首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The wild-type (dam+) and mutant (damh) forms of the bacteriophage T2 DNA adenine methylase have been partially purified; these enzymes methylate the sequence, 5/t' … G-A-Py … 3′ (Hattman et al., 1978a). However, in vitro methylation studies using phage λ DNA revealed the following: (1) T2 dam+ and damh enzymes differ in their ability to methylate λ DNA; under identical reaction conditions the T2 damh enzyme methylated λ DNA to a higher level than did the dam+ enzyme. However, the respective methylation sites are equally distributed on the l and r strands. (2) Methylation with T2 damh, but not T2 dam+ protected λ against P1 restriction. This was demonstrated by transfection of Escherichia coli (P1) spheroplasts and by cleavage with R·EcoP1. (3) T2 dam+ and damh were similarly capable of methylating G-A-T-C sequences on λ DNA; e.g. λ·dam3 DNA (contains no N6-methyladonine) methylated with either enzyme was made resistant to cleavage by R·DpnII. In contrast, only the T2 damh modified DNA was resistant to further methylation by M·EcoP1 (which methylates the sequence 5′ … A-G-A-C-Py … 3′; Hattman et al., 1978b). (4) λ·dam3 DNA was partially methylated to the same level with T2 dam+ or T2 damh; the two enzymes produced different patterns of G-A-C versus G-A-T methylation. We propose that the T2 dam+ enzyme methylates G-A-C sequences less efficiently than the T2 damh methylase; this property does not entirely account for the large difference in methylation levels produced by the two enzymes.  相似文献   

2.
The mutator phenotype of Escherichia coli dam mutants was found to be reversed by introduction of the bacteriophage T4 gene for DNA adenine methyltransferase. This precludes a direct role for the E. coli DNA adenine methyltransferase in mismatch repair, in addition to its role in strand discrimination, as suggested by earlier studies (S. L. Schlagman, S. Hattman, and M. G. Marinus, J. Bacteriol. 165:896-900, 1986).  相似文献   

3.
The sequence specificity of the Tetrahymena DNA-adenine methylase was determined by nearest-neighbor analyses of in vivo and in vitro methylated DNA. In vivo all four common bases were found to the 5' side of N6-methyladenine, but only thymidine was 3'. Homologous DNA already methylated in vivo and heterologous Micrococcus luteus DNA were methylated in vitro by a partially purified DNA-adenine methylase activity isolated from Tetrahymena macronuclei. The in vitro-methylated sequence differed from the in vivo sequence in that both thymidine and cytosine were 3' nearest neighbors of N6-methyladenine.  相似文献   

4.
Labeled oligonucleotides have been fractionated from pancreatic DNase digests of DNA that had been methylated in vitro with the P1 modification enzyme (M·Eco P1) or with the DNA-adenine methylase (M·Eco dam) controlled by the Escherichia coli dam gene. The sequences of methylated oligonucleotides were established for M·Eco dam modification of calf thymus DNA. The results show that M·Eco dam inethylates adenine residues contained in the twofold symmetrical sequence, 5′ … G-A-T-C … 3′. The sequence for the site methylated by M·Eco P1 has also been deduced; we propose that M·Eco P1 modification produces the following methylated pentameric sequence: 5′ … A-G-A1-C-Py … 3′ (where A1 = N6 methyladenine and Py is C or T).  相似文献   

5.
The E. coli dam (DNA adenine methylase) enzyme is known to methylate the sequence GATC. A general method for cloning sequence-specific DNA methylase genes was used to isolate the dam gene on a 1.14 kb fragment, inserted in the plasmid vector pBR322. Subsequent restriction mapping and subcloning experiments established a set of approximate boundaries of the gene. The nucleotide sequence of the dam gene was determined, and analysis of that sequence revealed a unique open reading frame which corresponded in length to that necessary to code for a protein the size of dam. Amino acid composition derived from this sequence corresponds closely to the amino acid composition of the purified dam protein. Enzymatic and DNA:DNA hybridization methods were used to investigate the possible presence of dam genes in a variety of prokaryotic organisms.  相似文献   

6.
7.
8.
S L Schlagman  S Hattman 《Gene》1983,22(2-3):139-156
  相似文献   

9.
Summary Several bacteriophage T4 DNA polymerase mutants have been shown to increase the frequency of spontaneous mutations (Speyer et al. 1966; Freese and Freese 1967; de Vries et al. 1972; Reha-Krantz et al. 1986). In order to determine the molecular basis of the mutator phenotype, it is necessary to characterize the types of mutations produced by the mutator DNA polymerases. We show here that at least one DNA polymerase mutator mutant, mel88, induces an increased number of base substitution mutations compared with wild-type.  相似文献   

10.
DNA-adenine methylation at certain GATC sites plays a pivotal role in bacterial and phage gene expression as well as bacterial virulence. We report here the crystal structures of the bacteriophage T4Dam DNA adenine methyltransferase (MTase) in a binary complex with the methyl-donor product S-adenosyl-L-homocysteine (AdoHcy) and in a ternary complex with a synthetic 12-bp DNA duplex and AdoHcy. T4Dam contains two domains: a seven-stranded catalytic domain that harbors the binding site for AdoHcy and a DNA binding domain consisting of a five-helix bundle and a beta-hairpin that is conserved in the family of GATC-related MTase orthologs. Unexpectedly, the sequence-specific T4Dam bound to DNA in a nonspecific mode that contained two Dam monomers per synthetic duplex, even though the DNA contains a single GATC site. The ternary structure provides a rare snapshot of an enzyme poised for linear diffusion along the DNA.  相似文献   

11.
RecBCD protein, necessary for Escherichia coli dam mutant viability, is directly required for DNA repair. Recombination genes recF+, recN+, recO+, and recQ+ are not essential for dam mutant viability; they are required for recBC sbcBC dam mutant survival. mutH, mutL, or mutS mutations do not suppress subinduction of SOS genes in dam mutants.  相似文献   

12.
Summary The host-controlled EcoK-restriction of unmodified phage .O is alleviated in dam mutants of Escherichia coli by 100- to 300-fold. In addition, the EcoK modification activity is substantially decreased in dam - strains. We show that type I restriction (EcoB, EcoD and EcoK) is detectably alleviated in dam mutants. However, no relief of EcoRI restriction (Type II) occurs in dam - strains and only a slight effect of dam mutation on EcoP1 restriction (Type III) is observed. We interpret the alleviation of the type I restriction in dam - strains to be a consequence of induction of the function which interferes with type I restriction systems.  相似文献   

13.
A mutant of Salmonella typhimurium with a reduced response to mutation induction by 9-aminoacridine (9AA) has been isolated. The mutation (dam-2) is located in the DNA adenine methylase gene. The dam-2 mutant strain exhibits a level of sensitivity to 2-aminopurine (2AP) intermediate between that of the dam+ and the DNA adenine methylation-deficit dam-1 strain, and 2AP sensitivity was reversed by introduction of a mutH mutation or of the plasmid pMQ148 (which carries a functional Escherichia coli dam+ gene). However, the dam-2 strain is not grossly defective in DNA adenine methylase activity. Whole cell DNA appears full methylated at -GATC- sites. The levels of 9AA required to induce equivalent levels of frameshift mutagenesis in the dam-2 strain were approximately 2-fold higher than for the dam+ strain. Introduction of pMQ148 dam+ reduced the level of 9AA required for induction of frameshift mutations 4-fold in the dam-2 strain and 2-fold in the dam+ strain. The dam-2 mutation had no effect on the levels of ICR191 required for induction of frameshift mutations, but introduction of pMQ148 reduced the ICR191-induced mutagenesis 2-fold. The dam+/pMQ148, dam-2/pMQ148 and dam-1/pMQ148 strains showed identical dose-response curves for both 9AA and ICR191. These results are consistent with a slightly reduced (dam-2) or increased (pMQ148) rate of methylation at the replication fork. The 2AP sensitivity of the dam-2 strain cannot be simply explained. Furthermore, addition of methionine to the assay medium reverses the 2AP sensitivity of the dam-2 strain, but has no effect on 9AA mutagenesis.  相似文献   

14.
Double mutants of Escherichia coli dam (DNA adenine methyltransferase) strains with ruvA, ruvB, or ruvC could not be constructed, whereas dam derivatives with recD, recF, recJ, and recR were viable. The ruv gene products are required for Holliday junction translocation and resolution of recombination intermediates. A dam recG (Holliday junction translocation) mutant strain was isolated but at a very much lower frequency than expected. The inviability of a dam lexA (Ind(-)) host was abrogated by the simultaneous presence of plasmids encoding both recA and ruvAB. This result indicates that of more than 20 SOS genes, only recA and ruvAB need to be derepressed to allow for dam mutant survival. The presence of mutS or mutL mutations allowed the construction of dam lexA (Ind(-)) derivatives. The requirement for recA, recB, recC, ruvA, ruvB, ruvC, and possibly recG gene expression indicates that recombination is essential for viability of dam bacteria probably to repair DNA double-strand breaks. The effect of mutS and mutL mutations indicates that DNA mismatch repair is the ultimate source of most of these DNA breaks. The requirement for recombination also suggests an explanation for the sensitivity of dam cells to certain DNA-damaging agents.  相似文献   

15.
We present a method for determining preference for methylation at minor methylation sites. The target DNA sequence is first subjected to computer-assisted analysis to predict which restriction endonuclease(s) will generate fragments that will contain only one or two likely minor methylation site(s). The target DNA is then methylated in vitro with a radioactive methyl-group donor and subjected to digestion by the chosen restriction enzyme(s). The amount of radioactivity in the various fragments is determined, after separating them using polyacrylamide gel electrophoresis. We documented the effect of nearby bases on the methylation preference and the relative preference for methylation at some specific minor methylation sites.  相似文献   

16.
Summary We have examined the level of expression of the SOS regulon in cells lacking DNA adenine methylase activity (dam -). Mud (Ap, lac) fusions to several SOS operons (recA, lexA, uvrA, uvrB, uvrD, sulA, dinD and dinF) were found to express higher levels of -galactosidase in dam - strains than in isogenic dam + strains. The attempted construction of dam - strains that were also mutant in one of several SOS genes indicated that the viability of methylase-deficient strains correlates with the inactivation of the SOS repressor (LexA protein). Consistent with this, the wild-type functions of two LexA-repressed genes (recA and ruv) appear to be required for dam - strain viability.  相似文献   

17.
Two forms of the DNA polymerase of bacteriophage T7   总被引:8,自引:0,他引:8  
The DNA polymerase induced by bacteriophage T7 can be isolated in two different forms. The distinguishing properties are: 1) the specific activities of the associated 3' to 5' single- and double-stranded DNA exonuclease activities, 2) the ability to catalyze DNA synthesis and strand displacement at nicks, and 3) the degree of stimulation of DNA synthesis on nicked, duplex DNAs by the gene 4 protein of phage T7. Form I is obtained when purification is carried out in the absence of EDTA while Form II is obtained if all purification steps are carried out in the presence of 0.1 mM EDTA. Form I has low levels of both exonuclease activities, less than 5% of those of Form II. Form I can initiate DNA synthesis at nicks leading to strand displacement, a consequence of which is its ability to be stimulated manyfold by the helicase activity of gene 4 protein on nicked, duplex templates. On the other hand, Form II cannot initiate synthesis at nicks even in the presence of gene 4 protein. In keeping with its higher exonuclease activities, Form II of T7 DNA polymerase has higher turnover of nucleotides activity (5-fold higher than Form I) and exhibits greater fidelity of nucleotide incorporation, as indicated by the rate of incorporation of 2-aminopurine deoxynucleoside monophosphate. Both forms of T7 DNA polymerase exhibit higher fidelity of nucleotide incorporation than bacteriophage T4 DNA polymerase. In the absence of EDTA or in the presence of FeSO4 or CaCl2, Form II irreversibly converts to Form I. The physical difference between the two forms is not known. No difference in molecular weight can be detected between the corresponding subunits of each form of T7 DNA polymerase as measured by gel electrophoresis in the presence of sodium dodecyl sulfate.  相似文献   

18.
Tryptophan hydroxylase (TPH) catalyses the rate-limiting step in the biosynthesis of serotonin. In vertebrates, the homologous genes tph1 and tph2 encode two different enzymes with distinct patterns of expression, enzyme kinetics and regulation. Variants of TPH2 have recently reported to be associated with reduced serotonin production and behavioural alterations in man and mice. We have produced the human forms of these enzymes in Esherichia coli and in human embryonic kidney cell lines (HEK293) and examined the effects of mutations on their heterologous expression levels, solubility, thermal stability, secondary structure, and catalytic properties. Pure human TPH2 P449R (corresponds to mouse P447R) had comparable catalytic activity (V(max)) and solubility relative to the wild type, but had decreased thermal stability; whereas human TPH2 R441H had decreased activity, solubility and stability. Thus, we consider the variations in kinetic values between wild-type and TPH2 mutants to be of secondary importance to their effects on protein stability and solubility. These findings provide potential molecular explanations for disorders related to the central serotonergic system, such as depression or suicidal behaviour.  相似文献   

19.
Sequence analysis of the nicks and termini of bacteriophage T5 DNA.   总被引:1,自引:2,他引:1       下载免费PDF全文
Bacteriophage T5 DNA, when isolated from mature phage particles, contains several nicks in one of the two strands. The 5'-terminal nucleotides at the nicks were labeled with polynucleotide kinase and [gamma-32P]ATP, and the 3'-terminal nucleotides were labeled with Escherichia coli DNA polymerase I and [alpha-32P]dGTP. The sequences around the nicks were analyzed by partial nuclease digestion followed by homochromatography fractionation of the resulting oligonucleotides. The nicks had at least the sequence -PuOH pGpCpGpC- in common. In addition, the two 5' external termini had the first seven nucleotides in common.  相似文献   

20.
The Fe(II)/2OG (2-oxoglutarate)-dependent dioxygenase superfamily comprises proteins that couple substrate oxidation to decarboxylation of 2OG to succinate. A member of this class of mononuclear non-haem Fe proteins is the Escherichia coli DNA/RNA repair enzyme AlkB. In the present work, we describe the magnetic and optical properties of the yet uncharacterized human ALKBH4 (AlkB homologue). Through EPR and UV-visible spectroscopy studies, we address the Fe-binding environment of the proposed catalytic centre of wild-type ALKBH4 and an Fe(II)-binding mutant. We could observe a novel unusual Fe(III) high-spin EPR-active species in the presence of sulfide with a g(max) of 8.2. The Fe(II) site was probed with NO. An intact histidine-carboxylate site is necessary for productive Fe binding. We also report the presence of a unique cysteine-rich motif conserved in the N-terminus of ALKBH4 orthologues, and investigate its possible Fe-binding ability. Furthermore, we show that recombinant ALKBH4 mediates decarboxylation of 2OG in absence of primary substrate. This activity is dependent on Fe as well as on residues predicted to be involved in Fe(II) co-ordination. The present results demonstrate that ALKBH4 represents an active Fe(II)/2OG-dependent decarboxylase and suggest that the cysteine cluster is involved in processes other than Fe co-ordination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号