首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of various detergents and pH on the interfacial binding and activity of two fungal lipases from Yarrowia lipolytica (YLLIP2) and Thermomyces lanuginosus (TLL) were investigated using trioctanoin emulsions as well as monomolecular films spread at the air-water interface. Contrary to TLL, YLLIP2 was found to be more sensitive than TLL to interfacial denaturation but it was protected by detergent monomers and lowering the temperature. At pH 7.0, both the interfacial binding and the activities on trioctanoin of YLLIP2 and TLL were inhibited by sodium taurodeoxycholate (NaTDC). At pH 6.0, however, YLLIP2 remained active on trioctanoin in the presence of NaTDC, whereas TLL did not. YLLIP2 activity on trioctanoin was associated with strong interfacial binding of the enzyme to trioctanoin emulsion, whereas TLL was mostly detected in the water phase. The combined effects of bile salts and pH on lipase activity were therefore enzyme-dependent. YLLIP2 binds more strongly than TLL at oil-water interfaces at low pH when detergents are present. These findings are particularly important for lipase applications, in particular for enzyme replacement therapy in patients with pancreatic enzyme insufficiency since high detergent concentrations and highly variable pH values can be encountered in the GI tract.  相似文献   

2.
A novel strain of Rhizopus oryzae WPG secretes a noninduced lipase (ROLw) in the culture medium; purified ROLw is a protein of 29 kDa, the 45 N-terminal amino acid residues were sequenced, this sequence is very homologous to Rhizopus delemar lipase (RDL), Rhizopus niveus lipase (RNL) and R. oryzae lipase (ROL29) sequences; the cloning and sequencing of the part of the gene encoding the mature ROLw, shows two nucleotides differences with RDL, RNL and ROL29 sequences corresponding to the change of the residues 134 and 200; ROLw does not present the interfacial activation phenomenon when using tripropionin or vinyl propionate as substrates; the lipase activity is maximal at pH 8 and at 37 degrees C, specific activities of 3500 or 900 U mg(-1) were measured at 37 degrees C and at pH 8, using olive oil emulsion or tributyrin as substrates, respectively; ROLw is unable to hydrolyse triacylglycerols in the presence of high concentration of bile salts; it is a serine enzyme as it is inhibited by tetrahydrolipstatin and was stable between pH 5 and pH 8.  相似文献   

3.
A lipolytic activity was located in the chicken uropygial glands, from which a carboxylesterase (CUE) was purified. Pure CUE has an apparent molecular mass of 50 kDa. The purified esterase displayed its maximal activity (200 U/mg) on short-chain triacylglycerols (tributyrin) at a temperature of 50°C. No significant lipolytic activity was found when medium chain (trioctanoin) or long chain (olive oil) triacylglycerols were used as substrates. The enzyme retained 75% of its maximal activity when incubated during 2h at 50°C. The NH(2)-terminal amino acid sequence showed similarities with the esterase purified recently from turkey pharyngeal tissue. Esterase activity remains stable after its incubation during 30 min in presence of organic solvents such as hexane or butanol. CUE is a serine enzyme since it was inactivated by phenylmethanesulphonyl fluoride (PMSF), a serine-specific inhibitor. The purified enzyme, which tolerates the presence of some organic solvent and a high temperature, can be used in non-aqueous synthesis reactions. Hence, the uropygial esterase immobilised onto CaCO(3) was tested to produce the isoamyl and the butyl acetate (flavour esters). Reactions were performed at 50°C in presence of hexane. High synthesis yields of 91 and 67.8% were obtained for isoamyl and butyl acetate, respectively.  相似文献   

4.
We have studied the kinetics of hydrolysis of triacylglycerols, vinyl esters and p-nitrophenyl butyrate by four carboxylesterases of the HSL family, namely recombinant human hormone-sensitive lipase (HSL), EST2 from Alicyclobacillus acidocaldarius, AFEST from Archeoglobus fulgidus, and protein RV1399C from Mycobacterium tuberculosis. The kinetic properties of enzymes of the HSL family have been compared to those of a series of lipolytic and non-lipolytic carboxylesterases including human pancreatic lipase, guinea pig pancreatic lipase related protein 2, lipases from Mucor miehei and Thermomyces lanuginosus, cutinase from Fusarium solani, LipA from Bacillus subtilis, porcine liver esterase and Esterase A from Aspergilus niger. Results indicate that human HSL, together with other lipolytic carboxylesterases, are active on short chain esters and hydrolyze water insoluble trioctanoin, vinyl laurate and olive oil, whereas the action of EST2, AFEST, protein RV1399C and non-lipolytic carboxylesterases is restricted to solutions of short chain substrates. Lipolytic and non-lipolytic carboxylesterases can be differentiated by their respective value of K(0.5) (apparent K(m)) for the hydrolysis of short chain esters. Among lipolytic enzymes, those possessing a lid domain display higher activity on tributyrin, trioctanoin and olive oil suggesting, then, that the lid structure contributes to enzyme binding to triacylglycerols. Progress reaction curves of the hydrolysis of p-nitrophenyl butyrate by lipolytic carboxylesterases with lid domain show a latency phase which is not observed with human HSL, non-lipolytic carboxylesterases, and lipolytic enzymes devoid of a lid structure as cutinase.  相似文献   

5.
The gene encoding the TPL N-terminal domain (N-TPL), fused with a His6-tag, was cloned and expressed in Pichia pastoris, under the control of the glyceraldehyde-3-phosphate dehydrogenase (GAP) constitutive promoter. The recombinant protein was successfully expressed and secreted with an expression level of 5 mg/l of culture medium after 2 days of culture. The N-TPL was purified through a one-step Ni-NTA affinity column with a purification factor of approximately 23-fold. The purified N-TPL, with a molecular mass of 35 kDa, had a specific activity of 70 U/mg on tributyrin. Surprisingly, this domain was able to hydrolyse long chain TG with a specific activity of 11 U/mg using olive oil as substrate. This result was confirmed by TLC analysis showing that the N-TPL was able to hydrolyse insoluble substrates as olive oil. N-TPL was unstable at temperatures over 37°C and lost 70% of its activity at acid pH, after 5 min of incubation. The N-TPL exhibited non linear kinetics, indicating its rapid denaturation at the tributyrin–water interface. Colipase increased the N-TPL stability at the lipid-water interface, so the TPL N-terminal domain probably formed functional interactions with colipase despite the absence of the C-terminal domain.  相似文献   

6.
Summary Fifty-nine lipase-producing fungal strains were isolated from Brazilian savanna soil by employing enrichment culture tecniques. An agar plate medium containing bile salts and olive oil emulsion was employed for isolating and growing fungi in primary screening assay. Twenty-one strains were selected by the ratio of the lipolytic halo radius and the colonies radius. Eleven strains were considered good producers under conditions of submerged liquid fermentation (shaken cultures) and solid-state fermentation. The most productive strain, identified as Colletotrichum gloesporioides, produced 27,700 U/l of lipase under optimized conditions and the crude lipase preparation was capable of hydrolysing a broad range of substrates including lard, natural oils and tributyrin.  相似文献   

7.
A thermophilic microorganism, Bacillus thermoleovorans ID-1, isolated from hot springs in Indonesia, showed extracellular lipase activity and high growth rates on lipid substrates at elevated temperatures. On olive oil (1.5%, w/v) as the sole carbon source, the isolate ID-1 grew very rapidly at 65 degrees C with its specific growth rate (2.50 h(-1)) and its lipase activity reached the maximum value of 520 U l(-1) during the late exponential phase and then decreased. In addition to this, isolate ID-1 could grow on a variety of lipid substrates such as oils (olive oil, soybean oil and mineral oil), triglycerides (triolein, tributyrin) and emulsifiers (Tween 20, 40). The excreted lipase of ID-1 was purified 223-fold to homogeneity by ammonium sulfate precipitation, DEAE-Sephacel ion-exchange chromatography and Sephacryl S-200 gel filtration chromatography. As a result, the relative molecular mass of the lipase was determined to be 34 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The enzyme showed optimal activity at 70-75 degrees C and pH 7.5 and exhibited 50% of its original activity after 1 h incubation at 60 degrees C and 30 min at 70 degrees C and its catalytic function was activated in the presence of Ca(2+) or Zn(2+).  相似文献   

8.
2-Sulfobenzoic cyclic anhydride (SBA) rapidly and selectively inactivates porcine pancreatic lipase (PPL) only when added during the hydrolysis of an emulsified ester such as tributyrin or dodecyl acetate. The present data suggest that the inactivation of PPL occurs preferentially at the oil/water interface and not in the aqueous phase, since colipase and bile salt were found to adversely affect the inhibition process. Moreover, it is shown that at a molar ratio of SBA to pure PPL of 1, 40% of the lipase activity was already irreversibly lost. Complete inactivation was observed at SBA to pure PPL molar ratios of 120. A 60% inactivation occurred when 0.5 mol of 3H-labeled SBA was attached per mole of PPL. The SBA-inactivated PPL competes for binding to the dodecyl acetate/water interface as efficiently as the native enzyme. Larger SBA concentrations are required when crude lipase preparations are used as well as with pure PPL in the presence of bile salts and colipase. Lipases were found to have variable sensitivities to SBA inactivation, depending on their origin. In the presence of bile salts and tributyrin at pH 6.0, human gastric lipase activity was not affected by the presence of a 10(6) molar excess of SBA.  相似文献   

9.
Chicken pancreatic lipase (CPL) was purified from delipidated pancreas. Pure CPL was obtained after ammonium sulphate fractionation, then DEAE-cellulose, Sephacryl S-200 gel filtration, and FPLC Mono-Q Sepharose columns. The pure lipase is a glycosylated monomer having a molecular mass of about 50kDa. The 23 N-terminal amino acid residues of CPL were sequenced. The sequence is similar to those of avian and mammalian pancreatic lipases. CPL presents the interfacial activation phenomenon tested with tripropionin or vinyl ester. When CPL was inhibited by synthetic detergent (TX-100) or amphipathic protein (BSA), simultaneous addition of bile salts and colipase was required to restore the full CPL activity. In the absence of colipase and bile salts, CPL was unable to hydrolyse tributyrin emulsion. This enzyme can tolerate, more efficiently than HPL, the accumulation of long-chain free fatty acids at the interface when olive oil emulsion was used as substrate in the absence of bile salts and colipase. The CPL activity, under these conditions, was linear whereas that of HPL decreased rapidly. Anti-TPL polyclonal antibodies cross-reacted specifically with CPL. The gene encoding the mature CPL was cloned and sequenced. The deduced amino acid sequence of the mature lipase shows a high degree of homology with the mammalian pancreatic lipases. A 3D structure model of CPL was built using the HPL structure as template. We have concluded that a slight increase in the exposed hydrophobic residues on the surface of CPL, as compared to HPL, could be responsible for a higher tolerance to the presence of long-chain free fatty acids at the lipid/water interface.  相似文献   

10.
We investigated the surface behavior of gum Arabic (GA) as well as its effects on the lipolytic activity of human pancreatic lipase (HPL) and Humicola lanuginosa lipase (HLL), using emulsions of triacylglycerols (TAG) with various chain lengths. The effects of GA on the interfacial binding of HPL were also investigated. In the presence of 4 mM sodium taurodeoxycholate (NaTDC), GA (3% w/v, final concentration) had no effect on the HPL activity measured in the presence of colipase, whatever the type of TAG used. However, in the absence of bile salts or at low bile salt concentrations, GA inhibited the HPL activity when trioctanoin (TC8) and purified soybean oil (PSO) were used as substrates. At 3% (w/v, final concentration), GA strongly desorbed pure HPL from the TC8 interface and the classical anchoring effect of colipase was clearly observed. Both crude and dialyzed GA solutions were found to be highly tensioactive at the air-water as well as the oil-water interface using the drop technique. In conclusion, GA, or a putative contaminant present in GA, was found to be surface active and to have similar effects to those of bile salts on the interfacial binding and activity of HPL.  相似文献   

11.
The human pancreatic lipase-related protein 2 (HPLRP2) was produced in the methylotrophic yeast Pichia pastoris. The HPLRP2 cDNA corresponding to the protein coding sequence including the native signal sequence, was cloned into the pPIC9K vector and integrated into the genome of P. pastoris. P. pastoris transformants secreting high-level rHPLRP2 were obtained and the expression level into the liquid culture medium reached about 40mg/L after 4 days of culture. rHPLRP2 was purified by a single anion-exchange step after an overnight dialysis. N-terminal sequence analysis showed that the purified rHPLRP2 mature protein possessed a correct N-terminal amino acid sequence indicating that its signal peptide was properly processed. Mass spectrometry analysis showed that the recombinant HPLRP2 molecular weight was 52,532Da which was 2451Da greater than the mass calculated from the sequence of the protein (50,081Da) and 1536Da greater than the mass of the native human protein (50,996Da). In vitro deglycosylation experiments by peptide:N-glycosidase F (PNGase F) indicated that rHPLRP2 secreted from P. pastoris was N-glycosylated. Specific conditions were setup in order to obtain a recombinant protein free of glycan chain. We observed that blocking glycosylation in vivo by addition of tunicamycin in the culture medium during the production resulted in a correct processing of the rHPLRP2 mature protein. The lipase activity of glycosylated or nonglycosylated rHPLRP2, which was about 800U/mg on tributyrin, was inhibited by the presence of bile salts and not restored by adding colipase. In conclusion, the experimental procedure which we have developed will allow us to get a high-level production in P. pastoris of glycosylated and nonglycosylated rHPLRP2, suitable for subsequent biophysical and structural studies.  相似文献   

12.
Pig pancreatic carboxylester lipase (cholesterol esterase, E.C. 3.1.1.13) was inactivated at a tributyrin/water interface. The apparent rate constant for inactivation increased with increase in the particle surface area of the tributyrin emulsion. The large energy of activation and entropy change for inactivation (33.7 Kcal.mol-1 and 35.8 cal.mol-1.deg-1, using 5 mM sonicated tributyrin at 37 degrees C, respectively) suggest that the observed inactivation reflects denaturation of the enzyme at the tributyrin/water interface. Bile salts protected the enzyme from irreversible inactivation at the tributyrin/water interface. The protection by bile salts was related both to their concentration and to the tributyrin concentration (substrate surface area). The protection by bile salts was not related to their concentration below or above their critical micellar concentration; the binding of bile salts to enzyme was probably the dominant protection factor. Similar stabilization was observed with other detergents such as Brij-35, Triton X-100, and sodium dodecyl sulfate. These results suggest that inactivation of carboxylester lipase occurs at a high-energy lipid-water interface and that an important role of bile salts in vivo is to stabilize carboxylester lipase at interfaces.  相似文献   

13.
In recent years, recovery and characterization of enzymes from fish and aquatic invertebrates have taken place and this had led to the emergence of some interesting new applications of these enzymes. However, much less is known about lipases from crustaceans. A lipolytic activity was located in the crab digestive glands (hepatopancreas), from which a crab digestive lipase (CDL) was purified. Pure CDL has a molecular mass of 65kDa as determined by SDS/PAGE analysis. Unlike known digestive lipases, CDL displayed its maximal activity on long and short-chain triacylglycerols at a temperature of 60 degrees C. A specific activity of 500U/mg or 130U/mg was obtained with TC(4) or olive oil as substrate, respectively. Only 10% of the maximal activity was detected at 37 degrees C. The enzyme retained 80% of its maximal activity when incubated during 10 min at 60 degrees C, and was completely inactivated at a temperature higher than 65 degrees C. Interestingly, neither colipase, nor bile salts were detected in the crab hepatopancreas. Which suggests that colipase evolved in invertebrates simultaneously with the appearance of an exocrine pancreas and a true liver which produce bile salts. No similarity between the 13 N-terminal amino acid residues of CDL was found with those of known other digestive lipases.  相似文献   

14.
Efficient dietary fat digestion is essential for newborns who consume more dietary fat per body weight than at any other time of life. In many mammalian newborns, pancreatic lipase related protein 2 (PLRP2) is the predominant duodenal lipase. Pigs may be an exception since PLRP2 expression has been documented in the intestine but not in the pancreas. Because of the differences in tissue-specific expression, we hypothesized that the kinetic properties of porcine PLRP2 would differ from those of other mammals. To characterize its properties, recombinant porcine PLRP2 was expressed in HEK293T cells and purified to homogeneity. Porcine PLRP2 had activity against tributyrin, trioctanoin and triolein. The activity was not inhibited by bile salts and colipase, which is required for the activity of pancreatic triglyceride lipase (PTL), minimally stimulated PLRP2 activity. Similar to PLRP2 from other species, PLRP2 from pigs had activity against galactolipids and phospholipids. Importantly, porcine PLRP2 hydrolyzed a variety of dietary substrates including pasteurized human mother's milk and infant formula and its activity was comparable to that of PTL. In conclusion, porcine PLRP2 has broad substrate specificity and has high triglyceride lipase activity even in the absence of colipase. The data suggest that porcine PLRP2 would be a suitable lipase for inclusion in recombinant preparations for pancreatic enzyme replacement therapy.  相似文献   

15.
Hydrolysis of the emulsified mixture of short-chain triacylglycerols by porcine pancreatic lipase in the presence of procolipase and micellar sodium taurodeoxycholate has been studied. Increase in the content of tributyrin and trioctanoin in the mixture with triacetin had highly cooperative effects on the formation of the interfacial lipase procolipase complex. Abrupt enhancement of the complex stability was observed in the presence of 0.4-0.6 mol mol-1 of tributyrin or 0.58 mol mol-1 of trioctanoin in the substrate phase. The affinity of lipase towards interfacially bound procolipase for the trioctanoin containing 0.07-0.42 mol mol-1 of triacetin was approximately three times higher than that for pure trioctanoin. The cooperative processes involved in complex formation did not contribute to the affinity of the interfacial lipase/(pro)colipase complex towards substrate molecules and its catalytic activity.  相似文献   

16.
Biochemical and molecular characterization of Staphylococcus xylosus lipase   总被引:1,自引:0,他引:1  
The Staphylococcus xylosus strain secretes a non-induced lipase in culture medium: S. xylosus lipase (SXL). Pure SXL is a monomeric protein (43 kDa). The 23 N-terminal amino acid residues were sequenced. This sequence is identical to that of Staphylococcus simulans lipase (SSL); in addition, it exhibits a high degree of homology with Staphylococcus aureus lipase (SAL NCTC 8530) sequences. The cloning and sequencing of gene part encoding the mature lipase shows one nucleotide difference with SSL, which corresponds to the change of one residue at a position 311. The lipase activity is maximal at pH 8.2 and 45 degrees C. SXL is able to hydrolyse triacylglycerols without chain length specificity. The specific activity of about 1900 U/mg was measured using tributyrin or triolein as substrate at pH 8.2 and at 45 degrees C in the presence of 2 mM CaCl2. In contrast to some previously characterized staphylococcal lipases, Ca2+ is not required to trigger the activity of SXL. SXL was found to be stable between pH 5 and pH 8.5. The enzyme maintains 50% of its activity after a 15-min incubation at 60 degrees C. Using tripropionin or vinyl esters as substrates, SXL does not present the interfacial activation phenomenon. Unlike many lipases, SXL is able to hydrolyse its substrate in the presence of bile salts or amphiphilic proteins. SXL is a serine enzyme, which is inhibited by THL.  相似文献   

17.
The sequence corresponding to the mature lipase of Rhizopus oryzae WPG (ROLw) was subcloned in the pPIC9K expression vector, with a strong AOX1 promoter, to construct a recombinant lipase protein containing six histidine residues at the N-terminal. The His-tagged lipase was expressed in Pichia Pastoris X33 and purified to homogeneity by a simple, one-step purification protocol using immobilized metal affinity chromatography (Ni-NTA resin). High level expression of the lipase by Pichia Pastoris X33 cells harbouring the lipase gene containing expression vector was observed upon induction with 2.5 g/l methanol at 28°C; the specific activity of the purified His6-ROLw was 1,500 or 760 U/mg using olive oil emulsion or tributyrin as substrates, respectively. To check the importance of Asn 134 His substitution in the affinity and substrate selectivity of ROLw, the mutant His6-ROLw-N134H was overexpressed in Pichia Pastoris X33 and purified with the same nickel metal affinity column. The specific activity of the purified His-tagged ROLw-N134H was 5,900 and 35 U/mg using olive oil emulsion or tributyrin as substrate. A comparative study of the wild type (His6-ROLw) and the mutant (His6-ROLw-N134H) proteins was carried out. A 3D structure model of ROLw was built using the RNL structure as template. We have concluded that a slight increase in the exposed hydrophilic residues on the surface of ROLw as compared to RNL (ROLwN134H) could be responsible for a higher selectivity of ROlw for long and short chain triacylglycerols at the lipid/water interface and then explaining the importance of Asn 134 for the chain length specificity of ROLw. This property is quite rare among Rhizopus lipases and gives this new lipase great potential for use in the field of biocatalysis.  相似文献   

18.
The gene encoding the extracellular lipase of Staphylococcus xylosus (SXL) was cloned using PCR technique. The sequence corresponding to the mature lipase was subcloned in the pET-14b expression vector, with a strong T7 promoter, to construct a recombinant lipase protein containing six histidine residues at the N-terminal. High level expression of the lipase by Escherichia coli BL21 (DE3) cells harbouring the lipase gene containing expression vector was observed upon induction with 0.4 mM IPTG at 37 degrees C. One-step purification of the recombinant lipase was achieved with Ni-NTA resin. The specific activity of the purified His-tagged SXL was 1500 or 850 U/mg using tributyrin or olive oil emulsion as substrate, respectively. It has been proposed that the region near the residue Asp290 could be involved in the selection of the substrate. Therefore, we also mutated the residue Asp 290 by Ala using site-directed mutagenesis. The mutant SXL-D290A was overexpressed in E. coli BL21 (DE3) and purified with the same nickel metal affinity column. The specific activity of the purified His-tagged SXL-D290A mutant was 1000 U/mg using either tributyrin or olive oil emulsion as substrate. A comparative study of the wild type (His(6)-SXL) and the mutant (His(6)-SXL-D290A) proteins was carried out. Our results confirmed that Asp290 is important for the chain length specificity and catalytic efficiency of the enzyme.  相似文献   

19.
To differentiate esterases from lipases at the structure–function level, we have compared the kinetic properties and structural features of sequence-related esterase 1 from rabbit liver (rLE) and bile-salt-activated lipase from bovine pancreas (bBAL). In contrast to rLE, bBAL hydrolyses water-insoluble medium and long chain esters as vinyl laurate, trioctanoin and olive oil. Conversely, rLE and bBAL are both active on water-soluble short chain esters as vinyl acetate, vinyl propionate, vinyl butyrate, tripropionin, tributyrin and p-nitrophenyl butyrate. However, the enzymes show distinctive kinetic behaviours. rLE displays maximal activity at low substrate concentration, below the critical micelle concentration, whereas bBAL acts preferencially on emulsified esters, at concentration exceeding the solubility limit. Comparison of the 3D structures of rLE and bBAL shows, in particular, that the peptide loop at positions 116–123 in bBAL is deleted in rLE. This peptide segment interacts with a bile salt molecule thus inducing a conformational transition which gives access to the active site. Inhibition studies and manual docking of a bulky ester molecule as vinyl laurate in the catalytic pocket of rLE and bBAL show that the inability of the esterase to hydrolyse large water-insoluble esters is not due to steric hindrance. It is hypothesized that esterases lack specific hydrophobic structures involved both in the stabilization of the lipase–lipid adsorption complex at interfaces and in the spontaneous transfer of a single substrate molecule from interface to the catalytic site.  相似文献   

20.
Lipase of Mucor pusillus NRRL 2543 was recovered with ammonium sulfate precipitation, gel filtration on Sephadex G-75, and anion-exchange chromatography on diethylaminoethyl-Sephadex A-50. Maximal glycerol ester hydrolase (lipase) activity was observed at pH 5.0 to 5.5 and 50 C when trioctanoin and olive oil were used as substrates. The enzyme also showed esterase activity; it hydrolyzed, with the exception of methyl butyrate, all methyl esters tested. A minimum chain length of six carbons appeared to be a requirement for esterase activity, which was maximal at about pH 5.5 with methyl dodecanoate (C(12)) as the substrate. Neither the glycerol ester hydrolase (lipase) nor the esterase activity of the enzyme appeared to be affected by thiol group inhibitors, chelating agents, and reducing compounds. On the other hand, hydrolysis of triolein and methyl dodecanoate was arrested to the same extent in the presence of diisopropyl fluorophosphate, which suggested the involvement of serine in the active center of the enzyme. The enzyme remained stable during a 30-day storage at - 10 C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号