首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Aspartyl-tRNA synthetase from higher eukaryotes is a component of a multienzyme complex comprising nine aminoacyl-tRNA synthetases. The cDNA encoding cytoplasmic rat liver aspartyl-tRNA synthetase was previously cloned and sequenced. This work reports the identification of structural features responsible for its association within the multisynthetase complex. Mutant and chimeric proteins have been expressed in mammalian cells and their structural behavior analyzed. A wild-type rat liver aspartyl-tRNA synthetase, expressed in Chinese hamster ovary (CHO) cells, associates within the complex from CHO cells, whereas a mutant enzyme with a deletion of 34 amino acids from its amino-terminal extremity does not. A chimeric enzyme, made of the amino-terminal moiety of rat liver aspartyl-tRNA synthetase fused to the catalytic domain of yeast lysyl-tRNA synthetase, has been expressed in Lys-101 cells, a CHO cell line with a temperature-sensitive lysyl-tRNA synthetase. The fusion protein is stable in vivo, does not associate within the multisynthetase complex and cannot restore normal growth of the mutant cells. These results establish that the 3.7-kDa amino-terminal moiety of mammalian aspartyl-tRNA synthetase mediates its association with the other components of the complex. In addition, the finding that yeast lysyl-tRNA synthetase cannot replace the aspartyl-tRNA synthetase component of the mammalian complex, indicates that interactions between neighbouring enzymes also play a prominent role in stabilization of this multienzyme structure and strengthened the view that the multisynthetase complex is a discrete entity with a well-defined structural organization.  相似文献   

2.
The crystal structure of Thermus thermophilus asparaginyl-tRNA synthetase has been solved by multiple isomorphous replacement and refined at 2.6 A resolution. This is the last of the three class IIb aminoacyl-tRNA synthetase structures to be determined. As expected from primary sequence comparisons, there are remarkable similarities between the tertiary structures of asparaginyl-tRNA synthetase and aspartyl-tRNA synthetase, and most of the active site residues are identical except for three key differences. The structure at 2.65 A of asparaginyl-tRNA synthetase complexed with a non-hydrolysable analogue of asparaginyl-adenylate permits a detailed explanation of how these three differences allow each enzyme to discriminate between their respective and very similar amino acid substrates, asparagine and aspartic acid. In addition, a structure of the complex of asparaginyl-tRNA synthetase with ATP shows exactly the same configuration of three divalent cations as previously observed in the seryl-tRNA synthetase-ATP complex, showing that this a general feature of class II synthetases. The structural similarity of asparaginyl- and aspartyl-tRNA synthetases as well as that of both enzymes to the ammonia-dependent asparagine synthetase suggests that these three enzymes have evolved relatively recently from a common ancestor.  相似文献   

3.
A Théobald  D Kern  R Giegé 《Biochimie》1988,70(2):205-213
Essential lysine residues were sought in the catalytic site of baker's yeast aspartyl-tRNA synthetase (an alpha 2 dimer of Mr 125,000) using affinity labeling methods and periodate-oxidized adenosine, ATP, and tRNA(Asp). It is shown that the number of periodate-oxidized derivatives which can be bound to the synthetase via Schiff's base formation with epsilon-NH2 groups of lysine residues exceeds the stoichiometry of specific substrate binding. Furthermore, it is found that the enzymatic activities are not completely abolished, even for high incorporation levels of the modified substrates. The tRNA(Asp) aminoacylation reaction is more sensitive to labeling than is the ATP-PPi exchange one; for enzyme preparations modified with oxidized adenosine or ATP this activity remains unaltered. These results demonstrate the absence of a specific lysine residue directly involved in the catalytic activities of yeast aspartyl-tRNA synthetase. Comparative labeling experiments with oxidized ATP were run with several other aminoacyl-tRNA synthetases. Residual ATP-PPi exchange and tRNA aminoacylation activities measured in each case on the modified synthetases reveal different behaviors of these enzymes when compared to that of aspartyl-tRNA synthetase. When tested under identical experimental conditions, pure isoleucyl-, methionyl-, threonyl- and valyl-tRNA synthetases from E. coli can be completely inactivated for their catalytic activities; for E. coli alanyl-tRNA synthetase only the tRNA charging activity is affected, whereas yeast valyl-tRNA synthetase is only partly inactivated. The structural significance of these experiments and the occurrence of essential lysine residues in aminoacyl-tRNA synthetases are discussed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
In order to further characterize chemical, physicochemical, and immunochemical properties, as well as structure-function relationships, of the common alpha subunit of human glycoprotein hormones, a tryptic core was prepared from the alpha subunit of human choriogonadotropin. The core was purified in greater than 80% yield using gel permeation and anion-exchange chromatography, and, following reduction and S-carboxymethylation, the constituent peptides were purified by gel permeation and high performance liquid chromatography. The disulfide-bridged peptides comprising the alpha core were identified as residues 1-35 and residues 52-91 by amino acid composition and amino acid carboxyl sequence analyses of the reduced, S-carboxymethylated peptides. The alpha tryptic core contained both N-asparagine carbohydrate moieties, but was devoid of residues 36-51 and the carboxyl-terminal serine at position 92. The small peptides cleaved from residues 36-51, a known potential O-glycosylation region of the alpha subunit, were purified and identified. The tryptic core retained full immunopotency relative to the intact subunit in the binding to polyclonal and monoclonal antibodies directed against the alpha subunit. The region consisting of residues 36-51 is not part of the epitope recognized by these antibodies. With antisera generated to the reduced, S-carboxymethylated subunit, peptide 1-35, but not 52-91, was immunoreactive. This finding is consistent with the known dominant antigenicity of the amino-terminal region in the reduced, S-carboxymethylated molecule. The core exhibited no appreciable interaction with the complementary beta subunit, and, not surprisingly, was unable to compete with intact hormone binding in a radioreceptor assay using rat testicular homogenates. Circular dichroic spectroscopy was used to probe gross features of tertiary structure (240-300 nm) and secondary structure (190-240 nm). The tryptic core and each of the two constituent peptides exhibited spectra above 240 nm that resembled that of the reduced, S-carboxymethylated subunit more than that of the native material, thus suggesting a significant loss of tertiary structure in the core and isolated peptides. This finding is unexpected in consideration of the full retention of immunopotency by the alpha core although consistent with failure of the core to combine with intact complementary beta subunit. The intact subunit as well as the isolated constituent peptides exhibit little if any helicity in aqueous solution. Interestingly, the reduced, S-carboxymethylated chain and peptide 52-91 displayed helicity in 80% trifluoroethanol, a helicogenic solvent.  相似文献   

5.
Two distinct classes of acetylcholinesterase exist in near equal amounts in the electric organ of Torpedo californica. A globular 5.6 S form is a dimer which possesses a hydrophobic region. The second form is present as elongated species that sediment at 17 and 13 S and contain structural subunits disulfide-linked to the catalytic subunits. Removal of the structural subunits by mild proteolysis yields a tetramer of catalytic subunits which sediments at 11 S. To compare the primary structures of the catalytic subunits of the 5.6 S and 11 S forms of acetylcholinesterase, amino acid sequences from the active sites and from the amino-terminal regions have been elucidated. Active site serines were labeled with [3H]isopropyl fluorophosphate. After digestion with trypsin, the resultant peptides were resolved by elution from a size-exclusion column followed by reverse-phase high performance liquid chromatography. Each active site tryptic peptide contained 24 residues and identical sequences were found in this peptide for the 5.6 S and 11 S forms of the enzyme. The sequence flanking the active site serine revealed extensive homology with the published sequence of human serum cholinesterase as well as a lesser degree of homology with other known serine proteases and esterases. The sequences of the amino-terminal region also appear to be identical for both enzyme forms although we note variation in the ratio of Glu and Gln at position 5. The amino-terminal sequence exhibits only partial homology with the published sequence of human serum cholinesterase.  相似文献   

6.
Structural characterization of a recombinant CD4-IgG hybrid molecule   总被引:1,自引:0,他引:1  
CD4-IgG is a homodimer of a hybrid polypeptide consisting of the two amino-terminal domains (residues 1-180) of human CD4 fused to the hinge region and the second and third constant-sequence (CH2 and CH3) Fc domains (residues 216-441) of human immunoglobulin G (IgG-1). This antibody-like molecule, termed an immunoadhesin, was produced in an effort to combine the binding specificity of CD4 with several potentially desirable properties of IgG molecules [Capon et al. (1989) Nature 337, 525-531]. The structural characteristics of the molecule have been evaluated to demonstrate that CD4-IgG has the same features as the N-terminal region of soluble CD4, while retaining those expected for the Fc portion of human IgG. Identification of peptides recovered from the tryptic map confirmed 98.8% of the expected structure of CD4-IgG. The detection of glucosamine in peptides containing Asn257 and the retention time shift of this tryptic peptide after deglycosylation confirmed the presence of Asn-linked oligosaccharides at this position. Four pairs of intrachain and two interchain disulfide bonds were also established.  相似文献   

7.
A cDNA clone encoding rat liver aspartyl-tRNA synthetase was isolated by probing a lambda gt11 recombinant cDNA expression library with antibodies directed against the corresponding polypeptide from sheep liver. The 1930-base pairs-long cDNA insert allowed the expression in Escherichia coli of an active enzyme of mammalian origin. The nucleotide sequence of that cDNA, corresponding to the DRS1 gene, was determined. The open reading frame of DRS1 corresponds to a protein of Mr = 57,061, in good agreement with the previously determined molecular weight of the purified enzyme. The deduced amino acid sequence shows extensive homologies with that of yeast cytoplasmic aspartyl-tRNA synthetase, more than 50% of the residues being identical. In rat liver, aspartyl-tRNA synthetase occurs in two distinct forms: a dimeric enzyme and a component of a multienzyme complex comprising the nine aminoacyl-tRNA synthetases specific for arginine, aspartic acid, glutamic acid, glutamine, isoleucine, leucine, lysine, methionine, and proline. The primary structure of the DRS1 gene product is discussed in relation to the occurrence of two distinct forms of that enzyme.  相似文献   

8.
Cytoplasmic aspartyl-tRNA synthetase from Saccharomyces cerevisiae is a dimer made up of identical subunits (Mr 63,000) each of these containing three cysteines (residues 255, 512 and 519 in the amino acid sequence). Thiol-specific probes were used to label these cysteines and study the resulting effect of the modification on the kinetic parameters of both the ATP/PPi exchange and tRNA aminoacylation reactions. Using the classical techniques of protein chemistry it was shown that none of the three cysteines was labelled with iodoacetic acid, whilst N-ethylmaleimide and 5,5'-dithiobis(2-nitrobenzoate) reacted with Cys512 and Cys255, respectively. Only the latter modification was accompanied by a decrease in the rates of both enzyme activities whilst the Km values for the various substrates remained unaffected. Site-directed mutagenesis was also used to replace each of the three cysteines by other residues, either individually or simultaneously. For these experiments the enzyme was expressed in Escherichia coli using an expression vector bearing the structural gene in which the first 13 codons were replaced by the first 14 of the CII lambda gene. The resulting substitution in the amino-terminal part of the expressed enzyme had no effect on the kinetic parameters, compared to those of the enzyme purified from S. cerevisiae. Taking into account the consequences of such substitutions, as well as those of chemical modifications on the two reactions catalysed by the enzyme. ATP/PPi exchange and tRNA aminoacylation, it could be concluded that none of these three cysteines plays any essential role in either substrate binding or catalysis.  相似文献   

9.
A photoaffinity substrate analogue, 8-azido-ADP-[14C]glucose, reacts specifically and covalently with Escherichia coli ADP-glucose synthetase. The site(s) of reaction of 8-azido-ADP-[14C]glucose with the enzyme was identified by isolation of tryptic peptides containing the labeled analogue by use of high performance liquid chromatography technique and subsequent NH2-terminal sequence analysis of the purified radioactive peptides. One major binding region of the azido analogue is a peptide segment composed of residues 107-114 of the enzyme's polypeptide chain. Lys 108 and Arg 114 become trypsin-resistant sites when the enzyme is photoinactivated by 8-azido-ADP-[14C] glucose, suggesting that the analogue binds at or near the vicinity of these 2 basic amino acid residues. Conformational analysis of this peptide segment (residues 107-114) shows a strong probability of a reverse beta-turn secondary structure, suggesting that this peptide segment is on the enzyme surface. Two minor reaction regions of the enzyme with the analogue were also identified by chemical characterization. One region was composed of residues 162-207. Lys 194 was previously suggested as the activator-binding site by chemical modification studies with pyridoxal phosphate (Parsons, T. F., and Preiss, J. (1978) J. Biol. Chem. 253, 7638-7645). Another minor region where the analogue binds the tryptic peptide composed of residues 380-385 is near the COOH-terminal side of the enzyme. It is postulated that all these peptide segments are juxtaposed in tertiary structure.  相似文献   

10.
MESI, the structural gene for methionyl-tRNA synthetase from Saccharomyces cerevisiae encodes an amino-terminal extension of 193 amino acids, based on the comparison of the encoded protein with the Escherichia coli methionyl-tRNA synthetase. We examined the contribution of this polypeptide region to the activity of the enzyme by creating several internal deletions in MESI which preserve the correct reading frame. The results show that 185 amino acids are dispensable for activity and stability. Removal of the next 5 residues affects the activity of the enzyme. The effect is more pronounced on the tRNA aminoacylation step than on the adenylate formation step. The Km for ATP and methionine are unaltered indicating that the global structure of the enzyme is maintained. The Km for tRNA increased slightly by a factor of 3 which indicates that the positioning of the tRNA on the surface of the molecule is not affected. There is, however, a great effect on the Vmax of the enzyme. Examination of the three-dimension structure of the homologous E. coli methionyl-tRNA synthetase indicates that the amino acid region preceding the mononucleotide-binding fold does not participate directly in the catalytic cleft. It could, however, act at a distance by propagating a mutational alteration to the catalytic residues.  相似文献   

11.
Five aminoacyl-tRNA synthetases found in the high molecular weight core complex were phosphorylated in rabbit reticulocytes following labeling with 32P. The synthetases were isolated by affinity chromatography on tRNA-Sepharose followed by immunoprecipitation. The five synthetases phosphorylated were the glutamyl-, glutaminyl-, lysyl-, and aspartyl-tRNA synthetases and, to a lesser extent, the methionyl-tRNA synthetase. In addition, a 37,000-dalton protein, associated with the synthetase complex and tentatively identified as casein kinase I, was also phosphorylated in intact cells. Phosphoamino acid analysis of the proteins indicated all of the phosphate was on seryl residues. Incubation of reticulocytes with 32P in the presence of 8-bromo-cAMP and 3-isobutyl-1-methylxanthine resulted in a 6-fold increase in phosphorylation of the glutaminyl-tRNA synthetase and a 2-fold increase in phosphorylation of the aspartyl-tRNA synthetase. When the high molecular weight core complex was isolated by gel filtration/affinity chromatography, the profile of phosphorylation was similar to that observed by immunoprecipitation with a 9- and 3-fold stimulation of the glutaminyl- and aspartyl tRNA-synthetase, respectively. From this data it was concluded that the increased phosphorylation of the glutaminyl- and aspartyl-tRNA synthetases obtained with 8-bromo-cAMP did not appear to be involved in dissociation of the high molecular weight core complex.  相似文献   

12.
Primary structure of belladonna mottle virus coat protein   总被引:1,自引:0,他引:1  
The coat protein of belladonna mottle virus (a tymovirus) was cleaved by trypsin and chymotrypsin, and the peptides were separated by high performance liquid chromatography using a combination of gel permeation, reverse phase, and ion pair chromatography. The peptides were sequenced manually using the 4-N, N-dimethylaminoazobenzene-4'-isothiocyanate/phenyl isothiocyanate double-coupling method. The chymotryptic peptides were aligned by overlapping sequences of tryptic peptides and by homology with another tymovirus, eggplant mosaic virus. The belladonna mottle virus is more closely related to eggplant mosaic virus than to turnip yellow mosaic virus, the type member of this group, as evident from the sequence homologies of 57 and 32%, respectively. The accumulation of basic residues at the amino terminus implicated in RNA-protein interactions in many spherical plant viruses was absent in all the three sequences. Interestingly, the amino-terminal region is the least conserved among the tymoviruses. The longest stretch of conserved sequence between belladonna mottle virus and eggplant mosaic virus was residues 34-44, whereas it was residues 96-102 in the case of belladonna mottle virus and turnip yellow mosaic virus. A tetrapeptide in the region (residues 154-157) was found to be common for all the three sequences. It is possible that these conserved regions (residues 34-44, 96-102, 154-157) are involved in either intersubunit or RNA-protein interactions.  相似文献   

13.
Respiratory deficient mutants of Saccharomyces cerevisiae previously assigned to complementation group G59 are pleiotropically deficient in respiratory chain components and in mitochondrial ATPase. This phenotype has been shown to be a consequence of mutations in a nuclear gene coding for mitochondrial leucyl-tRNA synthetase. The structural gene (MSL1) coding for the mitochondrial enzyme has been cloned by transformation of two different G59 mutants with genomic libraries of wild type yeast nuclear DNA. The cloned gene has been sequenced and shown to code for a protein of 894 residues with a molecular weight of 101,936. The amino-terminal sequence (30-40 residues) has a large percentage of basic and hydroxylated residues suggestive of a mitochondrial import signal. The cloned MSL1 gene was used to construct a strain in which 1 kb of the coding sequence was deleted and substituted with the yeast LEU2 gene. Mitochondrial extracts obtained from the mutant carrying the disrupted MSL1::LEU2 allele did not catalyze acylation of mitochondrial leucyl-tRNA even though other tRNAs were normally charged. These results confirmed the correct identification of MSL1 as the structural gene for mitochondrial leucyl-tRNA synthetase. Mutations in MSL1 affect the ability of yeast to grow on nonfermentable substrates but are not lethal indicating that the cytoplasmic leucyl-tRNA synthetase is encoded by a different gene. The primary sequence of yeast mitochondrial leucyl-tRNA synthetase has been compared to other bacterial and eukaryotic synthetases. Significant homology has been found between the yeast enzyme and the methionyl- and isoleucyl-tRNA synthetases of Escherichia coli. The most striking primary sequence homology occurs in the amino-terminal regions of the three proteins encompassing some 150 residues. Several smaller domains in the more internal regions of the polypeptide chains, however, also exhibit homology. These observations have been interpreted to indicate that the three synthetases may represent a related subset of enzymes originating from a common ancestral gene.  相似文献   

14.
15.
Nucleolin, also called protein C23, is a RNA-associated protein implicated in the early stages of ribosome assembly. To study the general conformation and map the nucleic acid binding regions, rat nucleolin was subjected to limited proteolysis using trypsin and chymotrypsin in the presence or absence of poly(G). The cleavage sites were classified according to their locations in the three putative domains: the highly polar amino-terminal domain, the central nucleic acid binding domain, which contains four 90-residue repeats, and the carboxyl-terminal domain, which is rich is glycine, dimethylarginine, and phenylalanine. The most labile sites were found in basic segments of the amino-terminal domain. This region was stabilized by Mg2+. At low enzyme concentrations, cleavage by trypsin or chymotrypsin in the amino-terminal domain was enhanced by poly(G). Trypsin produced a relatively stable 48-kDa fragment containing the central and carboxyl-terminal domains. The enhanced cleavage suggests that binding of nucleic acid by the central domain alters the conformation of the amino-terminal domain, exposing sites to proteolytic cleavage. At moderate enzyme concentrations, the 48-kDa fragment was protected by poly(G) against tryptic digestion. At the highest enzyme concentrations, both enzymes cleaved near the boundaries between repeats 2, 3, and 4 with some sites protected by poly(G), suggesting that the repeats themselves form compact units. The carboxyl-terminal domain was resistant to trypsin but was cleaved by chymotrypsin either in the presence or in the absence of poly(G), indicating exposure of some phenylalanines in this region. These studies provide a general picture of the topology of nucleolin and suggest that the nucleic acid binding region communicates with the amino-terminal domain.  相似文献   

16.
Aminoacyl-tRNA synthetases catalyze the specific charging of amino acid residues on tRNAs. Accurate recognition of a tRNA by its synthetase is achieved through sequence and structural signalling. It has been shown that tRNAs undergo large conformational changes upon binding to enzymes, but little is known about the conformational rearrangements in tRNA-bound synthetases. To address this issue the crystal structure of the dimeric class II aspartyl-tRNA synthetase (AspRS) from yeast was solved in its free form and compared to that of the protein associated to the cognate tRNA(Asp). The use of an enzyme truncated in N terminus improved the crystal quality and allowed us to solve and refine the structure of free AspRS at 2.3 A resolution. For the first time, snapshots are available for the different macromolecular states belonging to the same tRNA aminoacylation system, comprising the free forms for tRNA and enzyme, and their complex. Overall, the synthetase is less affected by the association than the tRNA, although significant local changes occur. They concern a rotation of the anticodon binding domain and a movement in the hinge region which connects the anticodon binding and active-site domains in the AspRS subunit. The most dramatic differences are observed in two evolutionary conserved loops. Both are in the neighborhood of the catalytic site and are of importance for ligand binding. The combination of this structural analysis with mutagenesis and enzymology data points to a tRNA binding process that starts by a recognition event between the tRNA anticodon loop and the synthetase anticodon binding module.  相似文献   

17.
Yeast aspartyl-tRNA synthetase is a dimeric enzyme (alpha 2, Mr 125,000) which can be crystallized either alone or complexed with tRNAAsp. When analyzed by electrophoretic methods, the pure enzyme presents structural heterogeneities even when recovered from crystals. Up to three enzyme populations could be identified by polyacrylamide gel electrophoresis and more than ten by isoelectric focusing. They have similar molecular masses and mainly differ in their charge. All are fully active. This microheterogeneity is also revealed by ion-exchange chromatography and chromatofocusing. Several levels of heterogeneity have been defined. A first type, which is reversible, is linked to redox effects and/or to conformational states of the protein. A second one, revealed by immunological methods, is generated by partial and differential proteolysis occurring during enzyme purification from yeast cells harvested in growth phase. As demonstrated by end-group analysis, the fragmentation concerns exclusively the N-terminal end of the enzyme. The main cleavage points are Gln-19, Val-20 and Gly-26. Six minor cuts are observed between positions 14 and 33. The present data are discussed in the perspective of the crystallographic studies on aspartyl-tRNA synthetase.  相似文献   

18.
The aminopeptidase PepC is a cysteine peptidase isolated from lactic acid bacteria. Its structural and enzymatic properties closely resembles those of the bleomycin hydrolases, a group of cytoplasmic enzymes isolated from eukaryotes. Previous biochemical and structural data have shown that the C-terminal end of PepC partially occupies the active site cleft. In this work the substrate specificity of PepC was engineered by deletion of the four C-terminal residues. The mutant PepCDelta432-435 cleaved peptide substrates as an oligopeptidase while the aminopeptidase specificity was totally abolished. The substrate size dependency indicated that PepCDelta432-435 possesses an extended binding site able to accommodate four residues of the substrate on both sides of the cleaved bond. The activity of PepCDelta432-435 towards tryptic fragments of casein revealed a preference for peptides with hydrophobic amino acids at positions P2 and P3 and for Gly, Asn and Gln at position P1. PepCDelta432-435 was shown to be highly sensitive to the thiol peptidase inhibitors leupeptin or E64 which are inefficient towards the wild-type PepC. In conclusion, deletion of the four C-terminal residues in PepC produces a new enzyme with properties resembling those of an endopeptidase from the papain family.  相似文献   

19.
Seryl-tRNA synthetase from Bombyx mori. Purification and properties   总被引:1,自引:0,他引:1  
Seryl-tRNA synthetase has been purified from the middle silk glands of Bombyx mori by successive chromatography on DEAE-Sephacel, hydroxylapatite, and Bio-Rex 70. The high abundance of seryl-tRNA synthetase in the middle silk glands may result from an adaptation of this organ for the production of the serine-rich protein, sericin. The enzyme is a dimer of Mr = 124,000 consisting of similar or identical subunits and has an oligomeric structure similar to its procaryotic and eucaryotic counterparts. Seryl-tRNA synthetase can be cleaved with trypsin to generate a fragment of Mr = 45,000 on sodium dodecyl sulfate gels; the presence of tRNASer protects the enzyme from tryptic cleavage. Conversion to the Mr = 45,000 species is accompanied by a 90% loss in aminoacyl-tRNA synthetase activity, but only a 20% loss in ATP PPi exchange activity.  相似文献   

20.
The functions of evolved mammalian supramolecular assemblies and extensions of enzymes are not well understood. Human lysyl-tRNA synthetase (hKRS) only upon the removal of the amino-terminal extension (hKRSΔ60) bound to EF1α and was stimulated by EF1α in vitro. HKRS and hKRSΔ60 were also differentially stimulated by aspartyl-tRNA synthetase (AspRS) from the multi-synthetase complex. The non-synthetase protein from the multi-synthetase complex p38 alone did not affect hKRS lysylation but inhibited the AspRS-mediated stimulation of hKRS. These results revealed the functional interactions of hKRS and shed new lights on the functional significance of the structural evolution of multienzyme complexes and appended extensions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号