共查询到20条相似文献,搜索用时 15 毫秒
1.
Scapin SM Carneiro FR Alves AC Medrano FJ Guimarães BG Zanchin NI 《Journal of structural biology》2006,154(3):260-268
Rab GTPases constitute the largest family of small monomeric GTPases, including over 60 members in humans. These GTPases share conserved residues related to nucleotide binding and hydrolysis, and main sequence divergences lie in the carboxyl termini. They cycle between inactive (GDP-bound) and active (GTP-bound) forms and the active site regions, termed Switch I and II, undergo the larger conformational changes between the two states. The Rab11 subfamily members, comprising Rab11a, Rab11b, and Rab25, act in recycling of proteins from the endosomes to the plasma membrane, in transport of molecules from the trans-Golgi network to the plasma membrane and in phagocytosis. In this work, we describe Rab11b-GDP and Rab11b-GppNHp crystal structures solved to 1.55 and 1.95 angstroms resolution, respectively. Although Rab11b shares 90% amino acid identity to Rab11a, its crystal structure shows critical differences relative to previously reported Rab11a structures. Inactive Rab11a formed dimers with unusually ordered Switch regions and missing the magnesium ion at the nucleotide binding site. In this work, inactive Rab11b crystallized as a monomer showing a flexible Switch I and a magnesium ion which is coordinated by four water molecules, the phosphate beta of GDP (beta-P) and the invariant S25. S20 from the P-loop and S42 from the Switch I are associated to GTP hydrolysis rate. In the active structures, S20 interacts with the gamma-P oxygen in Rab11b-GppNHp but does not in Rab11a-GppNHp and the Q70 side chain is found in different positions. In the Rab11a-GTPgammaS structure, S40 is closer to S25 and S42 does not interact with the gamma-P oxygen. These differences indicate that the Rab11 isoforms may possess different GTP hydrolysis rates. In addition, the Switch II of inactive Rab11b presents a 3(10)-helix (residues 69-73) that disappears upon activation. This 3(10)-helix is not found in the Rab11a-GDP structure, which possesses a longer alpha2 helix, spanning from residue 73 to 82 alpha-helix 5. 相似文献
2.
Law CJ Almqvist J Bernstein A Goetz RM Huang Y Soudant C Laaksonen A Hovmöller S Wang DN 《Journal of molecular biology》2008,378(4):828-839
Active transport of substrates across cytoplasmic membranes is of great physiological, medical and pharmaceutical importance. The glycerol-3-phosphate (G3P) transporter (GlpT) of the E. coli inner membrane is a secondary active antiporter from the ubiquitous major facilitator superfamily that couples the import of G3P to the efflux of inorganic phosphate (Pi) down its concentration gradient. Integrating information from a novel combination of structural, molecular dynamics simulations and biochemical studies, we identify the residues involved directly in binding of substrate to the inward-facing conformation of GlpT, thus defining the structural basis for the substrate-specificity of this transporter. The substrate binding mechanism involves protonation of a histidine residue at the binding site. Furthermore, our data suggest that the formation and breaking of inter- and intradomain salt bridges control the conformational change of the transporter that accompanies substrate translocation across the membrane. The mechanism we propose may be a paradigm for organophosphate:phosphate antiporters. 相似文献
3.
4.
5.
We used FRET to examine the kinetics and thermodynamics of structural changes associated with ADP release in myosin V, which is thought to be a strain-sensitive step in many muscle and non-muscle myosins. We also explored essential dynamics using FIRST/FRODA starting with three different myosin V X-ray crystal structures to examine intrinsic flexibility and correlated motions. Our steady-state and time-resolved FRET analysis demonstrates a temperature-dependent reversible conformational change in the nucleotide-binding pocket (NBP). Our kinetic results demonstrate that the NBP goes from a closed to an open conformation prior to the release of ADP, while the actin-binding cleft remains closed. Interestingly, we find that the temperature dependence of the maximum actin-activated myosin V ATPase rate is similar to the pocket opening step, demonstrating that this is the rate-limiting structural transition in the ATPase cycle. Thermodynamic analysis demonstrates that the transition from the open to closed NBP conformation is unfavorable because of a decrease in entropy. The intrinsic flexibility analysis is consistent with conformational entropy playing a role in this transition as the MV.ADP structure is highly flexible compared to the MV.APO structure. Our experimental and modeling studies support the conclusion of a novel post-power-stroke actomyosin.ADP state in which the NBP and actin-binding cleft are closed. The novel state may be important for strain sensitivity as the transition from the closed to open NBP conformation may be altered by lever arm position. 相似文献
6.
Buffa L Fuchs E Pietropaolo M Barr F Solimena M 《European journal of cell biology》2008,87(4):197-209
Islet cell autoantigen of 69kDa (ICA69) is a small GTPase-binding protein of unknown function. ICA69 is enriched in the Golgi complex and its N-terminal half contains a BAR domain, a module that can bind/bend membranes and interacts with phospholipids. Here we show that in insulinoma INS-1 cells ICA69 binds to the small GTPase Rab2, which regulates the transport of COPI vesicles between the endoplasmic reticulum and the Golgi complex. Rab2 binds to ICA69 in a GTP-dependent fashion and recruits it to membranes. Over-expression of either Rab2 or ICA69 in INS-1 cells results in a phenotype characterized by: (i) impaired anterograde transport of the secretory granule protein precursors pro-ICA512 and chromogranin A; (ii) reduction of stimulated insulin secretion. Taken together, these data identify ICA69 as a novel Rab2 effector and point to its role in regulating the early transport of insulin secretory granule proteins. 相似文献
7.
The Rab11 GTPase regulates recycling of internalized plasma membrane receptors and is essential for completion of cytokinesis. A family of Rab11 interacting proteins (FIPs) that conserve a C-terminal Rab-binding domain (RBD) selectively recognize the active form of Rab11. Normal completion of cytokinesis requires a complex between Rab11 and FIP3. Here, we report the crystal structure and mutational analysis of a heterotetrameric complex between constitutively active Rab11 and a FIP3 construct that includes the RBD. Two Rab11 molecules bind to dyad symmetric sites at the C terminus of FIP3, which forms a non-canonical coiled-coiled dimer with a flared C terminus and hook region. The RBD overlaps with the coiled coil and extends through the C-terminal hook. Although FIP3 engages the switch and interswitch regions of Rab11, the mode of interaction differs significantly from that of other Rab-effector complexes. In particular, the switch II region undergoes a large structural rearrangement from an ordered but non-complementary active conformation to a remodeled conformation that facilitates the interaction with FIP3. Finally, we provide evidence that FIP3 can form homo-oligomers in cells, and that a critical determinant of Rab11 binding in vitro is necessary for FIP3 recruitment to recycling endosomes during cytokinesis. 相似文献
8.
Ribosomal protein S12 plays a pivotal role in decoding functions on the ribosome. X-ray crystallographic analyses of ribosomal complexes have revealed that S12 is involved in the inspection of codon-anticodon pairings in the ribosomal A site, as well as in the succeeding domain rearrangements of the 30S subunit that are essential for accommodation of aminoacyl-tRNA. A role for S12 in tRNA selection is also well supported by classical genetic analyses; mutations affecting S12 are readily isolated in bacteria and organelles, since specific alterations in S12 confer resistance to the error-inducing antibiotic streptomycin, and the ribosomes from many such streptomycin-resistant S12 mutants display decreased levels of miscoding. However, substitutions that confer resistance to streptomycin likely represent a very distinct class of all possible S12 mutants. Until recently, the technical difficulties in generating random, unselectable mutations in essential genes in complex operons have generally precluded the analysis of other classes of S12 alterations. Using a recombineering approach, we have targeted the Escherichia coli rpsL gene, encoding S12, for random mutagenesis and screened the resulting mutants for effects on decoding fidelity. We have recovered over 40 different substitutions located throughout the S12 protein that alter the accuracy of translation without substantially affecting the sensitivity to streptomycin. Moreover, this collection includes mutants that promote miscoding, as well as those that restrict decoding errors. These results affirm the importance of S12 in decoding processes and indicate that alterations in this essential protein can have diverse effects on the accuracy of decoding. 相似文献
9.
Boray Nguyen 《Journal of molecular biology》2010,397(5):1245-21705
Elongation factor G (EF-G) is one of several GTP hydrolytic proteins (GTPases) that cycles repeatedly on and off the ribosome during protein synthesis in bacterial cells. In the functional cycle of EF-G, hydrolysis of guanosine 5′-triphosphate (GTP) is coupled to tRNA-mRNA translocation in ribosomes. GTP hydrolysis induces conformational rearrangements in two switch elements in the G domain of EF-G and other GTPases. These switch elements are thought to initiate the cascade of events that lead to translocation and EF-G cycling between ribosomes. To further define the coupling mechanism, we developed a new fluorescent approach that can detect intramolecular movements in EF-G. We attached a fluorescent probe to the switch I element (sw1) of Escherichia coli EF-G. We monitored the position of the sw1 probe, relative to another fluorescent probe anchored to the GTP substrate or product, by measuring the distance-dependent, Förster resonance energy transfer between the two probes. By analyzing EF-G trapped at five different functional states in its cycle, we could infer the cyclical movements of sw1 within EF-G. Our results provide evidence for conformational changes in sw1, which help to drive the unidirectional EF-G cycle during protein synthesis. More generally, our approach might also serve to define the conformational dynamics of other GTPases with their cellular receptors. 相似文献
10.
Hiroshi Ishii Osamu Nadaoka Yoshimasa Mimura Yoshio Inoue Riichir Chûj 《International journal of biological macromolecules》1989,11(6)
A tetrapetide containing an Aib residue, Boc-Asn-Aib-Thr-Aib-OMe, was synthesized as a peptide model for the N-glycosylation site in N-glycoproteins. Backbone conformation of the peptide and possible intramolecular interaction between the Asn and Thr side chains were elucidated by means of n.m.r. spectroscopy. Temperature dependence of NH proton chemical shift and NOE experiments showed that Boc-Asn-Aib-Thr-Aib-OMe has a tendency to form a β-turn structure with a hydrogen bond involving Thr and Aib4 NH groups. Incorporation of Aib residues in the peptide model promotes folding of the peptide backbone. With folded backbone conformation, carboxyamide protons of the Asn residue are not involved in hydrogen bond network, while the OH group of the Thr residue is a candidate for a hydrogen bond in DMSO-d6 solution. 相似文献
11.
Jamie L. Manson 《Inorganica chimica acta》2004,357(13):3975-3979
A new linear chain antiferromagnet, namely Mn(tcm)2(4,4′-bipy)2 (tcm=tricyanomethanide and bipy=bipyridine) has been synthesized and characterized by X-ray crystallography and magnetic susceptibility measurements. Each Mn2+ is high-spin S=5/2 and linked to nearest-neighbor spin sites via μ-bridged tcm ligands to form a 1D linear chain while the bipy ligands are monodentate and segregate the chains. Magnetically, a broad maximum in χ′(T) is observed at 2.1 K and likely signifies short-range magnetic order within the chains. A least-squares fit of the χT(T) data to a classical-spin Fisher chain model yielded good agreement for g=2.008(1) and J=−0.217(4) K. No long-range magnetic ordering is observed above 1.6 K due to the presence of very weak interchain magnetic interactions as indicated by inclusion of a mean-field model that gave zJ′=−0.009(1) K. 相似文献
12.
The membrane-bound conformation of a cell-penetrating peptide, penetratin, is investigated using solid-state NMR spectroscopy. The 13C chemical shifts of 13C, 15N-labeled residues in the peptide indicate a reversible conformational change from β-sheet at low temperature to coil-like at high temperature. This conformational change occurs for all residues examined between positions 3 and 13, at peptide/lipid molar ratios of 1:15 and 1:30, in membranes with 25-50% anionic lipids, and in both saturated DMPC/DMPG (1,2-dimyristoyl-sn-glycero-3-phosphatidylchloline/1,2-dimyristoyl-sn-glycero-3-phosphatidylglycerol) membranes and unsaturated POPC/POPG (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylglycerol) membranes. Thus, it is an intrinsic property of penetratin. The coil state of the peptide has C-H order parameters of 0.23-0.52 for Cα and Cβ sites, indicating that the peptide backbone is unstructured. Moreover, chemical shift anisotropy lineshapes are uniaxially averaged, suggesting that the peptide backbone undergoes uniaxial rotation around the bilayer normal. These observations suggest that the dynamic state of penetratin at high temperature is a structured turn instead of an isotropic random coil. The thermodynamic parameters of this sheet-turn transition are extracted and compared to other membrane peptides reported to exhibit conformational changes. We suggest that the function of this turn conformation may be to reduce hydrophobic interactions with the lipid chains and facilitate penetratin translocation across the bilayer without causing permanent membrane damage. 相似文献
13.
Bacillus subtilis gene yshC encodes a 64-kDa family X DNA polymerase (PolXBs), which contains all the critical residues involved in DNA and nucleotide binding as well as those responsible for catalysis of DNA polymerization, conserved in most family X members. Biochemical analyses of the purified enzyme indicate that PolXBs is a monomeric and strictly template-directed DNA polymerase, preferentially acting on DNA structures containing gaps from one to a few nucleotides and bearing a phosphate group at the 5' end of the downstream DNA. The fact that PolXBs is able to conduct filling of a single-nucleotide gap, allowing further sealing of the resulting nick by a DNA ligase, points to a putative role in base excision repair during the B. subtilis life cycle. 相似文献
14.
Shuijie Li Fredéric Lamarche Romain Charton Christian Delphin Olivier Gires Arnaud Hubstenberger Uwe Schlattner Denis Rousseau 《Gene》2014
ATAD3 (ATPase family AAA-Domain containing protein 3) is a mitochondrial inner membrane ATPase with unknown but vital functions. Initial researches have focused essentially on the major p66-ATAD3 isoform, but other proteins and mRNAs are described in the data banks. Using a set of anti-peptide antibodies and by the use of rodent and human cell lines and organs, we tried to detail ATAD3 gene expression profiles and to verify the existence of the various ATAD3 isoforms. In rodent, the single ATAD3 gene is expressed as a major isoform of 67 kDa, (ATAD3l; long), in all cells and organs studied. A second isoform, p57-ATAD3s (small), is expressed specifically throughout brain development and in adult, and overexpressed around the peri-natal period. p57-ATAD3s is also expressed in neuronal and glial rodent cell lines, and during in vitro differentiation of primary cultured rat oligodendrocytes. Other smaller isoforms were also detected in a tissue-specific manner. In human and primates, ATAD3 paralogues are encoded by three genes (ATAD3A, 3B and 3C), each of them presenting several putative variants. Analyzing the expression of ATAD3A and ATAD3B with four specific anti-peptide antibodies, and comparing their expressions with in vitro expressed ATAD3 cDNAs, we were able to observe and define five isoforms. In particular, the previously described p72-ATAD3B is confirmed to be in certain cases a phosphorylated form of ATAD3As. Moreover, we observed that the ATAD3As phosphorylation level is regulated by insulin and serum. Finally, exploring ATAD3 mRNA expression, we confirmed the existence of an alternative splicing in rodent and of several mRNA isoforms in human. 相似文献
15.
The formation of a complex between Rac1 and the cytoplasmic domain of plexin-B1 is one of the first documented cases of a direct interaction between a small guanosine 5′-triphosphatase (GTPase) and a transmembrane receptor. Structural studies have begun to elucidate the role of this interaction for the signal transduction mechanism of plexins. Mapping of the Rac1 GTPase surface that contacts the Rho GTPase binding domain of plexin-B1 by solution NMR spectroscopy confirms the plexin domain as a GTPase effector protein. Regions neighboring the GTPase switch I and II regions are also involved in the interaction and there is considerable interest to examine the changes in protein dynamics that take place upon complex formation. Here we present main-chain nitrogen-15 relaxation measurements for the unbound proteins as well as for the Rho GTPase binding domain and Rac1 proteins in their complexed state. Derived order parameters, S2, show that considerable motions are maintained in the bound state of plexin. In fact, some of the changes in S2 on binding appear compensatory, exhibiting decreased as well as increased dynamics. Fluctuations in Rac1, already a largely rigid protein on the picosecond-nanosecond timescale, are overall diminished, but isomerization dynamics in the switch I and II regions of the GTPase are retained in the complex and appear to be propagated to the bound plexin domain. Remarkably, fluctuations in the GTPase are attenuated at sites, including helices α6 (the Rho-specific insert helix), α7 and α8, that are spatially distant from the interaction region with plexin. This effect of binding on long-range dynamics appears to be communicated by hinge sites and by subtle conformational changes in the protein. Similar to recent studies on other systems, we suggest that dynamical protein features are affected by allosteric mechanisms. Altered protein fluctuations are likely to prime the Rho GTPase-plexin complex for interactions with additional binding partners. 相似文献
16.
Activation of G-protein-coupled receptors (GPCRs) is initiated by conformational changes in the transmembrane (TM) helices and the intra- and extracellular loops induced by ligand binding. Understanding the conformational changes in GPCRs leading to activation is imperative in deciphering the role of these receptors in the pathology of diseases. Since the crystal structures of activated GPCRs are not yet available, computational methods and biophysical techniques have been used to predict the structures of GPCR active states. We have recently applied the computational method LITiCon to understand the ligand-induced conformational changes in β2-adrenergic receptor by ligands of varied efficacies. Here we report a study of the conformational changes associated with the activation of bovine rhodopsin for which the crystal structure of the inactive state is known. Starting from the inactive (dark) state, we have predicted the TM conformational changes that are induced by the isomerization of 11-cis retinal to all-trans retinal leading to the fully activated state, metarhodopsin II. The predicted active state of rhodopsin satisfies all of the 30 known experimental distance constraints. The predicted model also correlates well with the experimentally observed conformational switches in rhodopsin and other class A GPCRs, namely, the breaking of the ionic lock between R1353.50 at the intracellular end of TM3 (part of the DRY motif) and E2476.30 on TM6, and the rotamer toggle switch on W2656.48 on TM6. We observe that the toggling of the W2656.48 rotamer modulates the bend angle of TM6 around the conserved proline. The rotamer toggling is facilitated by the formation of a water wire connecting S2987.45, W2656.48 and H2115.46. As a result, the intracellular ends of TMs 5 and 6 move outward from the protein core, causing large conformational changes at the cytoplasmic interface. The predicted outward movements of TM5 and TM6 are in agreement with the recently published crystal structure of opsin, which is proposed to be close to the active-state structure. In the predicted active state, several residues in the intracellular loops, such as R69, V1393.54, T229, Q237, Q239, S240, T243 and V2506.33, become more water exposed compared to the inactive state. These residues may be involved in mediating the conformational signal from the receptor to the G protein. From mutagenesis studies, some of these residues, such as V1393.54, T229 and V2506.33, are already implicated in G-protein activation. The predicted active state also leads to the formation of new stabilizing interhelical hydrogen-bond contacts, such as those between W2656.48 and H2115.46 and E1223.37 and C1674.56. These hydrogen-bond contacts serve as potential conformational switches offering new opportunities for future experimental investigations. The calculated retinal binding energy surface shows that binding of an agonist makes the receptor dynamic and flexible and accessible to many conformations, while binding of an inverse agonist traps the receptor in the inactive state and makes the other conformations inaccessible. 相似文献
17.
Kozue Hamao 《Experimental cell research》2009,315(7):1336-1345
Microtubule reorganization is necessary for many cellular functions such as cell migration, cell polarity and cell division. Dynamin was originally identified as a microtubule-binding protein. Previous limited digestion experiment revealed that C-terminal 100-amino acids proline rich domain (PRD) of dynamin is responsible for microtubule binding in vitro. However, as obvious localization of dynamin along microtubules is only observed at the spindle midzone during mitosis but not in interphase cells, it remains unclear how dynamin interacts with microtubules in vivo. Here, we report that GFP-dynamin-2-(1-786), a truncated mutant lacking a C-terminal portion of the PRD, localized along microtubules in interphase HeLa cells. GFP-dynamin-2-wild type (WT) and GFP-dynamin-2-(1-745), a construct that was further truncated to remove the entire PRD, localized in discrete punctate structures but not along microtubules. These data suggest that the N-terminal (residues 746-786) but not the entire PRD is necessary for the interaction of dynamin-2 with microtubules in the cell and that the C-terminus of PRD (787-870) negatively regulate this interaction. Microtubules in cells expressing GFP-dynamin-2-(1-786) were stabilized against exposure to cold. These results provide a first evidence for a regulated interaction of dynamin-2 with microtubules in cultured mammalian cells. 相似文献
18.
Carsten Kintscher 《Journal of molecular biology》2009,387(2):270-5145
Cdc42, a member of the Ras superfamily of small guanine nucleotide binding proteins, plays an important role in regulating the actin cytoskeleton, intracellular trafficking, and cell polarity. Its activation is controlled by guanine nucleotide exchange factors (GEFs), which stimulate the dissociation of bound guanosine-5′-diphosphate (GDP) to allow guanosine-5′-triphosphate (GTP) binding. Here, we investigate the exchange factor activity of the Dbl-homology domain containing constructs of the adaptor protein Intersectin1L (ITSN1L), which is a specific GEF for Cdc42. A detailed kinetic characterisation comparing ITSN1L-mediated nucleotide exchange on Cdc42 in its GTP- versus GDP-bound state reveals a kinetic discrimination for GEF-stimulated dissociation of GTP: The maximum acceleration of the intrinsic mGDP [2′/3′-O-(N-methyl-anthraniloyl)-GDP] release from Cdc42 by ITSN1L is accelerated at least 68,000-fold, whereas the exchange of mGTP [2′/3′-O-(N-methyl-anthraniloyl)-GTP] is stimulated only up to 6000-fold at the same GEF concentration. The selectivity in nucleotide exchange kinetics for GDP over GTP is even more pronounced when a Cdc42 mutant, F28L, is used, which is characterised by fast intrinsic dissociation of nucleotides. We furthermore show that both GTP and Mg2+ ions are required for the interaction with effectors. We suggest a novel model for selective nucleotide exchange residing on a conformational change of Cdc42 upon binding of GTP, which enables effector binding to the Cdc42 · GTP complex but, at the same time, excludes efficient modulation by the GEF. The higher exchange activity of ITSN1L towards the GDP-bound conformation of Cdc42 could represent an evolutionary adaptation of this GEF that ensures nucleotide exchange towards the formation of the signalling-active GTP-bound form of Cdc42 and avoids dissociation of the active complex. 相似文献
19.
Crystal form II of the beta-cyclodextrin-benzoic acid (beta-CD-BA) inclusion complex was obtained from the 1.5-year stored aqueous EtOH solution of beta-CD and BA as 2beta-CD.1.5BA.0.7EtOH.21H(2)O in the monoclinic space group C2 with unit cell constants: a=19.413(3), b=24.306(4), c=32.975(1)A, beta=104.41(1) degrees . By contrast, the desired crystal form I in the triclinic space group P1 that ever grew up from the fresh solution as 2beta-CD.2BA.0.7EtOH.20.65H(2)O was not reproducible any more [Aree, T.; Chaichit, N. Carbohydr. Res.2003, 338, 439-446]. In the two crystal forms, beta-CDs are isostructural with a 'round' conformation stabilized by intramolecular O-3(n)cdots, three dots, centeredO-2(n+1) hydrogen bonds. The BA inclusion geometries are similar with a preferred orientation, that is, BAs are situated above the O-4 plane, point their COOH groups to the beta-CD O-6 side, incline 52 degrees with respect to the O-4 plane and are mainly maintained in positions by hydrogen bonding with the surrounding water molecules. beta-CDs form dimers as structural motif of different packing modes: the screw-channel type in form II and the average of intermediate and tetrad types in form I. Polymorphism in the beta-CD-BA inclusion complex is a kinetically controlled crystal growth following the Ostwald's rule: the less stable crystal form I grew up first within one week from the fresh solution, whereas the more stable crystal form II appeared after 1.5-year storage. 相似文献
20.
Spliceosomes assemble on pre-mRNA splice sites through a series of dynamic ribonucleoprotein complexes, yet the nature of the conformational changes remains unclear. Splicing factor 1 (SF1) and U2 auxiliary factor (U2AF65) cooperatively recognize the 3′ splice site during the initial stages of pre-mRNA splicing. Here, we used small-angle X-ray scattering to compare the molecular dimensions and ab initio shape restorations of SF1 and U2AF65 splicing factors, as well as the SF1/U2AF65 complex in the absence and presence of AdML (adenovirus major late) splice site RNAs. The molecular dimensions of the SF1/U2AF65/RNA complex substantially contracted by 15 Å in the maximum dimension, relative to the SF1/U2AF65 complex in the absence of RNA ligand. In contrast, no detectable changes were observed for the isolated SF1 and U2AF65 splicing factors or their individual complexes with RNA, although slight differences in the shapes of their molecular envelopes were apparent. We propose that the conformational changes that are induced by assembly of the SF1/U2AF65/RNA complex serve to position the pre-mRNA splice site optimally for subsequent stages of splicing. 相似文献