首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Role of plasma membrane transport in hepatic glutamine metabolism   总被引:6,自引:0,他引:6  
In livers of fed rats and in perfused livers supplied with a physiological portal glutamine concentration of 0.6 mM, the mitochondrial and cytosolic glutamine concentrations are 20 mM and 7 mM, respectively, thus, the mitochondrial/cytosolic glutamine concentration gradient is 2-3. Uptake and release of glutamine by periportal and perivenous hepatocytes occurs predominantly by an Na+-dependent transport system (so-called system 'N'). Histidine in near-physiological concentrations inhibits both glutamine uptake by periportal hepatocytes and its release by perivenous hepatocytes. This is not due to an inhibition of glutamine-metabolizing enzymes by histidine or its metabolites. With physiological portal glutamine concentrations (0.6 mM), stimulation of glutaminase flux or of glutamine transaminase flux is followed by a decrease of hepatic glutamine levels to about 80% or 30%, respectively, glutamine levels are further decreased to 50% or 20% in the presence of histidine. When glutamine is synthesized endogenously (no glutamine added), the histidine-induced inhibition of glutamine release is paralleled by a 210% increase of the hepatic tissue level of glutamine. In experiments with and without methionine sulfoximine and in the absence of added glutamine, the glutamine content in the small perivenous hepatocyte population containing glutamine synthetase is estimated to be about 3.5 mumol/g wet weight and that in the periportal hepatocytes as low as 0.1 mumol/g wet weight. In contrast to the prevailing view, it is concluded that glutamine transport across the plasma membrane of hepatocytes is a potential regulatory site in glutamine degradation and synthesis, especially under the influence of effectors like histidine.  相似文献   

2.
Transport of glutamine by the high-affinity transport system is regulated by the nitrogen status of the medium. With high concentrations of ammonia, transport is repressed; whereas with Casamino acids, transport is elevated, showing behaviour similar to glutamine synthetase. A glutamine auxotroph, lacking glutamine synthetase activity, had elevated transport activity even in the presence of high concentrations of ammonia (and glutamine). This suggests that glutamine synthetase is involved in the regulation of the transport system. A mutant with low glutamate synthase activity had low glutamine transport and glutamine synthetase activities, which could not be derepressed. A mutant in the high-affinity glutamine transport system showed normal regulation of glutamate synthase and glutamine synthetase. Possible mechanisms for this regulation are discussed.  相似文献   

3.
The role of hepatic glutaminase flux in regulating plasma glutamine homeostasis was studied in the intact rat. Interorgan glutamine flow during chronic metabolic acidosis was away from the splanchnic bed and to the kidneys. Hindquarter and hepatic glutamine release were the major sources of glutamine removed by the kidneys. Interorgan glutamate flow was from the liver to the hindquarters and kidneys. Chronic metabolic acidosis reduced arterial glutamine concentration 30%. Acute respiratory acidosis (pH 7.12 +/- 0.02) returned arterial glutamine concentration to normal values, increasing and decreasing hepatic glutamine and glutamate release respectively; renal and gut glutamine removal rates were not decreased. Hepatic unidirectional glutamine utilization measured isotopically was decreased 51% by acute acidosis; unidirectional glutamine production was unchanged. The results are consistent with the proposed role of ammonia-activated hepatic glutaminase in the regulation of glutamine homeostasis during acute acidosis.  相似文献   

4.
5.
When hepatocytes suspensions obtained from whole livers of 48-h-fasted rats were incubated in Krebs-Henseleit buffer with a near-physiological concentration (1 mM) of L-[1-14C]glutamine as substrate, the apparent removal of glutamine was low, but the release of 14CO2 was much larger than the enzymatically measured removal of glutamine. This indicates that glutamine was metabolized at rates much higher than those accounted for by the apparent removal of glutamine. This also suggests that glutamine utilization was, at least in part, masked by concomitant synthesis of glutamine from endogenous substrates via glutamine synthetase. Evidence that such synthesis occurred was obtained by: (i) addition of methionine sulfoximine, an inhibitor of glutamine synthetase, which caused a large increase in the apparent removal of glutamine; and (ii) measurement of the specific radioactivity of L-[1-14C]glutamine which was shown to decrease during incubation. Addition of vasopressin (10(-7) M) led to a marked increase in glutamine removal by a dual mechanism: it accelerated flux through glutaminase, the enzyme which initiates the hepatic degradation of glutamine, and inhibited flux through glutamine synthetase.  相似文献   

6.
Abstract: Regulation of the biosynthesis of glutamine synthetase was studied in neuroblastoma cells (Neuro-2A) by use of a recently developed, sensitive radioisotopic assay. The removal of glutamine from the culture medium of these cells for 24 h resulted in a 10-fold increase in glutamine synthetase specific activity (15-fold after 2 weeks) compared with the basal level found in cells grown in the presence of 2 m M glutamine. Following the growth of these cells for 2 weeks in the presence of various concentrations of glutamine, a negative linear correlation was observed between the specific activity of glutamine synthetase (from 1.7 to 0.14 unit/mg) and the concentration of glutamine in the growth medium (from 0.5 to 2 m M ). Cycloheximide or actinomycin D blocked the increase in glutamine synthetase activity observed in the absence of glutamine. These results suggest that the removal of glutamine led to the induction of glutamine synthetase by stimulating new enzyme synthesis. The enzyme was not degraded, but only diluted, by growth upon readdition of glutamine to the medium. The influence of glutamine depletion is also reported for C-6 glioma cells and glial cells in primary cultures.  相似文献   

7.
We measured glutamine kinetics using L-[5-15N]glutamine and L-[ring-2H5]phenylalanine infusions in healthy subjects in the postabsorptive state and during ingestion of an amino acid mixture that included glutamine, alone or with additional glucose. Ingestion of the amino acid mixture increased arterial glutamine concentrations by approximately 20% (not by 30%; P < 0.05), irrespective of the presence or absence of glucose. Muscle free glutamine concentrations remained unchanged during ingestion of amino acids alone but decreased from 21.0 +/- 1.0 to 16.4 +/- 1.6 mmol/l (P < 0.05) during simultaneous ingestion of glucose due to a decrease in intramuscular release from protein breakdown and glutamine synthesis (0.82 +/- 0.10 vs. 0.59 +/- 0.06 micromol x 100 ml leg(-1) x min(-1); P < 0.05). In both protocols, muscle glutamine inward and outward transport and muscle glutamine utilization for protein synthesis increased during amino acid ingestion; leg glutamine net balance remained unchanged. In summary, ingestion of an amino acid mixture that includes glutamine increases glutamine availability and uptake by skeletal muscle in healthy subjects without causing an increase in the intramuscular free glutamine pool. Simultaneous ingestion of glucose diminishes the intramuscular glutamine concentration despite increased glutamine availability in the blood due to decreased glutamine production.  相似文献   

8.
Glutamine accelerates the degradation of glutamine synthetase in hepatoma tissue culture cells. Compounds structurally related to glutamine were tested for their ability to mimic or antagonize this effect of glutamine. 6-Diazo-5-oxo-L-norleucine, like glutamine depressed the activity of glutamine synthetase in hepatoma tissue culture cells. L-Methionine sulfone, albizzine, L-methionine sulfoxide, L-gamma-glutamyl hydrazide and gamma-N-methyl-L-glutamine (listed in order of decreasing potency) were antagonists which prevented the effect of glutamine on glutamine synthetase activity. These antagonists had little effect on glutamine transport or protein synthesis of hepatoma tissue culture cells and their effects were reversible. The effects of compounds on gluatmine synthetase activity in cell-free extracts of the cells were examined. Diazo-oxonorleucine and albizzine inhibited neither the transferase nor the synthetase activity of glutamine synthetase. This observation is interpreted to mean that the glutamine-binding site involved in the regulation of glutamine synthetase activity of hepatoma tissue culture cells is not the active site of the enzyme.  相似文献   

9.
Glutamine is primarily synthesized in skeletal muscle and enables transfer of nitrogen to splanchnic tissues, kidneys and immune system. Discrepancy between increasing rates of glutamine utilization at whole body level and relative impairment of de novo synthesis in skeletal muscle leads to systemic glutamine deficiency and characterizes critical illness. Glutamine depletion at whole body level may contribute to gut, liver and immune system disfunctions, whereas its intramuscular deficiency may directly contribute to lean body mass loss. Severe intramuscular glutamine depletion also develops because of outward transport system upregulation, which is not counteracted by increased de novo synthesis. The negative impact of systemic glutamine depletion on critically ill patients is suggested both by the association between a lower plasma glutamine concentration and poor outcome and by a clear clinical benefit after glutamine supplementation. Enteral glutamine administration preferentially increases glutamine disposal in splanchnic tissues, whereas parenteral supplementation provides glutamine to the whole organism. Nonetheless, systemic administration was ineffective in preventing muscle depletion, due to a relative inability of skeletal muscle to seize glutamine from the bloodstream. Intramuscular glutamine depletion could be potentially counteracted by promoting de novo glutamine synthesis with pharmacological or nutritional interventions.  相似文献   

10.
Intramuscular glutamine falls with injury and disease in circumstances associated with increases in blood corticosteroids. We have investigated the effects of corticosteroid administration (0.44 mg/kg dexamethasone daily for 8 days, 200 g female rats) on intramuscular glutamine and Na+, muscle glutamine metabolism and sarcolemmal glutamine transport in the perfused hindlimb. After dexamethasone treatment intramuscular glutamine fell by 45% and Na+ rose by 25% (the respective muscle/plasma distribution ratios changed from 8.6 to 4.5 and 0.12 to 0.15); glutamine synthetase and glutaminase activities were unchanged at 475 +/- 75 and 60 +/- 19 nmol/g muscle per min. Glutamine output by the hindlimb of anaesthetized rats was increased from 31 to 85 nmol/g per min. Sarcolemmal glutamine transport was studied by paired-tracer dilution in the perfused hindlimb: the maximal capacity (Vmax) for glutamine transport into muscle (by Na(+)-glutamine symport) fell from 1058 +/- 310 to 395 +/- 110 nmol/g muscle per min after dexamethasone treatment, accompanied by a decrease in the Km (from 8.1 +/- 1.9 to 2.1 +/- 0.4 mM glutamine). At physiological plasma glutamine concentration (0.75 mM) dexamethasone appeared to cause a proportional increase in sarcolemmal glutamine efflux over influx. Addition of dexamethasone (200 nM) to the perfusate of control rat hindlimbs caused acute changes in Vmax and Km of glutamine transport similar to those resulting from 8-day dexamethasone treatment. The reduction in muscle glutamine concentration after dexamethasone treatment may be primarily due to a reduction in the driving force for intramuscular glutamine accumulation, i.e., in the Na+ electrochemical gradient. The prolonged increase in muscle glutamine output after dexamethasone treatment (which occurs despite a reduction in the size of the intramuscular glutamine pool) appears to be due to a combination of (a) accelerated sarcolemmal glutamine efflux and (b) increased intramuscular synthesis of glutamine.  相似文献   

11.
The effects of mitochondrial swelling and calcium have been used to study the possible function of the glutamine transporter in regulating glutamine hydrolysis. Salt-induced swelling of pig renal mitochondria and an iso-osmotic mixed salt solution and swelling caused by reducing the osmolarity of the incubation medium, are accompanied by activation of glutamine hydrolysis. Regulation of the glutaminase activity by salt-induced mitochondrial swelling is likely to have physiological importance, similar to the regulation of hepatic glutaminase by changing the matrix volume, that has been described by others. 0.1-1.0 mM calcium stimulates glutamine hydrolysis and the calcium activation curve follows Michaelis-Menten kinetics. The calcium activation is reversible, it is unaffected by phosphate, high glutamine and mitochondrial calcium uptake, as well as by sonication and the activation is calmodulin independent. The calcium activation is additive to that of swelling. Similar to calcium, hypo-osmotic swelling mainly increases the apparent Vmax for glutamine, whereas the apparent Km is little changed, indicating that the effects are primarily on the phosphate-activated glutaminase itself rather than on the glutamine transporter. Furthermore, calcium which activates glutamine hydrolysis, inhibits glutamine uptake into the mitochondria and so does alanine having no effect on glutamine hydrolysis. Therefore, it is indicative that glutamine transport is not rate limiting for glutamine hydrolysis.  相似文献   

12.
Regulation of Glutamine Transport in Escherichia coli.   总被引:10,自引:9,他引:1       下载免费PDF全文
The formation of the high-affinity (Km equal to 0.2 muM) L-glutamine transport system of Escherichia coli strain 7 (Lin) appears to be subject to the same major control as the glutamine synthetase (EC 6.3.1.2) of this gram-negative organism. Culture of cells under nitrogen-limited conditions provides maximum derepression of both the glutamine synthetase and the glutamine transport system. Nutritional conditions providing a rich supply of ammonium salts or available sources of nitrogen, i.e., conditions which repress the formation of glutamine synthetase, provide three- and 20-fold repression, respectively, of the glutamine transport system. Culture of cells with glutamine supplements of 2 mM does not increase the repression of high-affinity glutamine transport system beyond the level observed in the absence of glutamine. A second kinetically distinct low-affinity component of glutamine. A second kinetically distinct low-affinity component of glutamine uptake is observed in cells cultured with a glutamine-depleted nutrient broth. This second component is associated with the appearance of glutaminase A (EC 3.5.1.2) and asparaginase I (EC 3.5.1.1), a periplasmic enzyme. Parallel changes were observed in the levels of the high-affinity glutamine transport system and the glutamine synthetase when cells were cultured with the carbon sources: glucose, glycerol, or succinate.  相似文献   

13.
Neurospora crassa mutant impaired in glutamine regulation.   总被引:3,自引:1,他引:2       下载免费PDF全文
The final products of the catabolism of arginine that can be utilized as nitrogen sources by Neurospora crassa are ammonium, glutamic acid, and glutamine. Of these compounds, only glutamine represses arginase and glutamine synthetase. We report here the isolation and characterization of a mutant of N. crassa whose arginase, glutamine synthetase, and amino acid accumulations are resistant to glutamine repression (glnI). This mutant has a greater capacity than the wild type (glns) to accumulate most of the arginine and some of the glutamine in osmotically sensitive compartments while growing exponentially. Nonetheless, the major part of the glutamine remains soluble and metabolically available for repression. We propose that the lower repression of glutamine synthetase by glutamine in this mutant could be a necessary condition for sustaining the higher flow of nitrogen for the accumulation of amino acids observed in ammonium excess and that, if glutamine is the nitrogen signal that regulates the arginine accumulation of the vesicle, the glnr mutant has also escaped this control. Finally, in the glnr mutant, some glutamine resynthesis is necessary for arginine biosynthesis and accumulation.  相似文献   

14.
Acute intoxication with large doses of ammonia leads to rapid death. The main mechanism for ammonia elimination in brain is its reaction with glutamate to form glutamine. This reaction is catalyzed by glutamine synthetase and consumes ATP. In the course of studies on the molecular mechanism of acute ammonia toxicity, we have found that glutamine synthetase activity and glutamine content in brain are modulated by NMDA receptors and nitric oxide. The main findings can be summarized as follows.Blocking NMDA receptors prevents ammonia-induced depletion of brain ATP and death of rats but not the increase in brain glutamine, indicating that ammonia toxicity is not due to increased activity of glutamine synthetase or formation of glutamine but to excessive activation of NMDA receptors.Blocking NMDA receptors in vivo increases glutamine synthetase activity and glutamine content in brain, indicating that tonic activation of NMDA receptors maintains a tonic inhibition of glutamine synthetase.Blocking NMDA receptors in vivo increases the activity of glutamine synthetase assayed in vitro, indicating that increased activity is due to a covalent modification of the enzyme. Nitric oxide inhibits glutamine synthetase, indicating that the covalent modification that inhibits glutamine synthetase is a nitrosylation or a nitration.Inhibition of nitric oxide synthase increases the activity of glutamine synthetase, indicating that the covalent modification is reversible and it must be an enzyme that denitrosylate or denitrate glutamine synthetase.NMDA mediated activation of nitric oxide synthase is responsible only for part of the tonic inhibition of glutamine synthetase. Other sources of nitric oxide are also contributing to this tonic inhibition.Glutamine synthetase is not working at maximum rate in brain and its activity may be increased pharmacologically by manipulating NMDA receptors or nitric oxide content. This may be useful, for example, to increase ammonia detoxification in brain in hyperammonemic situations.  相似文献   

15.
Glutamine synthetase (EC 6.3.1.2) activity of hepatoma tissue culture cells is elevated by cortocisteroids and depressed by glutamine (Kulka, R.G., Tomkins, G.M. and Crook, R.B. (1972) J. Cell Biol., 54, 175–179). The transfer of cells from high (1–5 mM) to low (0.2–0.4 mM) concentrations of glutamine causes a marked increase in glutamine synthetase activity. The addition of a glutamine antagonist, methionine sulfone (1 mM) to cells suspended in high (1 mM) concentrations of glutamine also causes an increase of glutamine synthetase activity which is greater than that elicited by the transfer of cells to low concentrations of glutamine. Rates of synthesis of glutamine synthetase have been measured by radioimunoprecipitation in hepatoma tissue culture cells incubated under various conditions. Incubation of cells with the synthetic corticosteroid hormone, dexamethasone, markedly stimulates the relative rate of glutamine synthetase biosynthesis. Glutamine, or its analogue, methionine sulfone, have no effect on the relative rate of synthesis of the enzyme. However, total protein and RNA synthesis increase markedly with increasing external glutamine concentration in the range 0–1 mM. Methionine sulfone (1 mM) inhibits the degradation of glutamine synthetase in the presence of 1 mM glutamine. The data are consistent with the conclusion that the corticosteroid, dexamethasone, elevates glutamine synthetase activity by stimulating its rate of synthesis, whereas methionine sulfone elevates glutamine synthetase activity by inhibiting the glutamine-stimulated degradation of preformed enzyme.  相似文献   

16.
Genetics of the glutamine transport system in Escherichia coli.   总被引:9,自引:6,他引:3       下载免费PDF全文
The active transport of glutamine by Escherichia coli occurs via a single osmotic shock-sensitive transport system which is known to be dependent upon a periplasmic binding protein specific for glutamine. We obtained a mutant that had elevated levels of glutamine transport and overproduced the glutamine binding protein. From this strain many point mutants and deletion-carrying strains defective in glutamine transport were isolated by a variety of techniques. The genetic locus coding for the glutamine transport system, glnP, and the regulatory mutation which causes overproduction of the transport system were both shown to map at 17.7 min on the E. coli chromosome, and it was demonstrated that the glnP locus contains the structural gene for the glutamine binding protein. Evidence was also obtained that the glutamine transport system, by an unknown mechanism, plays a direct role in the catabolism of glutamate and, hence, of glutamine and proline as well.  相似文献   

17.
The filamentous non-N2-fixing cyanobacterium Phormidium laminosum (strain OH-1-p.Cl1) was able to utilize glutamine as the sole nitrogen source. The addition to ammonium-grown cultures of the irreversible inhibitor of glutamine synthetase activity L-methionine-D, L-sulfoximine (MSX) inhibited cell growth. Supplying glutamine to the culture restored cell growth. This re-established growth was not due to interference by glutamine of MSX uptake by the cells, since glutamine synthetase (GS, EC 6.3.1.2) activity remained completely inhibited by MSX even when glutamine was simultaneously present. Both glutamine and ammonium exerted a negative effect on nitrate reductase (NR. EC 1.7.7.2) and nitrite reductase (NiR, EC 1.7.7.1) in vivo. This negative effect was reversed by MSX. When glutamine was added to MSX-treated cells, intracellular glutamine level was high, but the activity of both reductases remained at a high level. These results suggest that the presence of the active form of glutamine synthetase is required for the in vivo prevention of nitrate assimilation caused by ammonium and glutamine.  相似文献   

18.
Plasma glutamine concentrations were measured in chronic metabolic acidosis and alkalosis in healthy male volunteers. Metabolic acidosis resulted in a significant drop in glutamine concentration while metabolic alkalosis significantly elevated glutamine levels. These changes in glutamine concentration correlated with both the bicarbonate and PCO2 levels. To determine whether bicarbonate or PCO2 levels influence the glutamine concentrations, respectively acidosis was induced by respiring 5% CO2. This resulted in a significant elevation in both PCO2 and glutamine while bicarbonate levels remained unchanged. The results demonstrate an effect of acid-base alterations upon plasma glutamine concentration mediated by PCO2.  相似文献   

19.
To determine the fate of intraluminal glutamine and specifically the role of brush border gamma glutamyltransferase in its hydrolysis and reabsorption, proximal convoluted tubules of rabbits were isolated and perfused with an artificial ultrafiltrate containing 1 mM 14C-glutamine and 3H-PEG as a volume absorption marker. The tubules, average length 0.80 +/- 0.09 mm, were bathed in perfusate containing albumin, 6.5 percent but no glutamine. Aliquots of collectate and bathing media were monitored for total 14C counts while the distribution of radioactive 14C between glutamine and glutamate in the collectate was determined by separation on a Dowex X8 formate form ion-exchange column. After 3 ten minute control periods the perfusate was switched to one containing 1 mM AT-125 in addition to glutamine and after equilibration an additional 3 collections were obtained. Control period glutamine load averaged 16.1 +/- 2.4 pmole/min of which 35 percent was absorbed and 38 and 27 percent excreted as glutamine and glutamate respectively; of the absorbed glutamine 25 percent was metabolized. During AT-125 administration, glutamine delivery averaged 15.0 +/- 2.1 pmole/min of which 57 percent was absorbed; increased absorption occurred at the expence of intraluminal glutamate formation which fell to less than 10 percent. Thus luminal transport and gamma glutamyltransferase mediated hydrolysis appear to compete for available glutamine. Significantly, reducing intraluminal glutamine hydrolysis doubles the cellular metabolism of absorbed glutamine suggesting that extracellular conversion of glutamine to glutamate alters the metabolic fate of filtered glutamine.  相似文献   

20.
The effect of L-methionine-DL-sulfoximine, an inhibitor of glutamine synthetase, on the formation of nitrate reductase in the wild-type strain of Neurospora in the presence of ammonium ions and of glutamine was studied. Under conditions in which glutamine synthetase was inactivated, it was found that only glutamine could repress nitrate reductase. In a mutant of Neurospora, gln-1b, which requires glutamine for growth, only glutamine could repress nitrate reductase. These results suggest a direct role for glutamine as corepressor of nitrate reductase in Neurospora.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号