首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Aspergilli are an important genus of filamentous fungi that contribute to a multibillion dollar industry. Since many fungal genome sequencing were recently completed, it would be advantageous to profile their proteome to better understand the fungal cell factory. Here, we review proteomic data generated for the Aspergilli in recent years. Thus far, a combined total of 28 cell surface, 102 secreted and 139 intracellular proteins have been identified based on 10 different studies on Aspergillus proteomics. A summary proteome map highlighting identified proteins in major metabolic pathway is presented.  相似文献   

3.
A strain from the group of black Aspergilli was analysed in detail to determine the species to which it belongs. A detailed analysis of morphology, RFLP patterns and metabolite profiles was carried out. In addition, a phylogenetic tree was constructed for the black Aspergilli using the ITS and the -tubulin sequences of the individual strains. The new species differs by its poor growth on glycerol and galacturonate and its unique extrolite profile consisting of aurasperone B, nigragillin, asperazine and kotanins. RFLP analysis using three genes as probes also resulted in a unique pattern. These data indicate that the strain was closely related but not identical to Aspergillus foetidus, Aspergillus niger and Aspergillus tubingensis. It was therefore designated as a novel species and named Aspergillus vadensis.  相似文献   

4.
Identification of genes encoding type III polyketide synthase (PKS) superfamily members in the industrially useful filamentous fungus, Aspergillus oryzae, revealed that their distribution is not specific to plants or bacteria. Among other Aspergilli (Aspergillus nidulans and Aspergillus fumigatus), A. oryzae was unique in possessing four chalcone synthase (CHS)-like genes (csyA, csyB, csyC, and csyD). Expression of csyA, csyB, and csyD genes was confirmed by RT-PCR. Comparative genome analyses revealed single putative type III PKS in Neurospora crassa and Fusarium graminearum, two each in Magnaporthe grisea and Podospora anserina, and three in Phenarocheate chrysosporium, with a phylogenic distinction from bacteria and plants. Conservation of catalytic residues in the CHSs across species implicated enzymatically active nature of these newly discovered homologs.  相似文献   

5.
6.
7.
Genome sequence data has recently become available for certain Aspergillus species. We consider the transition from genomics to a post-genomic era in Aspergillus, describing resources and methodologies available to underpin research efforts. Advances in our understanding of the fundamental biology of the Aspergilli, together with applications within the biotechnology and medical fields, are anticipated.  相似文献   

8.
DNA-mediated transformation is a powerful tool that allows the introduction of specific genetic changes in an organism. Transformation of Aspergilli, acclaimed for their wide use in the industry, has been possible for about two decades now. Several basic and applied problems related to fungal biology have been addressed using this technique. Nonetheless, new markers and strategies for transformation are still being developed for these filamentous fungi. Different methods and markers that are currently available for the transformation of Aspergilli are summarized here. The review also brings out the importance of these transformation systems in analyzing fungal gene function. Aspects of Aspergillus niger transformation are selectively emphasized.  相似文献   

9.
Aspergilli are filamentous, cosmopolitan and ubiquitous fungi which have significant impact on human, animal and plant welfare worldwide. Due to their extraordinary metabolic diversity, Aspergillus species are used in biotechnology for the production of a vast array of biomolecules. However, little is known about Aspergillus species that are able to adapt an endophytic lifestyle in Cupressaceae plant family and are capable of producing cytotoxic, antifungal and antibacterial metabolites. In this work, we report a possible ecological niche for pathogenic fungi such as Aspergillus fumigatus and Aspergillus flavus. Indeed, our findings indicate that A. fumigatus, A. flavus, Aspergillus niger var. niger and A. niger var. awamori adapt an endophytic lifestyle inside the Cupressaceous plants including Cupressus arizonica, Cupressus sempervirens var. fastigiata, Cupressus semipervirens var. cereiformis, and Thuja orientalis. In addition, we found that extracts of endophytic Aspergilli showed significant growth inhibition and cytotoxicity against the model fungus Pyricularia oryzae and bacteria such as Bacillus sp., Erwinia amylovora and Pseudomonas syringae. These endophytic Aspergilli also showed in vitro antifungal effects on the cypress fungal phytopathogens including Diplodia seriata, Phaeobotryon cupressi and Spencermartinsia viticola. In conclusion, our findings clearly support the endophytic association of Aspergilli with Cupressaceae plants and their possible role in protection of host plants against biotic stresses. Observed bioactivities of such endophytic Aspergilli may represent a significant potential for bioindustry and biocontrol applications.  相似文献   

10.
Filamentous fungi are robust cell factories and have been used for the production of large quantities of industrially relevant enzymes. However, the production levels of heterologous proteins still need to be improved. Therefore, this article aimed to investigate the global proteome profiling of Aspergillus nidulans recombinant strains in order to understand the bottlenecks of heterologous enzymes production. About 250, 441 and 424 intracellular proteins were identified in the control strain Anid_pEXPYR and in the recombinant strains Anid_AbfA and Anid_Cbhl respectively. In this context, the most enriched processes in recombinant strains were energy pathway, amino acid metabolism, ribosome biogenesis, translation, endoplasmic reticulum and oxidative stress, and repression under secretion stress (RESS). The global protein profile of the recombinant strains Anid_AbfA and Anid_Cbhl was similar, although the latter strain secreted more recombinant enzyme than the former. These findings provide insights into the bottlenecks involved in the secretion of recombinant proteins in A. nidulans, as well as in regard to the rational manipulation of target genes for engineering fungal strains as microbial cell factories.  相似文献   

11.
Aspergilli have a long history in biotechnology as expression platforms for the production of food ingredients, pharmaceuticals and enzymes. The achievements made during the last years, however, have the potential to revolutionize Aspergillus biotechnology and to assure Aspergillus a dominant place among microbial cell factories. This mini-review will highlight most recent breakthroughs in fundamental and applied Aspergillus research with a focus on new molecular tools, techniques and products. New trends and concepts related to Aspergillus genomics and systems biology will be discussed as well as the challenges that have to be met to integrate omics data with metabolic engineering attempts.  相似文献   

12.
Ochratoxin A-producing Aspergilli in Vietnamese green coffee beans   总被引:2,自引:0,他引:2  
AIMS: To determine the incidence and severity of infection by ochratoxin A (OA)-producing fungi in Vietnamese green coffee beans. METHODS AND RESULTS: Aspergillus carbonarius, A. niger and yellow Aspergilli (A. ochraceus and related species in section Circumdati) were isolated by direct plating of surface-disinfected Robusta (65 samples) and Arabica (11 samples) coffee beans from southern and central Vietnam. Significantly, more Robusta than Arabica beans were infected by fungi. Aspergillus niger infected 89% of Robusta beans, whereas A. carbonarius and yellow Aspergilli each infected 12-14% of beans. OA was not produced by A. niger (98 isolates) or A. ochraceus (77 isolates), but was detected in 110 of 113 isolates of A. carbonarius, 10 isolates of A. westerdijkiae and one isolate of A. steynii. The maximum OA observed in samples severely infected with toxigenic species was 1.8 microg kg(-1); however, no relationship between extent of infection and OA contamination was observed. CONCLUSIONS: Aspergillus niger is the dominant species infecting Vietnamese coffee beans, yet A. carbonarius is the likely source of OA contamination. SIGNIFICANCE AND IMPACT OF STUDY: Vietnamese green coffee beans were more severely infected with fungi than the levels reported for beans from other parts of the world, yet OA contamination appears to be infrequent.  相似文献   

13.
Although the arsenal of agents with anti-Aspergillus activity has expanded over the last decade, mortality due to invasive aspergillosis remains unacceptably high. Resistance of the Aspergillus spp. species to antifungal drugs increased in the last 20 years with the increase in antifungal drugs use and might partially account for treatment failures. Recent advances in our understanding of mechanisms of antifungal drug action in Aspergillus, along with the standardization of in vitro susceptibility testing methods, have brought resistance testing to the forefront of clinical mycology. Recent modifications in taxonomy and understanding of the acquired resistance mechanisms of Aspergilli to drugs should support a better management of Aspergillus infections. In this paper, we review the current knowledge on epidemiology and underlying mechanisms involved in antifungal resistance in Aspergillus.  相似文献   

14.
Fungal secondary metabolites constitute a wide variety of compounds which either play a vital role in agricultural, pharmaceutical and industrial contexts, or have devastating effects on agriculture, animal and human affairs by virtue of their toxigenicity. Owing to their beneficial and deleterious characteristics, these complex compounds and the genes responsible for their synthesis have been the subjects of extensive investigation by microbiologists and pharmacologists. A majority of the fungal secondary metabolic genes are classified as type I polyketide synthases (PKS) which are often clustered with other secondary metabolism related genes. In this review we discuss on the significance of our recent discovery of chalcone synthase (CHS) genes belonging to the type III PKS superfamily in an industrially important fungus, Aspergillus oryzae. CHS genes are known to play a vital role in the biosynthesis of flavonoids in plants. A comparative genome analyses revealed the unique character of A. oryzae with four CHS-like genes (csyA, csyB, csyC and csyD) amongst other Aspergilli (Aspergillus nidulans and Aspergillus fumigatus) which contained none of the CHS-like genes. Some other fungi such as Neurospora crassa, Fusarium graminearum, Magnaporthe grisea, Podospora anserina and Phanerochaete chrysosporium also contained putative type III PKSs, with a phylogenic distinction from bacteria and plants. The enzymatically active nature of these newly discovered homologues is expected owing to the conservation in the catalytic residues across the different species of plants and fungi, and also by the fact that a majority of these genes (csyA, csyB and csyD) were expressed in A. oryzae. While this finding brings filamentous fungi closer to plants and bacteria which until recently were the only ones considered to possess the type III PKSs, the presence of putative genes encoding other principal enzymes involved in the phenylpropanoid and flavonoid biosynthesis (viz., phenylalanine ammonia-lyase, cinnamic acid hydroxylase and p-coumarate CoA ligase) in the A. oryzae genome undoubtedly prove the extent of its metabolic diversity. Since many of these genes have not been identified earlier, knowledge on their corresponding products or activities remain undeciphered. In future, it is anticipated that these enzymes may be reasonable targets for metabolic engineering in fungi to produce agriculturally and nutritionally important metabolites.  相似文献   

15.
Filamentous fungi, and particularly those of the genus Aspergillus, are major producers of enzymatic activities that have important applications in the food and beverage industries. Prior to the availability of transformation systems improvement of industrial production strains was largely restricted to the strategy of mutagenesis, screening and selection. Aspergillus nidulans is a genetically amenable filamentous fungus the ease of handling and analysis of which has led to its use as a model system for the investigation of eukaryotic gene regulation. Although not used industrially it is able to produce a wide variety of extracellular enzymatic activities. As a consequence of half a century of study a considerable resource of characterised mutants has been generated in conjunction with extensive genetic and molecular information on various gene regulatory systems in this micro-organism. Investigation of xylanase gene regulation in A. nidulans as a model for the production of food-use extracellular enzymes suggests strategies by which production of these enzymes in industrially useful species may be improved.  相似文献   

16.
Several Aspergillus species, in particular Aspergillus niger and Aspergillus oryzae, are widely used as protein production hosts in various biotechnological applications. In order to improve the expression and secretion of recombinant proteins in these filamentous fungi, several novel genetic engineering strategies have been developed in recent years. This review describes state-of-the-art genetic manipulation technologies used for strain improvement, as well as recent advances in designing the most appropriate engineering strategy for a particular protein production process. Furthermore, current developments in identifying bottlenecks in the protein production and secretion pathways are described and novel approaches to overcome these limitations are introduced. An appropriate combination of expression vectors and optimized host strains will provide cell factories customized for each production process and expand the great potential of Aspergilli as biotechnology workhorses to more complex multi-step industrial applications.  相似文献   

17.
A novel 2,2'-epoxy-terphenyllin, candidusin C, in addition to the well known secondary metabolites terphenyllin, 3-hydroxyterpenyllin and chlorflavonin, has been isolated from the chemically unexplored fungus Aspergillus campestris. The latter three are known secondary metabolites from Aspergillus candidus and therefore a large number of Aspergilli were screened for production of these compounds to see whether they could be regarded as chemotaxonomical indicators of section membership in the monotypic Aspergillus section Candidi. The results indicated that A. campestris and A. taichungensis should be placed in Candidi and this was further confirmed by morphological and physiological similarities. Three species outside the section Candidi produced candidusin related secondary metabolites: Aspergillus arenarius, A. ellipticus and Penicillium raistrickii. Chlorflavonin, however, was only found in section Candidi.  相似文献   

18.
全局性调控因子Ve A仅在真菌中存在,具有保守性。Ve A参与细胞的多过程调控,包括发育分化、次生代谢、氧化胁迫应答、侵染宿主致毒致病等。文中总结曲霉Ve A的相关调控功能和作用机理研究,以利于防控真菌传播存活及致毒致病措施的设计,促进抗真菌作物的育种,减少作物被曲霉等真菌及毒素污染;还提出进一步开展ve A基因调控功能研究的方向和作为防控真菌污染靶位点的应用策略。  相似文献   

19.
两性霉素B(amphotericin B,AMB)是经典的多烯类抗真菌药物,对病原真菌具有广谱抗菌活性,且不易产生耐药性.土曲霉是临床上常见的病原性曲霉,因其对AMB天然耐药而受到关注.现阶段,AMB的抗真菌作用机制有待进一步阐明,且真菌对AMB的耐药机制研究亦不充分.本文就AMB在土曲霉中诱导内源性活性氧(react...  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号