首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The generation of cell-mediated immunity against intracellular infection involves the production of IL-12, a critical cytokine required for the development of Th1 responses. The biologic activities of IL-12 are mediated through a specific, high affinity IL-12R composed of an IL-12Rbeta1/IL-12Rbeta2 heterodimer, with the IL-12Rbeta2 chain involved in signaling via Stat4. We investigated IL-12R expression and function in human infectious disease, using the clinical/immunologic spectrum of leprosy as a model. T cells from tuberculoid patients, the resistant form of leprosy, are responsive to IL-12; however, T cells from lepromatous patients, the susceptible form of leprosy, do not respond to IL-12. We found that the IL-12Rbeta2 was more highly expressed in tuberculoid lesions compared with lepromatous lesions. In contrast, IL-12Rbeta1 expression was similar in both tuberculoid and lepromatous lesions. The expression of IL-12Rbeta2 on T cells was up-regulated by Mycobacterium leprae in tuberculoid but not in lepromatous patients. Furthermore, IL-12 induced Stat4 phosphorylation and DNA binding in M. leprae-activated T cells from tuberculoid but not from lepromatous patients. Interestingly, IL-12Rbeta2 in lepromatous patients could be up-regulated by stimulation with M. tuberculosis. These data suggest that Th response to M. leprae determines IL-12Rbeta2 expression and function in host defense in leprosy.  相似文献   

2.
We investigated the role of IL-18 in leprosy, a disease characterized by polar cytokine responses that correlate with clinical disease. In vivo, IL-18 mRNA expression was higher in lesions from resistant tuberculoid as compared with susceptible lepromatous patients, and, in vitro, monocytes produced IL-18 in response to Mycobacterium leprae. rIL-18 augmented M. leprae-induced IFN-gamma in tuberculoid patients, but not lepromatous patients, while IL-4 production was not induced by IL-18. Anti-IL-12 partially inhibited M. leprae-induced release of IFN-gamma in the presence of IL-18, suggesting a combined effect of IL-12 and IL-18 in promoting M. leprae-specific type 1 responses. IL-18 enhanced M. leprae-induced IFN-gamma production rapidly (24 h) by NK cells and in a more sustained manner (5 days) by T cells. Finally, IL-18 directly induced IFN-gamma production from mycobacteria-reactive T cell clones. These results suggest that IL-18 induces type 1 cytokine responses in the host defense against intracellular infection.  相似文献   

3.
Induction of Th1 cytokines, those associated with cell-mediated immunity, is critical for host defense against infection by intracellular pathogens, including mycobacteria. Signaling lymphocytic activation molecule (SLAM, CD150) is a transmembrane protein expressed on lymphocytes that promotes T cell proliferation and IFN-gamma production. The expression and role of SLAM in human infectious disease were investigated using leprosy as a model. We found that SLAM mRNA and protein were more strongly expressed in skin lesions of tuberculoid patients, those with measurable CMI to the pathogen, Mycobacterium leprae, compared with lepromatous patients, who have weak CMI against M. leprae. Peripheral blood T cells from tuberculoid patients showed a striking increase in the level of SLAM expression after stimulation with M. leprae, whereas the expression of SLAM on T cells from lepromatous patients show little change by M. leprae stimulation. Engagement of SLAM by an agonistic mAb up-regulated IFN-gamma production from tuberculoid patients and slightly increased the levels of IFN-gamma in lepromatous patients. In addition, IFN-gamma augmented SLAM expression on M. leprae-stimulated peripheral blood T cells from leprosy patients. Signaling through SLAM after IFN-gamma treatment of Ag-stimulated cells enhanced IFN-gamma production in lepromatous patients to the levels of tuberculoid patients. Our data suggest that the local release of IFN-gamma by M. leprae-activated T cells in tuberculoid leprosy lesions leads to up-regulation of SLAM expression. Ligation of SLAM augments IFN-gamma production in the local microenvironment, creating a positive feedback loop. Failure of T cells from lepromatous leprosy patients to produce IFN-gamma in response to M. leprae contributes to reduced expression of SLAM. Therefore, the activation of SLAM may promote the cell-mediated immune response to intracellular bacterial pathogens.  相似文献   

4.
The antigenicity of Mycobacterium leprae (M. leprae)-derived cell membrane fraction was examined using human dendritic cells (DCs). Immature DCs internalized and processed the cell membrane components, and expressed M. leprae-derived antigens (Ags) on their surface. The expression of MHC class II, CD86, and CD83 Ags on DCs and CD40 ligand (L)-associated IL-12 p70 production from DCs were up-regulated by the membrane Ags. Moreover these stimulated DCs induced significantly higher level of interferon-gamma (IFN-gamma) production by autologous CD4(+) and CD8(+) T cells than those pulsed with equivalent doses of live M. leprae or its cytosol fraction. Both subsets of T cells from tuberculoid leprosy patients also produced several fold more IFN-gamma than those from normal individuals. Furthermore, the intracellular perforin production in CD8(+) T cells was up-regulated in an Ag-dose dependent manner. These results suggest that M. leprae membrane Ags might be useful as the vaccinating agents against leprosy.  相似文献   

5.
In leprosy, the common etiologic agent is the same Mycobacterium leprae, but the clinical manifestations are various, including the tuberculoid and lepromatous types. In tuberculoid type leprosy, macrophages in the granuloma differentiate into epithelioid cells; in the lepromatous type, in contrast, they differentiate into lepra cells containing multiple M. leprae. Thus host factors, which regulate macrophage activities, determine the type of leprosy. To understand such regulation of macrophage activities, we assayed superoxide production, hydrogen peroxide production and glucose consumption in monocytes in vitro. Glucose consumption spontaneously increased, with lymphokine enhancing the consumption rate. Superoxide production increased spontaneously and decreased from the 4th day; lymphokine added on the 4th day supressed the decrease of superoxide production. Hydrogen peroxide production increased until the 3rd day of culture. Twenty-four hour incubation with lymphokine, from day 0 to the 1st day, had no effect on hydrogen peroxide production, while from the 2nd to 3rd day it enhanced such production. Supernatants of lymphocytes incubated with M. leprae were prepared from tuberculoid and lepromatous patients. Tuberculoid supernatant enhanced reactive oxygen production and glucose consumption, while that from lepromatous patients had no remarkable effect on glucose consumption or reactive oxygen production. The range of spontaneous increase and decrease of reactive oxygen production was greater than the regulatory effect of lymphokine on these activities. These data show that rapid provision of new monocytes to the granuloma is one of the important factors in the defense mechanism, that lymphocytes separated from lepromatous patients are not activated in response to M. leprae antigen, and that they do not secrete corresponding lymphokines.  相似文献   

6.
The differentiation of monocytes into dendritic cells (DC) is a key mechanism by which the innate immune system instructs the adaptive T cell response. In this study, we investigated whether leukocyte Ig-like receptor A2 (LILRA2) regulates DC differentiation by using leprosy as a model. LILRA2 protein expression was increased in the lesions of the progressive, lepromatous form vs the self-limited, tuberculoid form of leprosy. Double immunolabeling revealed LILRA2 expression on CD14+, CD68+ monocytes/macrophages. Activation of LILRA2 on peripheral blood monocytes impaired GM-CSF induced differentiation into immature DC, as evidenced by reduced expression of DC markers (MHC class II, CD1b, CD40, and CD206), but not macrophage markers (CD209 and CD14). Furthermore, LILRA2 activation abrogated Ag presentation to both CD1b- and MHC class II-restricted, Mycobacterium leprae-reactive T cells derived from leprosy patients, while cytokine profiles of LILRA2-activated monocytes demonstrated an increase in TNF-alpha, IL-6, IL-8, IL-12, and IL-10, but little effect on TGF-beta. Therefore, LILRA2 activation, by altering GM-CSF-induced monocyte differentiation into immature DC, provides a mechanism for down-regulating the ability of the innate immune system to activate the adaptive T cell response while promoting an inflammatory response.  相似文献   

7.
Dendritic cells (DCs) play a pivotal role in the connection of innate and adaptive immunity of hosts to mycobacterial infection. Studies on the interaction of monocyte-derived DCs (MO-DCs) using Mycobacterium leprae in leprosy patients are rare. The present study demonstrated that the differentiation of MOs to DCs was similar in all forms of leprosy compared to normal healthy individuals. In vitro stimulation of immature MO-DCs with sonicated M. leprae induced variable degrees of DC maturation as determined by the increased expression of HLA-DR, CD40, CD80 and CD86, but not CD83, in all studied groups. The production of different cytokines by the MO-DCs appeared similar in all of the studied groups under similar conditions. However, the production of interleukin (IL)-12p70 by MO-DCs from lepromatous (LL) leprosy patients after in vitro stimulation with M. leprae was lower than tuberculoid leprosy patients and healthy individuals, even after CD40 ligation with CD40 ligand-transfected cells. The present cumulative findings suggest that the MO-DCs of LL patients are generally a weak producer of IL-12p70 despite the moderate activating properties ofM. leprae. These results may explain the poor M. leprae-specific cell-mediated immunity in the LL type of leprosy.  相似文献   

8.
mAbs directed against the alpha-chain (Tac/CD25) of the IL-2R are an emerging therapy in both transplantation and autoimmune disease. However, the mechanisms underlying their therapeutic efficacy have not been fully elucidated. Therefore, we examined the effect of IL-2R blockade on Th1 and Th2 cytokine production from human PBMC. Addition of a humanized anti-Tac Ab (HAT) to activated PBMC cultures inhibited IFN-gamma production from CD4 and CD8 T cells by 80-90%. HAT partially inhibited production of TNF-alpha and completely inhibited production of IL-4, IL-5, and IL-10. Furthermore, IL-12, a central regulatory cytokine that induces IFN-gamma, was undetectable in treated cultures. As T cell-dependent induction of IL-12 is regulated via CD40/CD40 ligand (CD40L) interactions, we examined the effect of HAT on CD40L expression. We found CD40L expression to be biphasic with an early (6 h) peak that is CD28/IL-2-independent, but a later peak (48 h) being CD28/IL-2-dependent and inhibited by HAT. Similarly, IFN-gamma production at 6 h was CD28/IL-2-independent but CD28/IL-2-dependent and inhibited by HAT at 48 h. Nonetheless, addition of rCD40L or exogenous IL-12 to HAT-treated cultures could not restore IFN-gamma production. The IFN-gamma deficit in such cultures appears to be due to a direct inhibition by HAT of IL-12-independent IFN-gamma production from T cells rather than altered expression of either the IL-12Rbeta1 or IL-12Rbeta2 chains. These data demonstrate that IL-2 plays a critical role in the regulation of Th1 and Th2 responses and impacts both IL-12-dependent and -independent IFN-gamma production.  相似文献   

9.
Cell-mediated immunity that results in IL-12/IFN-gamma production is essential to control infections by intracellular organisms. Studies in animal models revealed contrasting results in regard to the importance of CD40-CD40 ligand (CD40L) signaling for induction of a type 1 cytokine response against these pathogens. We demonstrate that CD40-CD40L interaction in humans is critical for generation of the IL-12/IFN-gamma immune response against Toxoplasma gondii. Infection of monocytes with T. gondii resulted in up-regulation of CD40. CD40-CD40L signaling was required for optimal T cell production of IFN-gamma in response to T. gondii. Moreover, patients with hyper IgM (HIGM) syndrome exhibited a defect in IFN-gamma secretion in response to the parasite and evidence compatible with impaired in vivo T cell priming after T. gondii infection. Not only was IL-12 production in response to T. gondii dependent on CD40-CD40L signaling, but also, patients with HIGM syndrome exhibited deficient in vitro secretion of this cytokine in response to the parasite. Finally, in vitro incubation with agonistic soluble CD40L trimer enhanced T. gondii-triggered production of IFN-gamma and, through induction of IL-12 secretion, corrected the defect in IFN-gamma production observed in HIGM patients. Our results are likely to explain the susceptibility of patients with HIGM syndrome to infections by opportunistic pathogens.  相似文献   

10.

Background

Lepromatous leprosy caused by Mycobacterium leprae is associated with antigen specific T cell unresponsiveness/anergy whose underlying mechanisms are not fully defined. We investigated the role of CD25+FOXP3+ regulatory T cells in both skin lesions and M.leprae stimulated PBMC cultures of 28 each of freshly diagnosed patients with borderline tuberculoid (BT) and lepromatous leprosy (LL) as well as 7 healthy household contacts of leprosy patients and 4 normal skin samples.

Methodology/Principle Findings

Quantitative reverse transcribed PCR (qPCR), immuno-histochemistry/flowcytometry and ELISA were used respectively for gene expression, phenotype characterization and cytokine levels in PBMC culture supernatants. Both skin lesions as well as in vitro antigen stimulated PBMC showed increased percentage/mean fluorescence intensity of cells and higher gene expression for FOXP3+, TGF-β in lepromatous (p<0.01) as compared to tuberculoid leprosy patients. CD4+CD25+FOXP3+ T cells (Tregs) were increased in unstimulated basal cultures (p<0.0003) and showed further increase in in vitro antigen but not mitogen (phytohemaglutinin) stimulated PBMC (iTreg) in lepromatous as compared to tuberculoid leprosy patients (p<0.002). iTregs of lepromatous patients showed intracellular TGF-β which was further confirmed by increase in TGF-β in culture supernatants (p<0.003). Furthermore, TGF-β in iTreg cells was associated with phosphorylation of STAT5A. TGF-β was seen in CD25+ cells of the CD4+ but not that of CD8+ T cell lineage in leprosy patients. iTregs did not show intracellular IFN-γ or IL-17 in lepromatous leprosy patients.

Conclusions/Significance

Our results indicate that FOXP3+ iTregs with TGF-β may down regulate T cell responses leading to the antigen specific anergy associated with lepromatous leprosy.  相似文献   

11.
Proliferative responses of peripheral blood mononuclear cells (PBMC) to Mycobacterium leprae and bacillus Calmette Guerin-derived purified protein derivative (PPD) were studied in the presence or absence of interleukin 2 (IL 2) in high M. leprae responders (tuberculoid leprosy patients and healthy subjects) and low M. leprae responders (lepromatous leprosy patients). High responders in most cases developed a strong proliferative response to both antigens in the absence of IL 2. Additional IL 2 and restimulation with antigen plus autologous antigen-presenting cells (APC) allowed the derivation of antigen-specific T cell lines. The lines were assayed for proliferative responses to several mycobacterial antigens. Both PPD and M. leprae-triggered T cell lines exhibited a good proliferative response to either antigen and showed in addition a broad cross-reactivity with other mycobacteria, suggesting a preferential T cell response to epitopes shared by several mycobacterial species. Within the lepromatous group, 50% of the patients studied could mount a proliferative response to PPD antigen in the absence of IL 2, but none of them was able to do so with M. leprae antigen. The addition of IL 2 increased the number of positive responders to PPD in this group, and in some patients IL 2 was able to restore M. leprae reactivity as well, suggesting that IL 2 had overcome a suppressor mechanism. PPD and M. leprae-triggered T cell lines were obtained from these subjects (with IL 2 added from the beginning of the culture when required). M. leprae lines exhibited variable and unstable pattern of specificity, most lines exhibiting, at least transiently, a cross-reactive response to other mycobacteria, but some displaying only M. leprae-specific response. In contrast, PPD lines from these subjects consistently exhibited a good response to PPD, a lesser response to various other mycobacteria and no response to M. leprae, a pattern differing from that obtained with PPD lines of high M. leprae responders. Co-cultures of irradiated lepromatous PPD triggered T cell lines with fresh autologous PBMC non-specifically reduced the proliferative response of the latter to PPD, as well as to unrelated antigens. A similar suppression was also observed when PPD lines from one of the tuberculoid patients were assayed. PPD and M. leprae T cell lines from both high and low responders initially exhibited the same CD4+ CD8- phenotype. In all cases, antigenic specificity declined and could not be maintained after 5 to 8 wk of continuous culture, a change associated with the progressive appearance of CD8+ and Leu8+ cells.  相似文献   

12.
IL-18 time- and concentration-dependently upregulated the expression of intercellular adhesion molecule-1 (ICAM-1) in a monocyte population in human PBMC as determined by FACS analysis while the expression of CD11a, CD18, CD29, CD44, and CD62L in monocytes and that of ICAM-1, CD11a, CD18, CD29, CD44, and CD62L in T cells was not influenced by IL-18. IL-18 in the same concentration range stimulated the production of IL-12, TNF-alpha, and IFN-gamma in culture of PBMC; however, IL-18-induced expression of ICAM-1 in monocytes was not inhibited by anti-IL-12, anti-TNF-alpha, or anti-IFN-gamma Ab, suggesting the independence of the upregulating effect of IL-18 on endogenous IL-12, TNF-alpha, and IFN-gamma production. IL-18 also induced the aggregation of PBMC, which was prevented by anti-ICAM-1 and anti-LFA-1 Abs. On the other hand, anti-ICAM-1 and anti-LFA-1 Abs inhibited IL-18-induced production of three cytokines, IL-12, IFN-gamma, and TNF-alpha, by 60 and 40%, respectively. These results strongly suggested that the IL-18-induced upregulation of ICAM-1 and the subsequent adhesive interaction through ICAM-1 on monocytes and LFA-1 on T/NK cells generate an additional stimulatory signaling as well as an efficient paracrine environment for the IL-18-initiated cytokine cascade.  相似文献   

13.
14.
Leishmaniasis, a vector-borne parasitic disease, is transmitted during a sandfly blood meal as the parasite is delivered into the dermis. The parasite displays a unique immune evasion mechanism: prevention of IL-12 production within its host cell, the macrophage (i.e., where it differentiates and multiplies). Given the close proximity of skin dendritic cells (DC) to the site of parasite delivery, their critical role in initiating immune responses and the self-healing nature of Leishmania major (Lm) infection, we examined the interaction between myeloid-derived human DC and Lm metacyclic promastigotes (infectious-stage parasites) to model the early "natural" events of infection. We found that DC can take up Lm and, after this internalization, undergo changes in surface phenotype suggesting "maturation". Despite the intracellular location of the parasite and resultant up-regulation of costimulatory and class II molecules, there was no detectable cytokine release by these Lm-harboring DC. However, using intracellular staining and flow cytometry to analyze cytokine production at the single-cell level, we found that Lm-harboring DC, but not monocytes, produce large amounts of IL-12p70 in a CD40 ligand (CD40L)-dependent manner. Finally, DC generated from mononuclear cells from patients with cutaneous leishmaniasis (Lm), once loaded with live metacyclic promastigotes, were found to reactivate autologous primed T lymphocytes and induce a CD40L-dependent IFN-gamma response. Our results link the required CD40/CD40L interactions for healing with DC-derived IL-12p70 production and provide a mechanism to explain the genesis of a protective T cell-mediated response in the face of local immune evasion within the macrophage at the site of Leishmania delivery.  相似文献   

15.
The repertoires of CD1- and MHC-restricted T cells are complementary, permitting the immune recognition of both lipid and peptide Ags, respectively. To compare the breadth of the CD1-restricted and MHC-restricted T cell repertoires, we evaluated T cell responses against lipid and peptide Ags of mycobacteria in leprosy, comparing tuberculoid patients, who are able to restrict the pathogen, and lepromatous patients, who have disseminated infection. The striking finding was that in lepromatous leprosy, T cells did not efficiently recognize lipid Ags from the leprosy pathogen, Mycobacterium leprae, or the related species, Mycobacterium tuberculosis, yet were able to efficiently recognize peptide Ags from M. tuberculosis, but not M. leprae. To identify a mechanism for T cell unresponsiveness against mycobacterial lipid Ags in lepromatous patients, we used T cell clones to probe the species specificity of the Ags recognized. We found that the majority of M. leprae-reactive CD1-restricted T cell clones (92%) were cross-reactive for multiple mycobacterial species, whereas the majority of M. leprae-reactive MHC-restricted T cells were species specific (66%), with a limited number of T cell clones cross-reactive (34%) with M. tuberculosis. In comparison with the MHC class II-restricted T cell repertoire, the CD1-restricted T cell repertoire is limited to recognition of cross-reactive Ags, imparting a distinct role in the host response to immunologically related pathogens.  相似文献   

16.
Kang TJ  Lee SB  Chae GT 《Cytokine》2002,20(2):56-62
Toll-like receptor 2 (TLR2) is critical in the immune response to mycobacterial infections, and the mutations in the TLR2 have been shown to confer the susceptibility to infection with mycobacteria. We previously reported the detection of TLR2 Arg677Trp mutation in lepromatous leprosy. Here, the events triggered by TLR2 in response to cell lysate of Mycobacterium leprae(MLL), the causative agent of leprosy, were investigated. Upon stimulation with MLL, monocytes produced TNF-alpha and Interleukin-12 (IL-12), which play a role in the innate immune response to infection. Anti-TLR2 mAb blocked greater than 50% of the MLL-induced production of IL-12. We also performed the functional study on TLR2 by measurement of IL-12 production in serum and monocytes from leprosy patients with TLR2 mutation (Arg677Trp). The monocytes obtained from patients with the TLR2 mutation, in comparison to the wild-type TLR2, is significantly less responsive to MLL. It was also confirmed that patients with TLR2 mutation showed significantly lower serum levels of IL-12, in comparing with TLR2 wild-type. Our results reveal that innate immune response of monocytes against M. lepraeis mediated by TLR2, and suggest that the mutation in the intracellular domain of TLR2 gene is associated with IL-12 production in lepromatous leprosy.  相似文献   

17.
CD40 ligand (CD40L or CD154), a type II membrane protein with homology to TNF, is transiently expressed on activated T cells and known to be important for B cell Ig production and for activation and differentiation of monocytes and dendritic cells. Both Crohn's disease and ulcerative colitis are characterized by local production of cytokines such as TNF and by an influx of activated lymphocytes into inflamed mucosa. Herein, we investigated whether CD40L signaling participates in immune responses in these diseases. Our results demonstrated that CD40L was expressed on freshly isolated lamina propria T cells from these patients and was functional to induce IL-12 and TNF production by normal monocytes, especially after IFN-gamma priming. The inclusion of a blocking mAb to CD40L or CD40 in such cocultures significantly decreased monocyte IL-12 and TNF production. Moreover, lamina propria and peripheral blood T cells from these patients, after in vitro activation with anti-CD3, showed increased and prolonged expression of CD40L as compared with controls. Immunohistochemical analyses indicated that the number of CD40+ and CD40L+ cells was significantly increased in inflamed mucosa, being B cells/macrophages and CD4+ T cells, respectively. These findings suggest that CD40L up-regulation is involved in pathogenic cytokine production in inflammatory bowel disease and that blockade of CD40-CD40L interactions may have therapeutic effects for these patients.  相似文献   

18.
Lymphocyte transformation has been used to study the immune response to Mycobacterium leprae among contacts and non-contacts of leprosy patients. Of 26 subjects living in a leprosy endemic area for less than two months none responded to M. leprae; 24% of subjects who had lived in an endemic area for more than a year gave a positive response to M. leprae; more than 50% of individuals with occupational contact of leprosy for more than a year responded; and about 50% of contacts of tuberculoid and treated lepromatous patients responded to M. leprae, while only 22% (4/18) of contacts of lepromatous patients treated for less than six months responded.It seems that leprosy is more highly infectious than is indicated by the prevalence of the disease and that a subclinical infection commonly follows exposure to M. leprae. The relatively low response found in contacts of active lepromatous patients suggests that in these contacts “superexposure” to M. leprae can bring about a decrease in host resistance.  相似文献   

19.
Suppressor T lymphocytes from lepromatous leprosy skin lesions   总被引:13,自引:0,他引:13  
The immune response in leprosy forms a spectrum with lepromatous leprosy patients exhibiting specific unresponsiveness to antigens of Mycobacterium leprae. This unresponsiveness is thought to be related to the prevalence of T8-positive lymphocyte in these lepromatous lesions. To analyze the immunoregulatory function of these T8 cells, we developed simple procedures to extract lymphocytes from skin biopsy specimens of patients with leprosy. These lymphocytes were sorted for T8 and T4 positive cells, and cell lines were established by expansion with interleukin 2 (IL 2) and irradiated feeder cells. All T8 positive lines tested were positive for IL 2 receptors and HLA-DR determinants. These lines were additionally assayed for lepromin-induced suppression of the normal peripheral blood lymphocyte Con A proliferative response. Thirteen of 32 lines from six lepromatous patients showed significant suppressor activity, whereas nine lines from six tuberculoid patients and one line from normal peripheral blood failed to show suppression (p less than 0.001). Taken together, the finding of M. leprae-triggered suppressor cells within lepromatous skin lesions may in part explain the M. leprae unresponsiveness of lepromatous leprosy patients.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号