首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have quantitated the interactions of two rabbit skeletal troponin C fragments with troponin I and the troponin I inhibitory peptide. The calcium binding properties of the fragments and the ability of the fragments to exert control in the regulated actomyosin ATPase assay have also been studied. The N- and C-terminal divalent metal binding domains of rabbit skeletal troponin C, residues 1-97 and residues 98-159, respectively, were prepared by specific cleavage at cysteine-98 and separation by gel exclusion chromatography. Both of the troponin C fragments bind calcium. The calcium affinity of the weak sites within the N-terminal fragment is about an order of magnitude greater than is reported for these sites in troponin C, suggesting interaction between the calcium-saturated strong sites and the weak sites. Stoichiometric binding (1:1) of the troponin I inhibitory peptide to each fragment and to troponin C increased the calcium affinities of the fragments and troponin C. Complex formation was detected by fluorescence quenching or enhancement using dansyl-labeled troponin C (and fragments) or tryptophan-labeled troponin I inhibitory peptide. The troponin C fragments bind to troponin I with 1:1 stoichiometry and approximately equal affinities (1.6 x 10(6) M-1) which are decreased 4-fold in the presence of magnesium versus calcium. These calcium effects are much smaller than is observed for troponin C. The summed free energies for the binding of the troponin C fragments to troponin I are much larger than the free energy of binding troponin C. This suggests a large positive interaction free energy for troponin C binding to troponin I relative to the fragments.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Interactions between troponin C and troponin I play a critical role in the regulation of skeletal muscle contraction and relaxation. We individually substituted 27 hydrophobic Phe, Ile, Leu, Val, and Met residues in the regulatory domain of the fluorescent troponin C(F29W) with polar Gln to examine the effects of these mutations on: (a) the calcium binding and dynamics of troponin C(F29W) complexed with the regulatory fragment of troponin I (troponin I(96-148)) and (b) the calcium sensitivity of force production. Troponin I(96-148) was an accurate mimic of intact troponin I for measuring the calcium dynamics of the troponin C(F29W)-troponin I complexes. The calcium affinities of the troponin C(F29W)-troponin I(96-148) complexes varied approximately 243-fold, whereas the calcium association and dissociation rates varied approximately 38- and approximately 33-fold, respectively. Interestingly, the effect of the mutations on the calcium sensitivity of force development could be better predicted from the calcium affinities of the troponin C(F29W)-troponin I(96-148) complexes than from that of the isolated troponin C(F29W) mutants. Most of the mutations did not dramatically affect the affinity of calcium-saturated troponin C(F29W) for troponin I(96-148). However, the Phe(26) to Gln and Ile(62) to Gln mutations led to >10-fold lower affinity of calcium-saturated troponin C(F29W) for troponin I(96-148), causing a drastic reduction in force recovery, even though these troponin C(F29W) mutants still bound to the thin filaments. In conclusion, elucidating the determinants of calcium binding and exchange with troponin C in the presence of troponin I provides a deeper understanding of how troponin C controls signal transduction.  相似文献   

3.
We have used one- (OPE) and two-photon (TPE) excitation with time-correlated single-photon counting techniques to determine time-resolved fluorescence intensity and anisotropy decays of the wild-type Green Fluorescent Protein (GFP) and two red-shifted mutants, S65T-GFP and RSGFP. WT-GFP and S65T-GFP exhibited a predominant approximately 3 ns monoexponential fluorescence decay, whereas for RSGFP the main lifetimes were approximately 1.1 ns (main component) and approximately 3.3 ns. The anisotropy decay of WT-GFP and S65T-GFP was also monoexponential (global rotational correlation time of 16 +/- 1 ns). The approximately 1.1 ns lifetime of RSGFP was associated with a faster rotational depolarization, evaluated as an additional approximately 13 ns component. This feature we attribute tentatively to a greater rotational freedom of the anionic chromophore. With OPE, the initial anisotropy was close to the theoretical limit of 0.4; with TPE it was higher, approaching the TPE theoretical limit of 0.57 for the colinear case. The measured power dependence of the fluorescence signals provided direct evidence for TPE. The general independence of fluorescence decay times, rotation correlation times, and steady-state emission spectra on the excitation mode indicates that the fluorescence originated from the same distinct excited singlet states (A*, I*, B*). However, we observed a relative enhancement of blue fluorescence peaked at approximately 440 nm for TPE compared to OPE, indicating different relative excitation efficiencies. We infer that the two lifetimes of RSGFP represent the deactivation of two substates of the deprotonated intermediate (I*), distinguished by their origin (i.e., from A* or B*) and by nonradiative decay rates reflecting different internal environments of the excited-state chromophore.  相似文献   

4.
Dynamic fluorescence properties of bacterial luciferase intermediates   总被引:1,自引:0,他引:1  
J Lee  D J O'Kane  B G Gibson 《Biochemistry》1988,27(13):4862-4870
Three fluorescent species produced by the reaction of bacterial luciferase from Vibrio harveyi with its substrates have the same dynamic fluorescence properties, namely, a dominant fluorescence decay of lifetime of 10 ns and a rotational correlation time of 100 ns at 2 degrees C. These three species are the metastable intermediate formed with the two substrates FMNH2 and O2, both in its low-fluorescence form and in its high-fluorescence form following light irradiation, and the fluorescent transient formed on including the final substrate tetradecanal. For native luciferase, the rotational correlation time is 62 or 74 ns (2 degrees C) derived from the decay of the anisotropy of the intrinsic fluorescence at 340 nm or the fluorescence of bound 8-anilino-1-naphthalenesulfonic acid (470 nm), respectively. The steady-state anisotropy of the fluorescent intermediates is 0.34, and the fundamental anisotropy from a Perrin plot is 0.385. The high-fluorescence intermediate has a fluorescence maximum at 500 nm, and its emission spectrum is distinct from the bioluminescence spectrum. The fluorescence quantum yield is 0.3 but decreases on dilution with a quadratic dependence on protein concentration. This, and the large value of the rotational correlation time, would be explained by protein complex formation in the fluorescent intermediate states, but no increase in protein molecular weight is observed by gel filtration or ultracentrifugation. The results instead favor a proposal that, in these intermediate states, the luciferase undergoes a conformational change in which its axial ratio increases by 50%.  相似文献   

5.
Troponin from the myocardium and skeletal muscles: structure and properties   总被引:1,自引:0,他引:1  
The literary and experimental data on the structure and properties of cardiac and skeletal muscle troponin are reviewed. The cation--binding sites of cardiac and skeletal muscle troponin C are distinguished by specificity; the sites localized in the C-terminal part of the protein molecule can bind both Ca2+ and Mg2+, whereas the sites localized at the N-end specifically bind Ca2+. The use of bifunctional reagents revealed a number of helical sites within the structure of cardiac troponin C (residues 84-92 and 150-158) and of skeletal muscle troponin C (residues 90-98 and 125-136). A comparison of experimental data with the results of an X-ray analysis testifies to the presence in the central part of the troponin C molecule of a long alpha-helical sequence responsible for troponin C interaction with the inhibiting peptide of troponin I. The efficiency of interaction of troponin components depends on Ca2+ concentration; the integrity of the overall troponin complex is mainly provided for by troponin C interaction with troponin I and by troponin I interaction with troponin T. The interaction between troponins T and C is relatively weak, especially in the case of cardiac troponin components. Both skeletal and cardiac muscles synthesize several troponin T isoforms differing in length and amino acid composition of N-terminal 40-60 member peptides. Troponin T isoforms can undergo phosphorylation by several protein kinases. The single site of troponin T which exists in a phosphorylated state in vivo (residue Ser-1) undergoes phosphorylation by specific protein kinase (troponin T kinase) related to casein kinases II. It was assumed that the phosphorylation of Ser-1 residue of troponin T as well as the synthesis of troponin T isoforms differing in the structure of the N-terminal peptide, provides for the regulation of interaction between two neighbouring tropomyosin molecules.  相似文献   

6.
Time resolved fluorescence was used to study the dynamics on the nanosecond and subnanosecond time scale of the peptide hormone motilin. The peptide is composed of 22 amino acid residues and has one tyrosine residue in position 7, which was used as an intrinsic fluorescence probe. The measurements show that two rotational correlation times, decreasing with increasing temperature, are needed to account for the fluorescence polarization anisotropy decay data. Viscosity measurements combined with the fluorescence measurements show that the rotational correlation times vary approximately as viscosity with temperature. The shorter rotational correlation time (0.08 ns in an aqueous solution with 30% hexafluoropropanol, HFP at 20°C) should be related to internal movement of the tyrosine side chain in the peptide while the longer rotational correlation time (2.2 ns in 30% HFP at 20°C) describes the motion of the whole peptide. In addition, the interaction of motilin or the derivative motilin (Y7F) –23W (with tyrosine substituted by phenylalanine and with a tryptophan fluorophore added to the C-terminal) with negatively charged phospholipid vesicles (DOPG) was studied. The results show the development of a long anisotropy decay time which reflects partial immobilization of the peptide by interaction with the vesicles.Correspondence to: A. Gräslund  相似文献   

7.
We have used two-dimensional 1H nuclear magnetic resonance spectroscopy to determine the structure of the synthetic inhibitory peptide N alpha-acetyl TnI(104-115) amide bound to calcium-saturated skeletal troponin C (TnC). Conformational changes in the peptide induced by the formation of the troponin I (TnI) peptide-TnC complex were followed by the study of the transferred nuclear Overhauser effect, a technique that allows one to determine the structure of a ligand bound to a macromolecule. The structure of the bound TnI peptide reveals an amphiphilic alpha-helix, distorted around the two central proline residues. The central bend in the peptide functions to bring the residues on the hydrophobic face into closer proximity with each other, thereby forming a small hydrophobic pocket. The hydrophilic, basic residues extend off the opposite face of the peptide. Hydrophobic surfaces on TnC that become exposed upon binding of calcium are involved in the binding of the TnI peptide, but electrostatic interactions also contribute to the strength of the interaction. The role of amphiphilic helices in the targeting of calcium-binding proteins such as troponin C will be discussed.  相似文献   

8.
1. Bovine cardiac-muscle troponin C was digested at cysteine residues 35 and 84, and the C-terminal peptide (residues 84-161) was isolated. 2. The C-terminal peptide contains two Ca2+-binding sites. These sites bind Ca2+ with a binding constant of 2.0 X 10(8) M-1. In the presence of 2 mM-Mg2+ the binding constant for Ca2+ is decreased to 3.7 X 10(7) M-1. The corresponding constants for native troponin C are 5.9 X 10(7) M-1. and 2.9 X 10(7) M-1 respectively. 3. Electrophoretic mobility of the C-terminal peptide is increased in the presence of 0.1 mM-CaCl2 as compared with the mobility in the presence of 2mM-EDTA. The same phenomenon was observed when electrophoresis was performed in the presence of 6 M-urea or 0.1% sodium dodecyl sulphate. 4. When saturated with Ca2+, the C-terminal peptide forms complexes with bovine cardiac-muscle troponin I both in the absence and in the presence of 6 M-urea. This complex is dissociated on removal of Ca2+. 5. The data suggest that the C-terminal peptide of troponin C contains two Ca2+/Mg2+-binding sites and interacts with troponin I. Thus, despite the 30% difference in amino acid composition, the properties of bovine cardiac-muscle troponin C C-terminal peptide are similar to those of rabbit skeletal-muscle troponin C C-terminal peptide.  相似文献   

9.
D A Malencik  S R Anderson 《Biochemistry》1984,23(11):2420-2428
Calmodulin and troponin C exhibit calcium-dependent binding of 1 mol/mol of dynorphin. The dissociation constants of the complexes, determined in 0.20 N KC1-1.0 mM CaCI2, pH 7.3, are 0.6 microM for calmodulin, 2.4 microM for rabbit fast skeletal muscle troponin C, and 9 microM for bovine heart troponin C. Experiments with deletion peptides of dynorphin show that peptide chain length and especially charge affect the binding of the peptides by calmodulin. Dynorphin, but not mastoparan or melittin, inhibits adenosinetriphosphatase activity in a reconstituted rabbit skeletal muscle actomyosin assay. The inhibition is partially reversed by the addition of calmodulin or troponin C in the presence of calcium. Calmodulin also exhibits calcium-dependent binding of a synthetic peptide corresponding to positions 104-115 of rabbit fast skeletal muscle troponin I. Mastoparan is a tetradecapeptide from the vespid wasp having exceptional affinity for calmodulin, with Kd approximately 0.3 nM [Malencik, D.A., & Anderson, S.R. (1983) Biochem. Biophys. Res. Commun. 114, 50]. The addition of 1 mol/mol of mastoparan to the complex of calmodulin with dynorphin results in complete dissociation of dynorphin. Similar titrations of the skeletal muscle troponin C-dynorphin complex produce a gradual dissociation consistent with a dissociation constant of 0.2 microM for the troponin C-mastoparan complex. Fluorescence anisotropy measurements using the intrinsic tryptophan fluorescence of mastoparan X show strongly calcium-dependent binding by proteolytic fragments of calmodulin. binding by proteolytic fragments of calmodulin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Cardiac troponin I(129-149) binds to the calcium saturated cardiac troponin C/troponin I(1-80) complex at two distinct sites. Binding of the first equivalent of troponin I(129-149) was found to primarily affect amide proton chemical shifts in the regulatory domain, while the second equivalent perturbed amide proton chemical shifts within the D/E linker region. Nitrogen-15 transverse relaxation rates showed that binding the first equivalent of inhibitory peptide to the regulatory domain decreased conformational exchange in defunct calcium binding site I and that addition of the second equivalent of inhibitory peptide decreased flexibility in the D/E linker region. No interactions between the inhibitory peptide and the C-domain of cardiac troponin C were detected by these methods demonstrating that the inhibitory peptide cannot displace cTnI(1-80) from the C-domain.  相似文献   

11.
The solution secondary structure of calcium-saturated skeletal troponin C (TnC) in the presence of 15% (v/v) trifluoroethanol (TFE), which has been shown to exist predominantly as a monomer (Slupsky CM, Kay CM, Reinach FC, Smillie LB, Sykes BD, 1995, Biochemistry 34, forthcoming), has been investigated using multidimensional heteronuclear nuclear magnetic resonance spectroscopy. The 1H, 15N, and 13C NMR chemical shift values for TnC in the presence of TFE are very similar to values obtained for calcium-saturated NTnC (residues 1-90 of skeletal TnC), calmodulin, and synthetic peptide homodimers. Moreover, the secondary structure elements of TnC are virtually identical to those obtained for calcium-saturated NTnC, calmodulin, and the synthetic peptide homodimers, suggesting that 15% (v/v) TFE minimally perturbs the secondary and tertiary structure of this stably folded protein. Comparison of the solution structure of calcium-saturated TnC with the X-ray crystal structure of half-saturated TnC reveals differences in the phi/psi angles of residue Glu 41 and in the linker between the two domains. Glu 41 has irregular phi/psi angles in the crystal structure, producing a kink in the B helix, whereas in calcium-saturated TnC, Glu 41 has helical phi/psi angles, resulting in a straight B helix. The linker between the N and C domains of calcium-saturated TnC is flexible in the solution structure.  相似文献   

12.
Cardiac troponin C is the Ca2+-dependent switch for heart muscle contraction. Troponin C is associated with various other proteins including troponin I and troponin T. The interaction between the subunits within the troponin complex is of critical importance in understanding contractility. Following a Ca2+ signal to begin contraction, the inhibitory region of troponin I comprising residues Thr128-Arg147 relocates from its binding surface on actin to troponin C, triggering movement of troponin-tropomyosin within the thin filament and thereby freeing actin-binding site(s) for interactions with the myosin ATPase of the thick filament to generate the power stroke. The structure of calcium-saturated cardiac troponin C (C-domain) in complex with the inhibitory region of troponin I was determined using multinuclear and multidimensional nuclear magnetic resonance spectroscopy. The structure of this complex reveals that the inhibitory region adopts a helical conformation spanning residues Leu134-Lys139, with a novel orientation between the E- and H-helices of troponin C, which is largely stabilized by electrostatic interactions. By using isotope labeling, we have studied the dynamics of the protein and peptide in the binary complex. The structure of this inhibited complex provides a framework for understanding into interactions within the troponin complex upon heart contraction.  相似文献   

13.
We have used resonance energy transfer to study the spatial relationship between Cys-98 of rabbit skeletal troponin C and Cys-133 of rabbit skeletal troponin I in the reconstituted ternary troponin complex. The donor was introduced by labeling either troponin C or troponin I with N-(iodoacetyl)-N'-(5-sulfo-1-naphthyl)ethylenediamine, while the acceptor was introduced by labeling either protein with N-[4-(dimethylamino)phenyl-4'-azophenyl]maleimide. The extent of energy transfer was determined by measuring the quenching of the donor fluorescence decay. The results indicate first that the distance between these two sites is not fixed, suggesting that the protein regions involved possess considerable segmental flexibility. Second, the mean distance between the two sites is dependent on the metal-binding state of troponin C, being 39.1 A when none of the metal-binding sites are occupied, 41.0 A when Mg2+ ions bind at the high-affinity sites, and 35.5 A when Ca2+ ions bind to the low-affinity sites. Neither the magnitude of the distances nor the trend of change with metal ions differs greatly when the locations of the probes are switched or when steady-state fluorometry was used to determine the transfer efficiency. Since the low-affinity sites have been implicated as the physiological triggering sites, our findings suggest that one of the key events in Ca2+ activation of skeletal muscle contraction is a approximately 5-A decrease in the distance between the Cys-98 region of troponin C and the Cys-133 region of troponin I.  相似文献   

14.
The interactions between troponin subunits have been studied by intrinsic fluorescence and electron spin resonance (ESR) spectroscopy. The tryptophan fluorescence of troponin T (TnT) and troponin I (TnI) when complexed with troponin C (TnC) undergoes a Ca2+-dependent transition. The midpoints of such spectral changes occur at pCa approximately equal to 6, suggesting that the conformational change of TnT and TnI is induced by Ca2+ binding to the low-affinity sites of TnC. When TnC is labelled at Cys-98 with a maleimide spin probe (MSL), the spin signal is sensitive to Ca2+ binding to both the high and the low-affinity sites of TnC in the presence of either or both of the other two troponin subunits. Since Cys-98 is located in the vicinity of one of the high-affinity sites, these results are indicative of a long-range interaction between the two halves of the TnC molecule. Our earlier kinetic studies [Wang, C.-L. A., Leavis, P. C. & Gergely, J. (1983) J. Biol. Chem. 258, 9175-9177] have shown such interactions in TnC alone. Since the ESR spectral change associated with metal binding to the low-affinity sites is only observed when MSL-TnC is complexed with TnT and/or TnI, this long-range interaction within TnC appears to be mediated through the other troponin subunits.  相似文献   

15.
The structure of the calcium-saturated regulatory domain of skeletal troponin C (sNTnC) complexed with the switch peptide comprising residues 115-131 of troponin I (TnI), and with a bifunctional rhodamine fluorescent label attached to residues 56 (E56C) and 63 (E63C) on the C helix of sNTnC, has been determined using nuclear magnetic resonance (NMR) spectroscopy. The structure shows that the integrity of the C helix is not altered by the E(56,63)C mutations or by the presence of the bifunctional rhodamine and that the label does not interact with the hydrophobic cleft of sNTnC. Moreover, the overall fold of the protein and the position of the TnI peptide are similar to those observed previously with related cardiac NTnC complexes with residues 147-163 of cardiac TnI [Li et al. (1999) Biochemistry 38, 8289-8298] and including the drug bepridil [Wang et al. (2002) J. Biol. Chem. 277, 31124-31133]. The degree of opening of the structure is reduced as compared to that of calcium-saturated sNTnC in the absence of the switch peptide [Gagné et al. (1995) Nat. Struct. Biol. 2, 784-789]. The switch peptide is bound in a shallow and complementary hydrophobic surface cleft largely defined by helices A and B and also has key ionic interactions with sNTnC. These results show that bifunctional rhodamine probes can be attached to surface helices via suitable pairs of solvent-accessible residues that have been mutated to cysteines, without altering the conformation of the labeled domain. A set of such probes can be used to determine the orientation and motion of the target domain in the cellular environment [Corrie et al. (1999) Nature 400, 425-430; Ferguson et al. (2003) Mol. Cell 11(4), in press].  相似文献   

16.
We have used 19F nuclear magnetic resonance spectroscopy to study the interaction of the inhibitory region of troponin (TnI) with apo- and calcium(II)-saturated turkey skeletal troponin C (TnC), using the synthetic TnI analogue N alpha-acetyl[19FPhe106]TnI(104-115)amide. Dissociation constants of Kd = (3.7 +/- 3.1) x 10(-5) M for the apo interaction and Kd = (4.8 +/- 1.8) x 10(-5) M for the calcium(II)-saturated interaction were obtained using a 1:1 binding model of peptide to protein. The 19F NMR chemical shifts for the F-phenylalanine of the bound peptide are different from the apo- and calcium-saturated protein, indicating a different environment for the bound peptide. The possibility of 2:1 binding of the peptide to Ca(II)-saturated TnC was tested by calculating the fit of the experimental titration data to a series of theoretical binding curves in which the dissociation constants for the two hypothetical binding sites were varied. We obtained the best fit for 0.056 mM less than or equal to Kd1 less than or equal to 0.071 mM and 0.5 mM less than or equal to Kd2 less than or equal to 2.0 mM. These results allow the possibility of a second peptide binding site on calcium(II)-saturated TnC with an affinity 10- to 20-fold weaker than that of the first site.  相似文献   

17.
Conformational exchange has been demonstrated within the regulatory domain of calcium-saturated cardiac troponin C when bound to the NH2-terminal domain of cardiac troponin I-(1-80), and cardiac troponin I-(1-80)DD, having serine residues 23 and 24 mutated to aspartate to mimic the phosphorylated form of the protein. Binding of cardiac troponin I-(1-80) decreases conformational exchange for residues 29, 32, and 34. Comparison of average transverse cross correlation rates show that both the NH2- and COOH-terminal domains of cardiac troponin C tumble with similar correlation times when bound to cardiac troponin I-(1-80). In contrast, the NH2- and COOH-terminal domains in free cardiac troponin C and cardiac troponin C bound cardiac troponin I-(1-80)DD tumble independently. These results suggest that the nonphosphorylated cardiac specific NH2 terminus of cardiac troponin I interacts with the NH2-terminal domain of cardiac troponin C.  相似文献   

18.
Signaling by the luteinizing hormone/choriogonadotropin receptor (LHR) is of considerable interest because of its requirement for successful reproduction. Time-resolved phosphorescence anisotropy and fluorescence resonance energy transfer were used to investigate the organization of endogenous LHRs in porcine follicular membranes in two distinct signaling states, active and desensitized. Desensitized LHRs exhibited approximately 3-fold slower rotational correlation times compared with active LHRs (59 +/- 4 and 21 +/- 9 mus, respectively), suggesting that with agonist-dependent desensitization the receptors are organized into larger protein complexes. Incubation of membranes with inhibitors of LHR desensitization, such as neutralizing anti-arrestin antibodies, a synthetic peptide corresponding to the third intracellular loop of the LHR but not the corresponding scrambled peptide, or catalytically inactive ARNO, resulted in faster rotational diffusion times equivalent to those of actively signaling LHRs. Furthermore, desensitized LHRs exhibited a 2.4-fold increase in fluorescence resonance energy transfer between LHRs suggesting that the larger protein aggregates formed during desensitization contain more self-associated LHRs. These results indicate that agonist-dependent LHR desensitization precedes organization of LHRs at the cells surface into larger protein aggregates.  相似文献   

19.
We used frequency domain measurements of fluorescence resonance energy transfer to recover the distribution of distances between Met 25 and Cys 98 in rabbit skeletal troponin C. These residues were labeled with dansylaziridine as energy donor and 5-(iodoacetamido)eosin as acceptor and are located on the N- and C-terminal lobes of the two-domain protein, respectively. We developed a procedure to correct for the fraction of the sample that was incompletely labeled with the acceptor independent of chemical data. At pH 7.5 and in the presence of Mg2+, the mean distance was near 15 A with a half-width of the distribution of 15 A; when Mg2+ was replaced by Ca2+, the mean distance increased to 22 A with a decrease in the half-width by 4 A. Similar but less pronounced differences in the mean distance and half-width between samples containing Mg2+ and Ca2+ were also observed with troponin C complexed to troponin I. The results suggest that the conformation of troponin C is altered by Ca2+ binding to the Ca(2+)-specific sites and displacing bound Mg2+ at the Ca2+/Mg2+ sites. This alteration may play an important role in Ca2+ signaling in muscle. At pH 7.5, the anisotropy decays of the donor-labeled troponin C showed two components, with the long rotational correlation time (12 ns) reflecting the overall motion of the protein. When the pH was lowered from 7.5 to 5.2, the mean distribution distance of apotroponin C increased from 22 to 32 A and the half-width decreased by a factor of 2 from 13 to 7 A. The long correlation time of apotroponin C increased to 19 ns at the acidic pH. These results are discussed in terms of a model in which skeletal troponin C is a dimer at low pH and enable comparison of the solution conformation of the protein at neutral pH with a crystal structure obtained at pH 5.2. While the conformation of the monomeric unit of troponin C dimer at pH 5.2 is extended and consistent with the crystal structure, the conformation at neutral pH is likely more compact than the crystal structure predicts.  相似文献   

20.
I D Johnson  B S Hudson 《Biochemistry》1989,28(15):6392-6400
The effects of detergent [deoxycholate (DOC) and phospholipid [dimyristoylphosphatidylcholine (DMPC)] environments on the rotational dynamics of the single tryptophan residue 26 of bacteriophage M13 coat protein have been investigated by using time-resolved single photon counting measurements of the fluorescence intensity and anisotropy decay. The total fluorescence decay of tryptophan-26 is complex but rather similar in DOC as compared to DMPC when analyzed in terms of a lifetime distribution (exponential series method). This similarity, in conjunction with the almost identical steady-state fluorescence spectra, indicates only minor differences between the tryptophan environments in DOC and DMPC. The reorientational dynamics of tryptophan-26 are dominated by slow rotation of the entire protein in both detergent and phospholipid environments. The resolved anisotropy decay in DOC can be approximated by a simple hydrodynamic model of protein/detergent micelle rotational diffusion, although the data indicative slightly greater complexity in the rotational motion. The tryptophan fluorescence anisotropy is not sensitive to protein conformational changes in DOC detected by nuclear magnetic resonance on the basis of pH independence in the range 7.5-9.1. In DMPC bilayers, restricted tryptophan motion with a correlation time of approximately 2 ns is observed together with a second very slow reorientational component. Resolution of the time constant for this slow rotation is obscured by the tryptophan fluorescence time window being too short to clearly locate its anisotropic limit. The possible contribution made by axial rotational diffusion of the protein to this slow rotational process is discussed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号