首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Glucose transporter (GT) has been suggested to be involved in the insulin biosynthesis. However, the functional relationship between GT and insulin biosynthesis is not well understood. In this report, we have generated rat pancreatic B cell lines (RINr) that stably overexpress a cDNA encoding the brain type GT. These cell lines showed 3- to 4-fold increase in insulin mRNA and protein. These results suggest that GT might have some relationship to the insulin biosynthesis in the pancreatic B cells.  相似文献   

3.
Guanosine, a guanine-based purine, is recognized as an extracellular signaling molecule that is released from astrocytes and confers neuroprotective effects in several in vivo and in vitro studies. Astrocytes regulate glucose metabolism, glutamate transport, and defense mechanism against oxidative stress. C6 astroglial cells are widely used as an astrocyte-like cell line to study the astrocytic function and signaling pathways. Our previous studies showed that guanosine modulates the glutamate uptake activity, thus avoiding glutamatergic excitotoxicity and protecting neural cells. The goal of this study was to determine the gliopreventive effects of guanosine against glucose deprivation in vitro in cultured C6 cells. Glucose deprivation induced cytotoxicity, an increase in reactive oxygen and nitrogen species (ROS/RNS) levels and lipid peroxidation as well as affected the metabolism of glutamate, which may impair important astrocytic functions. Guanosine prevented glucose deprivation-induced toxicity in C6 cells by modulating oxidative and nitrosative stress and glial responses, such as the glutamate uptake, the glutamine synthetase activity, and the glutathione levels. Glucose deprivation decreased the level of EAAC1, the main glutamate transporter present in C6 cells. Guanosine also prevented this effect, most likely through PKC, PI3K, p38 MAPK, and ERK signaling pathways. Taken together, these results show that guanosine may represent an important mechanism for protection of glial cells against glucose deprivation. Additionally, this study contributes to a more thorough understanding of the glial- and redox-related protective properties of guanosine in astroglial cells.  相似文献   

4.
5.
The major glucose transporter protein expressed in skeletal muscle is GLUT4. Both muscle contraction and insulin induce translocation of GLUT4 from the intracellular pool to the plasma membrane. The intracellular pathways that lead to contraction- and insulin-stimulated GLUT4 translocation seem to be different, allowing the attainment of a maximal effect when acting together. Insulin utilizes a phosphatidylinositol 3-kinase-dependent mechanism, whereas the exercise signal may be initiated by calcium release from the sarcoplasmic reticulum or from autocrine- or paracrine-mediated activation of glucose transport. During exercise skeletal muscle utilizes more glucose than when at rest. However, endurance training leads to decreased glucose utilization during sub-maximal exercise, in spite of a large increase in the total GLUT4 content associated with training. The mechanisms involved in this reduction have not been totally elucidated, but appear to cause the decrease of the amount of GLUT4 translocated to the plasma membrane by altering the exercise-induced enhancement of glucose transport capacity. On the other hand, the effect of resistance training is controversial. Recent studies, however, demonstrated the improvement in insulin sensitivity correlated with increasing muscle mass. New studies should be designed to define the molecular basis for these important adaptations to skeletal muscle. Since during exercise the muscle may utilize insulin-independent mechanisms to increase glucose uptake, the mechanisms involved should provide important knowledge to the understanding and managing peripheral insulin resistance.  相似文献   

6.
During Chinese hamster ovary (CHO) cell culture for foreign protein production, cells are subjected to programmed cell death (PCD). A rapid death at the end of batch culture is accelerated by nutrient starvation. In this study, type II PCD, autophagy, as well as type I PCD, apoptosis, was found to take place in two antibody-producing CHO cell lines, Ab1 and Ab2, toward the end of batch culture when glucose and glutamine were limiting. The evidence of autophagy was observed from the accumulation of a common autophagic marker, a 16 kDa form of LC3-II during batch culture. Moreover, a significant percentage of the total cells (80% of Ab1 cells and 86% of Ab2 cells) showed autophagic vacuoles containing cytoplasmic material by transmission electron microscopy. An increased level of PARP cleavage and chromosomal DNA fragmentation supported that starvation-induced apoptosis also occurred simultaneously with autophagy.  相似文献   

7.
Nonylphenol enhances apoptosis induced by serum deprivation in PC12 cells   总被引:5,自引:0,他引:5  
Although nonylphenol is well known as an endocrine disrupting chemical, there is little information concerning biological effect of nonylphenol. In this study, we investigated effect of nonylphenol on apoptosis induced by serum deprivation in PC12 cells using TUNEL and DNA fragmentation assays. In addition, changes in contents of proapoptotic factors, Bad and Bax, and antiapoptotic factor, Bcl-2, and enzyme activity of caspase-3 were studied. Below 100 ng/ml of nonylphenol increased TUNEL signals, DNA fragmentation and content of proapoptotic factor, Bad as compared to those by serum deprivation without nonylphenol. Furthermore, addition of nonylphenol enhanced caspase-3 activity and Z-VAD, caspase-3 inhibitor, diminished such effect. These results indicated that below 100 ng/ml of nonylphenol enhanced apoptosis induced by serum deprivation via caspase-3 activation in PC12 cell.  相似文献   

8.
9.
Obestatin is a bioactive peptide encoded by the same gene that encodes ghrelin. Our aim was to investigate the effect of obestatin on insulin secretion. We evaluated the effects of obestatin on insulin secretion from rat islet cells which had been incubated overnight in the presence of 8.3, 11.1, and 22.2 mmol/l of glucose. In vivo, the serum levels of glucose and insulin were measured 0, 1, 5, 10, 20, 40, and 60 min after the intravenous administration of saline or glucose (1 g/kg), with or without obestatin, and the area under the 60 min curve of insulin concentration (AUCinsulin) was calculated. Obestatin (0.01-100 nmol/l) inhibited insulin secretion from rat islets in a dose-dependent fashion. In vivo, when administered intravenously to rats together with glucose, obestatin (10, 50, and 250 nmol/kg) inhibited both the rapid 1-min insulin response and the AUCinsulin in a dose-dependent fashion. Our data demonstrate that under glucose-stimulated conditions, exogenous obestatin acts as a potent inhibitor of insulin secretion in anaesthetized rats in vivo as well as in cultured islets in vitro.  相似文献   

10.
Huang CN  Chou WC  Lin LY  Peng CC  Chyau CC  Chen KC  Peng RY 《Bio Systems》2008,91(1):146-157
We report here a mathematical model using computer simulation to solve the phase fractionation coefficient (f) of instantaneous insulin release on glucose infusion. By extensive model testing with the cited parameters obtained from the literature, the values of the factor f were shown to lie in range of 0.93+/-0.02 (mean+/-2S.D., n=15), indicating that the high pulsatile bolus of glucose by i.v. infusion may trigger acute insulin release (AIR) corresponding to a fraction of more than 90% of the stored insulin release in the first phase from the secretory granules of pancreatic beta cells. In addition, the value of the factor f was shown to be independent of both the glucose infusion method and the non-insulin-dependent uptake of glucose.  相似文献   

11.
In the studies reported here we demonstrate that bombesin decreases food intake in wolf (Canis lupus) pups without altering glucose or insulin levels. A high dose of cholecystokinin-octapeptide (CCK, 5 μg/kg) decreased food intake. CCK produced a transient increase in insulin, without altering glucose. Glucagon (0.5 mg/kg) failed to decrease food intake despite producing a marked hyperglycemia and hyperinsulinemia. Calcitonin was ineffective at decreasing food intake, although it did decrease the time spent feeding. These studies suggest a potential role for peripheral peptides in food regulation in the wolf.  相似文献   

12.
As shown in our previous studies, 20(R)-ginsenoside Rg3 [20(R)-Rg3] exerts a neuroprotective effect on a rat model of transient focal cerebral ischemia, and the mechanism through which it decreases the mRNA expression of calpain I and caspase-3 has been delineated. However, researchers do not know whether 20(R)-Rg3 exhibits a neuroprotective effect following oxygen-glucose deprivation and reperfusion (OGD/R) injury in vitro. In the present study, 20(R)-Rg3 increased cell viability, decreased the LDH leakage rate, and inhibited the apoptosis rate in a concentration-dependent manner. In addition, 20(R)-Rg3 markedly decreased cleaved caspase-3 protein expression. Furthermore, 20(R)-Rg3 significantly decreased the Bax mRNA and protein levels and increased the levels of Bcl-2 mRNA and protein, subsequently decreasing the Bax/Bcl-2 protein ratio. Based on these findings, 20(R)-Rg3 exerts a neuroprotective effect against OGD/R-induced apoptosis.  相似文献   

13.
Insulin receptors and glucose transport-inducing proteins have been extracted from rat liver membranes onto positively charged lipid bilayer vesicles. The extraction was carried out during the incubation of the vesicles with lipid vesicles caused an overall enhancement of specific insulin binding and of glucose transport inducement. The latter has been inferred from the oxidation rate of transported glucose through a spherical bilayer membrane entrapping the oxidizing glucose oxidase. Glucose transport is not enhanced by insulin binding, indicating that the two functions become dissociated when the proteins are transferred from the plasma membrane onto the bilayer vesicles.  相似文献   

14.
Overcoming energy stress is a critical step for cells in solid tumors. Under this stress microenvironment, cancer cells significantly alter their energy metabolism to maintain cell survival and even metastasis. Our previous studies have shown that thioredoxin-1 (Trx-1) expression is increased in colorectal cancer (CRC) and promotes cell proliferation. However, the exact role and mechanism of how Trx-1 is involved in energy stress are still unknown. Here, we observed that glucose deprivation of CRC cells led to cell death and promoted the migration and invasion, accompanied by upregulation of Trx-1. Increased Trx-1 supported CRC cell survival under glucose deprivation. Whereas knockdown of Trx-1 sensitized CRC cells to glucose deprivation-induced cell death and reversed glucose deprivation-induced migration, invasion, and epithelial-mesenchymal transition (EMT). Furthermore, we identified glucose-6-phosphate dehydrogenase (G6PD) interacting with Trx-1 by HuPortTM human protein chip, co-IP and co-localization. Trx-1 promoted G6PD protein expression and activity under glucose deprivation, thereby increasing nicotinamide adenine dinucleotide phosphate (NADPH) generation. Moreover, G6PD knockdown sensitized CRC cells to glucose deprivation-induced cell death and suppressed glucose deprivation-induced migration, invasion, and EMT. Inhibition of Trx-1 and G6PD, together with inhibition of glycolysis using 2-deoxy-D-glucose (2DG), resulted in significant anti-tumor effects in CRC xenografts in vivo. These findings demonstrate a novel mechanism and may represent a new effective therapeutic regimen for CRC.  相似文献   

15.
Previously we reported that immunostimulated astrocytes were highly vulnerable to glucose deprivation. The augmented death was mimicked by the peroxynitrite (ONOO )-producing reagent 3-morpholinosydnonimine (SIN-1). Here we show that glucose deprivation and ONOO- synergistically deplete intracellular reduced glutathione (GSH) and augment the death of astrocytes via formation of cyclosporin A-sensitive mitochondrial permeability transition (MPT) pore. Astrocytic GSH levels were only slightly decreased by glucose deprivation or SIN-1 (200 microM) alone. In contrast, a rapid and large depletion of GSH was observed in glucose-deprived/ SIN-1-treated astrocytes. The depletion of GSH occurred before a significant release of lactate dehydrogenase (a marker of cell death). Superoxide dismutase and ONOO-scavengers completely blocked the augmented death, indicating that the reaction of nitric oxide with superoxide to form ONOO was implicated. Furthermore, nitrotyrosine immunoreactivity (a marker of ONOO-) was markedly enhanced in glucose-deprived/SIN-1 -treated astrocytes. Mitochondrial transmembrane potential (MTP) was synergistically decreased in glucose-deprived/SIN-1-treated astrocytes. The glutathione synthase inhibitor L-buthionine-(S,R)-sulfoximine markedly decreased the MTP and increased lactate dehydrogenase (LDH) releases in SIN-1-treated astrocytes. Cyclosporin A, an MPT pore blocker, completely prevented the MTP depolarization as well as the enhanced LDH releases in glucose-deprived/SIN-1-treated astrocytes.  相似文献   

16.
17.
Recently, we have described that CREB (cAMP-responsive element-binding protein) has the ability to transactivate tumor suppressor p53 gene in response to glucose deprivation. In this study, we have found that CREB forms a complex with p53 and represses p53-mediated transactivation of MDM2 but not of p21WAF1. Immunoprecipitation analysis revealed that CREB interacts with p53 in response to glucose deprivation. Forced expression of CREB significantly attenuated the up-regulation of the endogenous MDM2 in response to p53. By contrast, the mutant form of CREB lacking DNA-binding domain (CREBΔ) had an undetectable effect on the expression level of the endogenous MDM2. During the glucose deprivation-mediated apoptosis, there existed an inverse relationship between the expression levels of MDM2 and p53/CREB. Additionally, p53/CREB complex was dissociated from MDM2 promoter in response to glucose deprivation. Collectively, our present results suggest that CREB preferentially down-regulates MDM2 and thereby contributing to p53-mediated apoptosis in response to glucose deprivation.  相似文献   

18.
Young JC  Young RE 《Life sciences》2002,71(15):1731-1737
Glucose transport in muscle is a function of the muscle metabolic state, as evidenced by the increase in glucose transport which occurs with conditions of altered aerobic metabolism such as hypoxia or contractile activity. The energy state of the muscle can be determined by the muscle phosphocreatine concentration. Dietary supplementation of creatine has been shown to increase both phosphocreatine (PCr) and creatine (TCr) levels in muscle, although not in the same proportion, so that the PCr/TCr ratio falls suggesting an altered energy state in the cell. The purpose of this study was to determine the effect of increased creatine content on glucose uptake in muscle. PCr and TCr were determined in plantaris muscles from rats following five weeks of dietary supplementation of creatine monohydrate (300 mg/kg/day). (3)H-2-deoxyglucose uptake was measured in epitrochlearis muscles incubated in the presence or absence of a maximally stimulating dose of insulin. Despite a significant increase in creatine content in muscle, neither basal nor insulin-stimulated glucose uptake was altered in creatine supplemented rats. Since PCr levels were not increased with creatine supplementation, these results suggest that the actual concentration of PCr is a more important determinant of glucose uptake than the PCr/TCr ratio.  相似文献   

19.
The aim of this study is to investigate the effect of mitochondrial metabolism on high glucose/palmitate (HG/PA)-induced INS-1 beta cell death. Long-term treatment of INS-1 cells with HG/PA impaired energy-producing metabolism accompanying with depletion of TCA cycle intermediates. Whereas an inhibitor of carnitine palmitoyl transferase 1 augmented HG/PA-induced INS-1 cell death, stimulators of fatty acid oxidation protected the cells against the HG/PA-induced death. Furthermore, whereas mitochondrial pyruvate carboxylase inhibitor phenylacetic acid augmented HG/PA-induced INS-1 cell death, supplementation of TCA cycle metabolites including leucine/glutamine, methyl succinate/α-ketoisocaproic acid, dimethyl malate, and valeric acid or treatment with a glutamate dehydrogenase activator, aminobicyclo-heptane-2-carboxylic acid (BCH), significantly protected the cells against the HG/PA-induced death. In particular, the mitochondrial tricarboxylate carrier inhibitor, benzene tricarboxylate (BTA), also showed a strong protective effect on the HG/PA-induced INS-1 cell death. Knockdown of glutamate dehydrogenase or tricarboxylate carrier augmented or reduced the HG/PA-induced INS-1 cell death, respectively. Both BCH and BTA restored HG/PA-induced reduction of energy metabolism as well as depletion of TCA intermediates. These data suggest that depletion of the TCA cycle intermediate pool and impaired energy-producing metabolism may play a role in HG/PA-induced cytotoxicity to beta cells and thus, HG/PA-induced beta cell glucolipotoxicity can be protected by nutritional or pharmacological maneuver enhancing anaplerosis or reducing cataplerosis.  相似文献   

20.
Yu R  Yi T  Xie S  Hong A 《Peptides》2008,29(8):1347-1353
Maxadilan and its truncated variant, M65, are agonist and antagonist specific, respectively, for the PAC1 receptor. PAC1 is the specific receptor for the pituitary adenylate cyclase-activating peptide (PACAP), which is not shared by vasoactive intestinal peptide (VIP). PACAP is a ubiquitous peptide of the glucagon superfamily that is involved in glucose homeostasis and regulation of insulin secretion. This study employed the recombinant maxadilan and M65 to evaluate the PAC1 receptor-mediated effects on energy metabolism using NIH mice. First, the acute effect of maxadilan-induced hyperglycemia was blocked by M65. In long-term studies, NIH mice were given daily intraperitoneal injections with maxadilan, M65, or vehicle for 21 days. Maxadilan suppressed feeding and enhanced water intake significantly for the first several days. After that period, maxadilan treatment continued to promote food and water intake. Long-term administration of maxadilan led to an increase in body weight (P<0.01), decrease in body fat (P<0.01), down-regulation of basal plasma glucose (P<0.01), upregulation of basal plasma insulin (P<0.01) and improved glucose tolerance (P<0.01) and insulin sensitivity (P<0.01). An elevation in plasma LDL (P<0.01) was also observed in the maxadilan group. However, M65 displayed no significant adverse effects on the aforementioned parameters except basal plasma glucose (P<0.05). The significant changes induced by maxadilan indicate that the PAC1 receptor plays multiple key roles in carbohydrate metabolism, lipid metabolism and energy homeostasis in mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号