.e., cold-hardy) larvae of the freeze-intolerant flesh fly Sarcophaga crassipalpis (Diptera, Sarcophagidae) to survive intracellular freezing. Fat body cells from both types of larvae were highly susceptible to inoculative freezing; all cells froze between -3.7 to -6.2 degrees C. The highest rates for survival of intracellular freezing occurred at -5 degrees C. The addition of glycerol to the media markedly increased survival rates. Upon thawing, the fat body cells showed little or no lipid coalescence. Fat body cells from E. solidaginis had a water content of only 35% compared to cells from S. crassipalpis larvae that had 52-55%; cells with less water may be less likely to be damaged by mechanical forces during intracellular freezing.  相似文献   

15.
Freeze tolerance is an adaptive response utilized by the wood frog Rana sylvatica to endure the sub-zero temperatures of winter. Survival of whole body freezing requires wood frogs to trigger cryoprotective mechanisms to deal with potential injuries associated with conversion of 65–70% of total body water into ice, including multiple consequences of ice formation such as cessation of blood flow and cell dehydration caused by water loss into ice masses. To understand how wood frogs defend against these stressors, we measured the expression of proteins known to be involved in the antioxidant defense and protein chaperone stress responses in brain and heart of wood frogs comparing freezing, anoxia, and dehydration stress. Our results showed that most stress proteins were regulated in a tissue- and stress-specific manner. Notably, protein levels of the cytosolic superoxide dismutase (SOD1) were upregulated by 1.37?±?0.11-fold in frozen brain, whereas the mitochondrial SOD2 isoform rose by 1.38?±?0.37-fold in the heart during freezing. Catalase protein levels were upregulated by 3.01?±?0.47-fold in the brain under anoxia stress, but remained unchanged in the heart. Similar context-specific regulatory patterns were also observed for the heat shock protein (Hsp) molecular chaperones. Hsp27 protein was down-regulated in the brain across the three stress conditions, whereas the mitochondrial Hsp60 was upregulated in anoxic brain by 1.73?±?0.38-fold and by 2.13?±?0.57-fold in the frozen heart. Overall, our study provides a snapshot of the regulatory expression of stress proteins in wood frogs under harsh environment conditions and shows that they are controlled in a tissue- and stress-specific manner.  相似文献   

16.
Very little is known about the capacity of soil chytrids to withstand freezing in the field. Tolerance to freezing was tested in 21 chytrids isolated from cropping and undisturbed soils in temperate Australia. Samples of thalli grown on peptone–yeast–glucose (PYG) agar were incubated for seven days at −15 °C. Recovery of growth after thawing and transferring to fresh medium at 20 °C indicated survival. All isolates in the Blastocladiales and Spizellomycetales survived freezing in all tests. All isolates in the Chytridiales also survived freezing in some tests. None of the isolates in the Rhizophydiales survived freezing in any of the tests. However, some isolates in the Rhizophydiales recovered growth after freezing if they were grown on PYG agar supplemented with either 1 % sodium chloride or 1 % glycerol prior to freezing. After freezing, the morphology of the thalli of all isolates was observed under LM. In those isolates that recovered growth after transfer to fresh media, mature zoosporangia were observed in the monocentric isolates and resistant sporangia or resting spores in the polycentric isolates. Encysted zoospores in some monocentric isolates also survived freezing. In some of the experiments the freezing and thawing process caused visible structural damage to the thalli. The production of zoospores after freezing and thawing was also used as an indicator of freeze tolerance. The chytrids in this study responded differently to freezing. These data add significantly to our limited knowledge of freeze tolerance in chytrids but leave many questions unanswered.  相似文献   

17.
Wood frogs (Rana sylvatica) exhibit marked geographic variation in freeze tolerance, with subarctic populations tolerating experimental freezing to temperatures at least 10-13 degrees Celsius below the lethal limits for conspecifics from more temperate locales. We determined how seasonal responses enhance the cryoprotectant system in these northern frogs, and also investigated their physiological responses to somatic freezing at extreme temperatures. Alaskan frogs collected in late summer had plasma urea levels near 10 μmol ml-1, but this level rose during preparation for winter to 85.5 ± 2.9 μmol ml-1 (mean ± SEM) in frogs that remained fully hydrated, and to 186.9 ± 12.4 μmol ml-1 in frogs held under a restricted moisture regime. An osmolality gap indicated that the plasma of winter-conditioned frogs contained an as yet unidentified osmolyte(s) that contributed about 75 mOsmol kg-1 to total osmotic pressure. Experimental freezing to –8°C, either directly or following three cycles of freezing/thawing between –4 and 0°C, or –16°C increased the liver’s synthesis of glucose and, to a lesser extent, urea. Concomitantly, organs shed up to one-half (skeletal muscle) or two-thirds (liver) of their water, with cryoprotectant in the remaining fluid reaching concentrations as high as 0.2 and 2.1 M, respectively. Freeze/thaw cycling, which was readily survived by winter-conditioned frogs, greatly increased hepatic glycogenolysis and delivery of glucose (but not urea) to skeletal muscle. We conclude that cryoprotectant accrual in anticipation of and in response to freezing have been greatly enhanced and contribute to extreme freeze tolerance in northern R. sylvatica.  相似文献   

18.
Ultrastructural observations on the frozen state of pancreatic acinar cells were correlated with results of parallel studies before freezing and after thawing, as to cryoinjury and cryoprotection.Data support an hypothesis of freezing injury based upon intracellular ice and solution effects during rapid and slow freezing, respectively. The basis for superiority of extracellular over intracellular glycerol in cryoprotection was demonstrated in terms of these factors.Evidence is offered to explain the ultrastructural cryoinjury and cryoprotection of rough endoplasmic reticulum (RER) seen after thawing, relative to the combined effects of freezing rate and glycerol. Slow freezing, in combination with the presence of extracellular glycerol, provided sufficient dehydration to almost completely suppress intracellular ice formation, yielding minimal ultrastructural alteration of RER. Greatest cryoinjury, expressed as extensive conversion of RER into sphere-like vesicles, was induced by the extensive intracellular ice formation which accompanied rapid freezing. A mechanism is suggested to explain physical damage of RER by intracellular ice.  相似文献   

19.
Ice nucleation spectrometry was used to look for the presence of ice nucleating agents (INAs), and their inhibitors, in cultures ofPanagrolaimus davidi, an Antarctic nematode which survives intracellular freezing. INA activity was absent in both nematode suspensions and homogenates. The nematodes produce a substance which inhibits the nucleation activity of organic INAs but not of an inorganic INA (AgI). The nucleation inhibitor is both released from the nematode by homogenization and excreted by them into the medium, but the former was more effective at inhibiting nucleation. The inhibitory activity was destroyed by heating. A thermal hysteresis protein, or a similar ice-active substance, may be responsible for the nucleation inhibition.  相似文献   

20.
Spatial and temporal partitioning of resources underlies the coexistence of species with similar niches. In communities of frogs and toads, the phenology of advertisement calling provides insights into temporal partitioning of reproductive effort and its implications for community dynamics. This study assessed the phenology of advertisement calling in an anuran community from Melbourne, in southern Australia. We collated data from 1432 surveys of 253 sites and used logistic regression to quantify seasonality in the nightly probability of calling and the influence of meteorological variables on this probability for six species of frogs. We found limited overlap in the predicted seasonal peaks of calling among these species. Those shown to have overlapping calling peaks are unlikely to be in direct competition, due to differences in larval ecology (Crinia signifera and Litoria ewingii) or differences in calling behavior and acoustics (Limnodynastes dumerilii and Litoria raniformis). In contrast, closely related and ecologically similar species (Crinia signfera and Crinia parinsignifera; Litoria ewingii and Litoria verreauxii) appear to have staggered seasonal peaks of calling. In combination with interspecific variation in the meteorological correlates of calling, these results may be indicative of temporal partitioning of reproductive activity to facilitate coexistence, as has been reported for tropical and temperate anurans from other parts of the globe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号