首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
The plant vacuolar H(+)-ATPase takes part in acidifying compartments of the endomembrane system including the secretory pathway and the vacuoles. The structural variability of the V-ATPase complex as well as its presence in different compartments and tissues involves multiple isoforms of V-ATPase subunits. Furthermore, a versatile regulation is essential to allow for organelle- and tissue-specific fine tuning. In this study, results from V-ATPase complex disassembly with a chaotropic reagent, immunodetection and in vivo fluorescence resonance energy transfer (FRET) analyses point to a regulatory mechanism in plants, which depends on energization and involves the stability of the peripheral stalks as well. Lowering of cellular ATP by feeding 2-deoxyglucose resulted in structural alterations within the V-ATPase, as monitored by changes in FRET efficiency between subunits VHA-E and VHA-C. Potassium iodide-mediated disassembly revealed a reduced stability of V-ATPase after 2-deoxyglucose treatment of the cells, but neither the complete V(1)-sector nor VHA-C was released from the membrane in response to 2-deoxyglucose treatment, precluding a reversible dissociation mechanism like in yeast. These data suggest the existence of a regulatory mechanism of plant V-ATPase by modification of the peripheral stator structure that is linked to the cellular energization state. This mechanism is distinct from reversible dissociation as reported for the yeast V-ATPase, but might represent an evolutionary precursor of reversible dissociation.  相似文献   

2.
The molecular cloning of the first subunit C of the plant vacuolar H+-ATPase is reported. Tonoplast vesicles were purified from barley leaves by sucrose gradient centrifugation, and the tonoplast polypeptides were separated by two-dimensional (2-D) gel electrophoresis. Using an anti-ATPase holoenzyme antibody, a polypeptide was recognized in the molecular mass range of 40 kDa with an isoelectric point of about 6.0, and tentatively identified as subunit C. The polypeptide spot was excised from about 50 2-D gels and subjected to endo Lys C proteolysis. Two proteolytic peptides were sequenced and the amino acid sequences were used to design degenerated oligonucleotides, followed by PCR amplification with cDNA template and screening of a cDNA library synthesized from Hordeum vulgare poly A mRNA of epidermis strips. The full length clone of 1.5 kbp contains an open reading frame of 1062 bp encoding a polypeptide of 354 amino acids with a molecular mass of 39,982 Da and an isoelectric point of 6.04. Amino acid identity with sequences of SUC from animals and fungi is in the range of 36.7 to 38.5%. Expression of the cloned gene was demonstrated by Northern blotting and RT-PCR.  相似文献   

3.
All eukaryotic cells contain multiple acidic organelles, and V-ATPases are central players in organelle acidification. Not only is the structure of V-ATPases highly conserved among eukaryotes, but there are also many regulatory mechanisms that are similar between fungi and higher eukaryotes. These mechanisms allow cells both to regulate the pHs of different compartments and to respond to changing extracellular conditions. The Saccharomyces cerevisiae V-ATPase has emerged as an important model for V-ATPase structure and function in all eukaryotic cells. This review discusses current knowledge of the structure, function, and regulation of the V-ATPase in S. cerevisiae and also examines the relationship between biosynthesis and transport of V-ATPase and compartment-specific regulation of acidification.  相似文献   

4.
We have identified four genes (vha-5, vha-6, vha-7, and unc-32) coding for vacuolar-type proton-translocating ATPase (V-ATPase) subunit a in Caenorhabditis elegans, the first example of four distinct isoforms in eukaryotes. Their products had nine putative transmembrane regions, exhibited 43-60% identity and 62-84% similarity with the bovine subunit a1 isoform, and retained 11 amino acid residues essential for yeast V-ATPase activity (Leng, X. H., Manolson, M. F., and Forgac, M. (1998) J. Biol. Chem. 273, 6717-6723). The similarities, together with the results of immunoprecipitation, suggest that these isoforms are components of V-ATPase. Transgenic and immunofluorescence analyses revealed that these genes were strongly expressed in distinct cells; vha-5 was strongly expressed in an H-shaped excretory cell, vha-6 was strongly expressed in intestine, vha-7 was strongly expressed in hypodermis, and unc-32 was strongly expressed in nerve cells. Furthermore, the vha-7 and unc-32 genes were also expressed in the uteri of hermaphrodites. RNA interference analysis showed that the double-stranded RNA for unc-32 caused embryonic lethality similar to that seen with other subunit genes (vha-1, vha-4, and vha-11) (Oka, T., and Futai, M. (2000) J. Biol. Chem. 275, 29556-29561). The progenies of worms injected with the vha-5 or vha-6 double-stranded RNA became died at a specific larval stage, whereas the vha-7 double-stranded RNA showed no effect on development. These results suggest that V-ATPases with these isoforms generate acidic compartments essential for worm development in a cell-specific manner.  相似文献   

5.
Vacuolar H(+)-ATPases (V-ATPases) are a family of highly conserved proton pumps that couple hydrolysis of cytosolic ATP to proton transport out of the cytosol. How ATP is supplied for V-ATPase-mediated hydrolysis and for coupling of proton transport is poorly understood. We have reported that the glycolytic enzyme aldolase physically associates with V-ATPase. Here we show that aldolase interacts with three different subunits of V-ATPase (subunits a, B, and E). The binding sites for the V-ATPase subunits on aldolase appear to be on distinct interfaces of the glycolytic enzyme. Aldolase deletion mutant cells were able to grow in medium buffered at pH 5.5 but not at pH 7.5, displaying a growth phenotype similar to that observed in V-ATPase subunit deletion mutants. Abnormalities in V-ATPase assembly and protein expression observed in aldolase deletion mutant cells could be fully rescued by aldolase complementation. The interaction between aldolase and V-ATPase increased dramatically in the presence of glucose, suggesting that aldolase may act as a glucose sensor for V-ATPase regulation. Taken together, these findings provide functional evidence that the ATP-generating glycolytic pathway is directly coupled to the ATP-hydrolyzing proton pump through physical interaction between aldolase and V-ATPase.  相似文献   

6.
7.
Unlike apoptosis, necrotic cell death is characterized by marked loss of plasma membrane integrity. Leakage of cytoplasmic material to the extracellular space contributes to cell demise, and is the cause of acute inflammatory responses, which typically accompany necrosis. The mechanisms underlying plasma membrane damage during necrotic cell death are not well understood. We report that endocytosis is critically required for the execution of necrosis. Depletion of the key endocytic machinery components dynamin, synaptotagmin and endophilin suppresses necrotic neurodegeneration induced by diverse genetic and environmental insults in C. elegans. We used genetically encoded fluorescent markers to monitor the formation and fate of specific types of endosomes during cell death in vivo. Strikingly, we find that the number of early and recycling endosomes increases sharply and transiently upon initiation of necrosis. Endosomes subsequently coalesce around the nucleus and disintegrate during the final stage of necrosis. Interfering with kinesin-mediated endosome trafficking impedes cell death. Endocytosis synergizes with autophagy and lysosomal proteolytic mechanisms to facilitate necrotic neurodegeneration. These findings demonstrate a prominent role for endocytosis in cellular destruction during neurodegeneration, which is likely conserved in metazoans.  相似文献   

8.
Vacuolar H+-ATPases (V-ATPases) are a family of ATP-driven proton pumps. They maintain pH gradients between intracellular compartments and are required for proton secretion out of the cytoplasm. Mechanisms of extrinsic control of V-ATPase are poorly understood. Previous studies showed that glucose is an important regulator of V-ATPase assembly in Saccharomyces cerevisiae. Human V-ATPase directly interacts with aldolase, providing a coupling mechanism for glucose metabolism and V-ATPase function. Here we show that glucose is a crucial regulator of V-ATPase in renal epithelial cells and that the effect of glucose is mediated by phosphatidylinositol 3-kinase (PI3K). Glucose stimulates V-ATPase-dependent acidification of the intracellular compartments in human proximal tubular cells HK-2 and porcine renal epithelial cells LLC-PK1. Glucose induces rapid ATP-independent assembly of the V1 and Vo domains of V-ATPase and extensive translocation of the V-ATPase V1 and Vo domains between different membrane pools and between membranes and the cytoplasm. In HK-2 cells, glucose stimulates polarized translocation of V-ATPase to the apical plasma membrane. The effects of glucose on V-ATPase trafficking and assembly can be abolished by pretreatment with the PI3K inhibitor LY294002 and can be reproduced in glucose-deprived cells by adenoviral expression of the constitutively active catalytic subunit p110alpha of PI3K. Taken together these data provide evidence that, in renal epithelial cells, glucose plays an important role in the control of V-ATPase-dependent acidification of intracellular compartments and V-ATPase assembly and trafficking and that the effects of glucose are mediated by PI3K-dependent signaling.  相似文献   

9.
Vacuolar proton-translocating ATPases are composed of a complex of integral membrane proteins, the Vo sector, attached to a complex of peripheral membrane proteins, the V1 sector. We have examined the early steps in biosynthesis of the yeast vacuolar ATPase by biosynthetically labeling wild-type and mutant cells for varied pulse and chase times and immunoprecipitating fully and partially assembled complexes under nondenaturing conditions. In wild-type cells, several V1 subunits and the 100-kDa Vo subunit associate within 3-5 min, followed by addition of other Vo subunits with time. Deletion mutants lacking single subunits of the enzyme show a variety of partial complexes, including both complexes that resemble intermediates in the assembly pathway of wild-type cells and independent V1 and Vo sectors that form without any apparent V1Vo subunit interaction. Two yeast sec mutants that show a temperature-conditional block in export from the endoplasmic reticulum accumulate a complex containing several V1 subunits and the 100-kDa Vo subunit during incubation at elevated temperature. This complex can assemble with the 17-kDa Vo subunit when the temperature block is reversed. We propose that assembly of the yeast V-ATPase can occur by two different pathways: a concerted assembly pathway involving early interactions between V1 and Vo subunits and an independent assembly pathway requiring full assembly of V1 and Vo sectors before combination of the two sectors. The data suggest that in wild-type cells, assembly occurs predominantly by the concerted assembly pathway, and V-ATPase complexes acquire the full complement of Vo subunits during or after exit from the endoplasmic reticulum.  相似文献   

10.
V-ATPases are structurally conserved and functionally versatile proton pumps found in all eukaryotes. The yeast V-ATPase has emerged as a major model system, in part because yeast mutants lacking V-ATPase subunits (vma mutants) are viable and exhibit a distinctive Vma- phenotype. Yeast vma mutants are present in ordered collections of all non-essential yeast deletion mutants, and a number of additional phenotypes of these mutants have emerged in recent years from genomic screens. This review summarizes the many phenotypes that have been associated with vma mutants through genomic screening. The results suggest that V-ATPase activity is important for an unexpectedly wide range of cellular processes. For example, vma mutants are hypersensitive to multiple forms of oxidative stress, suggesting an antioxidant role for the V-ATPase. Consistent with such a role, vma mutants display oxidative protein damage and elevated levels of reactive oxygen species, even in the absence of an exogenous oxidant. This endogenous oxidative stress does not originate at the electron transport chain, and may be extra-mitochondrial, perhaps linked to defective metal ion homeostasis in the absence of a functional V-ATPase. Taken together, genomic data indicate that the physiological reach of the V-ATPase is much longer than anticipated. Further biochemical and genetic dissection is necessary to distinguish those physiological effects arising directly from the enzyme’s core functions in proton pumping and organelle acidification from those that reflect broader requirements for cellular pH homeostasis or alternative functions of V-ATPase subunits.  相似文献   

11.
A 1034 bp cDNA encoding the full length sequence of subunit D of the vacuolar H+-ATPase was cloned from Arabidopsis thaliana. The open reading frame of the cDNA clone vatpD contains 780 bp and codes for a protein of 29.1 kDa with a pI of 9.52. Structural predictions show similarities to subunit gamma of the F-ATP synthases. Identity between subunit D of the vacuolar H+-ATPase of A. thaliana and subunits D from other eukaryotic organisms is in the range of 57% (Bos taurus) to 48% (Candida albicans). Hybridization of genomic DNA with vatpD indicates the existence of one gene copy of subunit D in A. thaliana. Northern blot hybridization and in situ hybridization showed expression of vatpD in all cell types. The expression of subunit D was not modified by salt stress or abscisic acid treatment in A. thaliana.  相似文献   

12.
The mechanism involved inN-methyl-D-glucamine(NMDA)-induced Ca2+-dependentintracellular acidosis is not clear. In this study, we investigated indetail several possible mechanisms using cultured rat cerebellargranule cells and microfluorometry [fura 2-AM or 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein-AM].When 100 µM NMDA or 40 mM KCl was added, a marked increase in theintracellular Ca2+ concentration([Ca2+]i)and a decrease in the intracellular pH were seen. Acidosis wascompletely prevented by the use ofCa2+-free medium or1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-AM, suggesting that it resulted from an influx of extracellular Ca2+. The following fourmechanisms that could conceivably have been involved were excluded:1)Ca2+ displacement of intracellularH+ from common binding sites;2) activation of an acid loader or inhibition of acid extruders; 3)overproduction of CO2 or lactate; and 4) collapse of the mitochondrialmembrane potential due to Ca2+uptake, resulting in inhibition of cytosolicH+ uptake. However,NMDA/KCl-induced acidosis was largely prevented by glycolyticinhibitors (iodoacetate or deoxyglucose in glucose-free medium) or byinhibitors of the Ca2+-ATPase(i.e.,Ca2+/H+exchanger), including La3+,orthovanadate, eosin B, or an extracellular pH of 8.5. Our results therefore suggest that Ca2+-ATPaseis involved in NMDA-induced intracellular acidosis in granule cells. Wealso provide new evidence that NMDA-evoked intracellular acidosisprobably serves as a negative feedback signal, probably with theacidification itself inhibiting the NMDA-induced[Ca2+]i increase.

  相似文献   

13.
Mutations in the GEF2 gene of the yeast Saccharomyces cerevisiae have pleiotropic effects. The gef2 mutants display a petite phenotype. These cells grow slowly on several different carbon sources utilized exclusively or primarily by respiration. This phenotype is suppressed by adding large amounts of iron to the growth medium. A defect in mitochondrial function may be the cause of the petite phenotype: the rate of oxygen consumption by intact gef2 cells and by mitochondrial fractions isolated from gef2 mutants was reduced 60%–75% relative to wild type. Cytochrome levels were unaffected in gef2 mutants, indicating that heme accumulation is not significantly altered in these strains. The gef2 mutants were also more sensitive than wild type to growth inhibition by several divalent cations including Cu. We found that the cup5 mutation, causing Cu sensitivity, is allelic to gef2 mutations. The GEF2 gene was isolated, sequenced, and found to be identical to VMA3, the gene encoding the vacuolar H +-ATPase proteolipid subunit. These genetic and biochemical analyses demonstrate that the vacuolar H +-ATPase plays a previously unknown role in Cu detoxification, mitochondrial function, and iron metabolism.  相似文献   

14.
Golgi apparatus was prepared from rat liver, and enzymatic properties and the subunit structure of the H+-ATPase were characterized. GTP (and also ITP) was found to drive H+-transport with about 20% of the initial velocity as that of ATP. Bafilomycin, a specific inhibitor for vacuolar H+-ATPase, inhibited the activity at 2.5 nM. The H+-ATPase was completely inhibited in the cold in the presence of MgATP (5 mM) and NaNO3 (0.1 M). The cold inactivation of the H+-ATPase resulted in release of a set of polypeptides from Golgi membrane, with molecular masses almost identical to that of the hydrophilic sector of chromaffin granule H+-ATPase (72, 57, 41, 34, and 33 kDa). Three of these polypeptides (72, 57, and 34 kDa), cross-reacted with antibodies against the corresponding subunits of the chromaffin granule H+-ATPase. A counterpart of the 39-kDa hydrophobic component of chromaffin granule H+-ATPase was identified in the membrane, but no 115-kDa component was found. Hence, the Golgi H+-ATPase shows typical features of vacuolar H+-ATPase, in relatively low substrate specificity, its response to inhibitors, inactivation by cold treatment in the presence of MgATP, and subunit composition judged by antibody cross-reactivity.  相似文献   

15.
We analyzed the vacuolar acidification in response to elevated hydrostatic pressure in Saccharomyces cerevisiae. The vacuolar pH, defined using 6-carboxyfluorescein, was directly measured in a hyperbaric chamber with a transparent window under high hydrostatic pressure. The vacuole of strain X2180 became acidified at the onset of pressurization to an extent dependent on the magnitude of pressure applied. A pressure of 40–60 MPa transiently reduced the vacuolar pH by about 0.33 within 4 min. The transient acidification was observed in the presence of D-glucose, D-fructose, or D-mannose as a carbon source, but not 3-o-methyl-D-glucose, ethanol, or glycerol, suggesting that the generation of CO2 was involved in the process. A vma3 mutant defective in vacuolar acidification showed no reduction of vacuolar pH when hydrostatic pressure was applied. This result indicates that the transient vacuolar acidification induced by elevated hydrostatic pressure is mediated through the function of the vacuolar H+-ATPase. Received: August 21, 1996 / Accepted: November 11, 1996  相似文献   

16.
Molecular characterization of the yeast vacuolar H+-ATPase proton pore   总被引:1,自引:0,他引:1  
The Saccharomyces cerevisiae vacuolar ATPase (V-ATPase) is composed of at least 13 polypeptides organized into two distinct domains, V(1) and V(0), that are structurally and mechanistically similar to the F(1)-F(0) domains of the F-type ATP synthases. The peripheral V(1) domain is responsible for ATP hydrolysis and is coupled to the mechanism of proton translocation. The integral V(0) domain is responsible for the translocation of protons across the membrane and is composed of five different polypeptides. Unlike the F(0) domain of the F-type ATP synthase, which contains 12 copies of a single 8-kDa proteolipid, the V-ATPase V(0) domain contains three proteolipid species, Vma3p, Vma11p, and Vma16p, with each proteolipid contributing to the mechanism of proton translocation (Hirata, R., Graham, L. A., Takatsuki, A., Stevens, T. H., and Anraku, Y. (1997) J. Biol. Chem. 272, 4795-4803). Experiments with hemagglutinin- and c-Myc epitope-tagged copies of the proteolipids revealed that each V(0) complex contains all three species of proteolipid with only one copy each of Vma11p and Vma16p but multiple copies of Vma3p. Since the proteolipids of the V(0) complex are predicted to possess four membrane-spanning alpha-helices, twice as many as a single F-ATPase proteolipid subunit, only six V-ATPase proteolipids would be required to form a hexameric ring-like structure similar to the F(0) domain. Therefore, each V(0) complex will likely be composed of four copies of the Vma3p proteolipid in addition to Vma11p and Vma16p. Structural differences within the membrane-spanning domains of both V(0) and F(0) may account for the unique properties of the ATP-hydrolyzing V-ATPase compared with the ATP-generating F-type ATP synthase.  相似文献   

17.
The effect of vacuolar H(+)-ATPase (V-ATPase) null mutations on the targeting of the plasma membrane H(+)-ATPase (Pma1p) through the secretory pathway was analyzed. Gas1p, which is another plasma membrane component, was used as a control for the experiments with Pma1p. Contrary to Gas1p, which is not affected by the deletion of the V-ATPase complex in the V-ATPase null mutants, the amount of Pma1p in the plasma membrane is markedly reduced, and there is a large accumulation of the protein in the endoplasmic reticulum. Kex2p and Gef1p, which are considered to reside in the post-Golgi vesicles, were suggested as required for the V-ATPase function; hence, their null mutant phenotype should have been similar to the V-ATPase null mutants. We show that, in addition to the known differences between those yeast phenotypes, deletions of KEX2 or GEF1 in yeast do not affect the distribution of Pma1p as the V-ATPase null mutant does. The possible location of the vital site of acidification by V-ATPase along the secretory pathway is discussed.  相似文献   

18.
Vacuolar H+-ATPases (V-ATPases) are large, multisubunit proton pumps that acidify the lumen of organelles in virtually every eukaryotic cell and in specialized acid-secreting animal cells, the enzyme pumps protons into the extracellular space. In higher organisms, most of the subunits are expressed as multiple isoforms, with some enriched in specific compartments or tissues and others expressed ubiquitously. In mammals, subunit a is expressed as four isoforms (a1-4) that target the enzyme to distinct biological membranes. Mutations in a isoforms are known to give rise to tissue-specific disease, and some a isoforms are upregulated and mislocalized to the plasma membrane in invasive cancers. However, isoform complexity and low abundance greatly complicate purification of active human V-ATPase, a prerequisite for developing isoform-specific therapeutics. Here, we report the purification of an active human V-ATPase in native lipid nanodiscs from a cell line stably expressing affinity-tagged a isoform 4 (a4). We find that exogenous expression of this single subunit in HEK293F cells permits assembly of a functional V-ATPase by incorporation of endogenous subunits. The ATPase activity of the preparation is >95% sensitive to concanamycin A, indicating that the lipid nanodisc-reconstituted enzyme is functionally coupled. Moreover, this strategy permits purification of the enzyme’s isolated membrane subcomplex together with biosynthetic assembly factors coiled-coil domain–containing protein 115, transmembrane protein 199, and vacuolar H+-ATPase assembly integral membrane protein 21. Our work thus lays the groundwork for biochemical characterization of active human V-ATPase in an a subunit isoform-specific manner and establishes a platform for the study of the assembly and regulation of the human holoenzyme.  相似文献   

19.
Previous studies have suggested that vacuolar H(+)-ATPase activity may play a role in modulating drug transport mechanism in multidrug resistant HL60 cells. In the present study we have used a cDNA of human vacuolar H(+)-ATPase subunit C (SC-H(+)-ATPase) to analyze expression of this gene in HL60 cells isolated for resistance to adriamycin or vincristine. The results demonstrate that development of resistance to either agent results in a major increase in the levels of SC-H(+)-ATPase mRNA. Furthermore in resistant cells which have partially reverted to drug sensitivity there is a parallel reduction in SC-H(+)-ATPase mRNA levels. Southern blot analysis shows that the SC-H(+)-ATPase gene is not amplified in the resistant cells. These results therefore demonstrate a correlation between the development of multidrug resistance and enhanced expression of the SC-H(+)-ATPase gene.  相似文献   

20.
Subunit C is a V(1) sector subunit found in all vacuolar H(+)-ATPases (V-ATPases) that may be part of the peripheral stalk connecting the peripheral V(1) sector with the membrane-bound V(0) sector of the enzyme (Wilkens, S., Vasilyeva, E., and Forgac, M. (1999) J. Biol. Chem. 274, 31804--31810). To elucidate subunit C function, we performed random and site-directed mutagenesis of the yeast VMA5 gene. Site-directed mutations in the most highly conserved region of Vma5p, residues 305--325, decreased catalytic activity of the V-ATPase by up to 48% without affecting assembly. A truncation mutant (K360stop) identified by random mutagenesis suggested a small region near the C terminus of the protein (amino acids 382--388) might be important for subunit stability. Site-directed mutagenesis revealed that three aromatic amino acids in this region (Tyr-382, Phe-385, and Tyr-388) in addition to four other conserved aromatic amino acids (Phe-260, Tyr-262, Phe-296, Phe-300) are essential for stable assembly of V(1) with V(0), although alanine substitutions at these positions support some activity in vivo. Surprisingly, three mutations (F260A, Y262A, and F385A) greatly decrease the stability of the V-ATPase in vitro but increase its k(cat) for ATP hydrolysis and proton transport by at least 3-fold. The peripheral stalk of V-ATPases must balance the stability essential for productive catalysis with the dynamic instability involved in regulation; these three mutations may perturb that balance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号