首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The midbrain-hindbrain (MH) domain of the vertebrate embryonic neural plate displays a stereotypical profile of neuronal differentiation, organized around a neuron-free zone ('intervening zone', IZ) at the midbrain-hindbrain boundary (MHB). The mechanisms establishing this early pattern of neurogenesis are unknown. We demonstrate that the MHB is globally refractory to neurogenesis, and that forced neurogenesis in this area interferes with the continued expression of genes defining MHB identity. We further show that expression of the zebrafish bHLH Hairy/E(spl)-related factor Her5 prefigures and then precisely delineates the IZ throughout embryonic development. Using morpholino knock-down and conditional gain-of-function assays, we demonstrate that Her5 is essential to prevent neuronal differentiation and promote cell proliferation in a medial compartment of the IZ. We identify one probable target of this activity, the zebrafish Cdk inhibitor p27Xic1. Finally, although the her5 expression domain is determined by anteroposterior patterning cues, we show Her5 does not retroactively influence MH patterning. Together, our results highlight the existence of a mechanism that actively inhibits neurogenesis at the MHB, a process that shapes MH neurogenesis into a pattern of separate neuronal clusters and might ultimately be necessary to maintain MHB integrity. Her5 appears as a partially redundant component of this inhibitory process that helps translate early axial patterning information into a distinct spatiotemporal pattern of neurogenesis and cell proliferation within the MH domain.  相似文献   

2.
3.
4.
The organizer at the midbrain-hindbrain boundary (MHB) forms at the interface between Otx2 and Gbx2 expressing cell populations, but how these gene expression domains are set up and integrated with the remaining machinery controlling MHB development is unclear. Here we report the isolation, mapping, chromosomal synteny and spatiotemporal expression of gbx1 and gbx2 in zebrafish. We focus in particular on the expression of these genes during development of the midbrain-hindbrain territory. Our results suggest that these genes function in this area in a complex fashion, as evidenced by their highly dynamic expression patterns and relation to Fgf signaling. Analysis of gbx1 and gbx2 expression during formation of the MHB in mutant embryos for pax2.1, fgf8 and pou2 (noi, ace, spg), as well as Fgf-inhibition experiments, show that gbx1 acts upstream of these genes in MHB development. In contrast, gbx2 activation requires ace (fgf8) function, and in the hindbrain primordium, also spg (pou2). We propose that in zebrafish, gbx genes act repeatedly in MHB development, with gbx1 acting during the positioning period of the MHB at gastrula stages, and gbx2 functioning after initial formation of the MHB, from late gastrulation stages onwards. Transplantation studies furthermore reveal that at the gastrula stage, Fgf8 signals from the hindbrain primordium into the underlying mesendoderm. Apart from the general involvement of gbx genes in MHB development reported also in other vertebrates, these results emphasize that early MHB development can be divided into multiple steps with different genetic requirements with respect to gbx gene function and Fgf signaling. Moreover, our results provide an example for switching of a specific gene function of gbx1 versus gbx2 between orthologous genes in zebrafish and mammals.  相似文献   

5.
Wnt signals have been shown to be involved in multiple steps of vertebrate neural patterning, yet the relative contributions of individual Wnts to the process of brain regionalization is poorly understood. Wnt1 has been shown in the mouse to be required for the formation of the midbrain and the anterior hindbrain, but this function of wnt1 has not been explored in other model systems. Further, wnt1 is part of a Wnt cluster conserved in all vertebrates comprising wnt1 and wnt10b, yet the function of wnt10b during embryogenesis has not been explored. Here, we report that in zebrafish wnt10b is expressed in a pattern overlapping extensively with that of wnt1. We have generated a deficiency allele for these closely linked loci and performed morpholino antisense oligo knockdown to show that wnt1 and wnt10b provide partially redundant functions in the formation of the midbrain-hindbrain boundary (MHB). When both loci are deleted, the expression of pax2.1, en2, and her5 is lost in the ventral portion of the MHB beginning at the 8-somite stage. However, wnt1 and wnt10b are not required for the maintenance of fgf8, en3, wnt8b, or wnt3a expression. Embryos homozygous for the wnt1-wnt10b deficiency display a mild MHB phenotype, but are sensitized to reductions in either Pax2.1 or Fgf8; that is, in combination with mutant alleles of either of these loci, the morphological MHB is lost. Thus, wnt1 and wnt10b are required to maintain threshold levels of Pax2.1 and Fgf8 at the MHB.  相似文献   

6.
The organizer at the midbrain-hindbrain boundary (MHB organizer) has been proposed to induce and polarize the midbrain during development. We investigate the requirement for the MHB organizer in acerebellar mutants, which lack a MHB and cerebellum, but retain a tectum, and are mutant for fgf8, a candidate inducer and polarizer. We examine the retinotectal projection in the mutants to assay polarity in the tectum. In mutant tecta, retinal ganglion cell (RGC) axons form overlapping termination fields, especially in the ventral tectum, and along both the anterior-posterior and dorsal-ventral axis of the tectum, consistent with a MHB requirement in generating midbrain polarity. However, polarity is not completely lost in the mutant tecta, in spite of the absence of the MHB. Moreover, graded expression of the ephrin family ligand Ephrin-A5b is eliminated, whereas Ephrin-A2 and Ephrin-A5a expression is leveled in acerebellar mutant tecta, showing that ephrins are differentially affected by the absence of the MHB. Some RGC axons overshoot beyond the mutant tectum, suggesting that the MHB also serves a barrier function for axonal growth. By transplanting whole eye primordia, we show that mapping defects and overshooting largely, but not exclusively, depend on tectal, but not retinal genotype, and thus demonstrate an independent function for Fgf8 in retinal development. The MHB organizer, possibly via Fgf8 itself, is thus required for midbrain polarisation and for restricting axonal growth, but other cell populations may also influence midbrain polarity.  相似文献   

7.
On the basis of developmental gene expression, the vertebrate central nervous system comprises: a forebrain plus anterior midbrain, a midbrain-hindbrain boundary region (MHB) having organizer properties, and a rhombospinal domain. The vertebrate MHB is characterized by position, by organizer properties and by being the early site of action of Wnt1 and engrailed genes, and of genes of the Pax2/5/8 subfamily. Wada and others (Wada, H., Saiga, H., Satoh, N. and Holland, P. W. H. (1998) Development 125, 1113-1122) suggested that ascidian tunicates have a vertebrate-like MHB on the basis of ascidian Pax258 expression there. In another invertebrate chordate, amphioxus, comparable gene expression evidence for a vertebrate-like MHB is lacking. We, therefore, isolated and characterized AmphiPax2/5/8, the sole member of this subfamily in amphioxus. AmphiPax2/5/8 is initially expressed well back in the rhombospinal domain and not where a MHB would be expected. In contrast, most of the other expression domains of AmphiPax2/5/8 correspond to expression domains of vertebrate Pax2, Pax5 and Pax8 in structures that are probably homologous - support cells of the eye, nephridium, thyroid-like structures and pharyngeal gill slits; although AmphiPax2/5/8 is not transcribed in any structures that could be interpreted as homologues of vertebrate otic placodes or otic vesicles. In sum, the developmental expression of AmphiPax2/5/8 indicates that the amphioxus central nervous system lacks a MHB resembling the vertebrate isthmic region. Additional gene expression data for the developing ascidian and amphioxus nervous systems would help determine whether a MHB is a basal chordate character secondarily lost in amphioxus. The alternative is that the MHB is a vertebrate innovation.  相似文献   

8.
9.
10.
11.
12.
In vertebrates, the common expression border of two homeobox genes, Otx2 and Gbx2, demarcates the prospective midbrain-hindbrain border (MHB) in the neural plate at the end of gastrulation. The presence of a compartment boundary at the MHB has been demonstrated, but the mechanism and timing of its formation remain unclear. We show by genetic inducible fate mapping using a Gbx2(CreER) knock-in mouse line that descendants of Gbx2(+) cells as early as embryonic day (E) 7.5 do not cross the MHB. Without Gbx2, hindbrain-born cells abnormally populate the entire midbrain, demonstrating that Gbx2 is essential for specifying hindbrain fate. Gbx2(+) and Otx2(+) cells segregate from each other, suggesting that mutually exclusive expression of Otx2 and Gbx2 in midbrain and hindbrain progenitors is responsible for cell sorting in establishing the MHB. The MHB organizer gene Fgf8, which is expressed as a sharp transverse band immediately posterior to the lineage boundary at the MHB, is crucial in maintaining the lineage-restricted boundary after E7.5. Partial deletion of Fgf8 disrupts MHB lineage separation. Activation of FGF pathways has a cell-autonomous effect on cell sorting in midbrain progenitors. Therefore, Fgf8 from the MHB may signal the nearby mesencephalic cells to impart distinct cell surface characteristics or induce local cell-cell signaling, which consequently prevents cell movements across the MHB. Our findings reveal the distinct function of Gbx2 and Fgf8 in a stepwise process in the development of the compartment boundary at the MHB and that Fgf8, in addition to its organizer function, plays a crucial role in maintaining the lineage boundary at the MHB by restricting cell movement.  相似文献   

13.
The midbrain-hindbrain interface gives rise to a boundary of particular importance in CNS development as it forms a local signalling centre, the proper functioning of which is essential for the formation of tectum and cerebellum. Positioning of the mid-hindbrain boundary (MHB) within the neuroepithelium is dependent on the interface of Otx2 and Gbx2 expression domains, yet in the absence of either or both of these genes, organiser genes are still expressed, suggesting that other, as yet unknown mechanisms are also involved in MHB establishment. Here, we present evidence for a role for Notch signalling in stabilising cell lineage restriction and regulating organiser gene expression at the MHB. Experimental interference with Notch signalling in the chick embryo disrupts MHB formation, including downregulation of the organiser signal Fgf8. Ectopic activation of Notch signalling in cells of the anterior hindbrain results in an exclusion of those cells from rhombomeres 1 and 2, and in a simultaneous clustering along the anterior and posterior boundaries of this area, suggesting that Notch signalling influences cell sorting. These cells ectopically express the boundary marker Fgf3. In agreement with a role for Notch signalling in cell sorting, anterior hindbrain cells with activated Notch signalling segregate from normal cells in an aggregation assay. Finally, misexpression of the Notch modulator Lfng or the Notch ligand Ser1 across the MHB leads to a shift in boundary position and loss of restriction of Fgf8 to the MHB. We propose that differential Notch signalling stabilises the MHB through regulating cell sorting and specifying boundary cell fate.  相似文献   

14.
In vertebrates, the engrailed genes are expressed at early neurula stage in a narrow stripe encompassing the midbrain-hindbrain boundary (MHB), a region from which a peculiar structure, the isthmus, is formed. Knock-out experiments in mice demonstrated that these genes are essential for the development of this structure and of its derivatives. In contrast, little is known about the effect of an overexpression of engrailed genes in vertebrate development. Here we report the isolation of Ol-eng2, a medaka fish (Oryzias latipes) engrailed gene. We have monitored the effects of its widespread expression following mRNA injections in 1- and 2-cell medaka and Xenopus embryos. We found that the ectopic expression of Ol-eng2 predominantly results in an altered development of the anterior brain, including an inhibition of optic vesicle formation. No change in the patterns of mesencephalic and telencephalic markers were observed. In contrast, expressions of markers of the diencephalon were strongly repressed in injected embryos. Furthermore, the endogenous Ol-eng2, Pax2, Wnt1 and Fgf8, which are essential components of the MHB genetic cascade, were ectopically expressed in this region. Therefore, we propose that Ol-eng2 induces de novo formation of an isthmus-like structure, which correlates with the development of ectopic midbrain structures, including optic tectum. A competence of the diencephalon to change to a midbrain fate has been demonstrated in isthmic graft experiments. Our data demonstrate that this change can be mimicked by ectopic engrailed expression alone.  相似文献   

15.
16.
17.
Neurogenesis in both vertebrates and invertebrates is tightly controlled in time and space involving both positive and negative regulators. We report here that the bHLH factor Her5 acts as a prepattern gene to prevent neurogenesis in the anlage of the midbrain/hindbrain boundary in the zebrafish neural plate. This involves selective suppression of both neurogenin1 (ngn1) and coe2 mRNA expression in a process that is independent of Notch signalling, and where inhibition of either ngn1 or coe2 expression is sufficient to prevent neuronal differentiation across the midbrain-hindbrain boundary. A ngn1 transgene faithfully responds to Her5 and deletion analysis of the transgene identifies an E-box in a ngn1 upstream enhancer to be required for repression by Her5. Together our data demonstrate a role of Her5 as a prepattern factor in the spatial definition of proneural domains in the zebrafish neural plate, in a manner similar to its Drosophila homologue Hairy.  相似文献   

18.
The midbrain-hindbrain (MHB) junction has the properties of an organizer that patterns the MHB region early in vertebrate development. Fgf8 is thought to mediate this organizer function. In addition to Fgf8, Fgf17 and Fgf18 are also expressed in the MHB junction. Fgf17 is expressed later and broader than either Fgf8 or Fgf18. Disrupting the Fgf17 gene in the mouse decreased precursor cell proliferation in the medial cerebellar (vermis) anlage after E11.5. Loss of an additional copy of Fgf8 enhanced the phenotype and accelerated its onset, demonstrating that both molecules cooperate to regulate the size of the precursor pool of cells that develop into the cerebellar vermis. However, expression patterns of Wnt1, En2, Pax5 and Otx2 were not altered suggesting that specification and patterning of MHB tissue was not perturbed and that these FGFs are not required to pattern the vermis at this stage of development. The consequence of this developmental defect is a progressive, dose-dependent loss of the most anterior lobe of the vermis in mice lacking Fgf17 and in mice lacking Fgf17 and one copy of Fgf8. Significantly, the differentiation of anterior vermis neuroepithelium was shifted rostrally and medially demonstrating that FGF also regulates the polarized progression of differentiation in the vermis anlage. Finally, this developmental defect results in an ataxic gait in some mice.  相似文献   

19.
Patterning of the central nervous system is regulated by a signaling center located at the midbrain-hindbrain boundary (MHB), or isthmus organizer. Fibroblast growth factors secreted from the MHB are required and sufficient to direct the ordered growth and regionalization of the midbrain and anterior hindbrain. In an unbiased secretion cloning screen of Xenopus gastrula embryos we identified a novel gene, which we designated as Isthmin (xIsm) due to its prominent expression at the MHB. xIsm encodes a secreted protein of 449 amino acids containing one copy of the thrombospondin type 1 repeat (TSR). We also found orthologous Isthmin genes in human (hIsm) and mouse (mIsm), as well as a gene encoding an Isthmin-like human unknown protein (hIsm-l). The conservation of a unique carboxy-terminal region between hIsm and hIsm-l suggests that Isthmin is the founding member of a new family of secreted proteins. xIsm was strongly expressed maternally in the Xenopus egg and showed zygotic expression in the ventral blastopore lip, notochord, and MHB. Additional expression domains were detected in neural crest, ear vesicle, and developing blood islands. Interestingly, xIsm was co-expressed with Fibroblast growth factor-8 (xFgf-8) at multiple sites including the MHB, indicating that these two genes are part of a synexpression group which also includes sprouty and sef homologs.  相似文献   

20.
Here we describe the isolation of the zebrafish fgfr3 gene, its structure and chromosomal location. Expression in wild type embryos occurs in the axial mesoderm, the diencephalon, the anterior hindbrain and the anterior spinal cord. In the hindbrain, a differential expression of fgfr3 was detected at several levels of intensity, with the highest expression in the posterior rhombomere 1 that is morphologically distinct from the anterior part, which develops into the cerebellum. Further, analysis of fgfr3 expression in mutants deficient in the formation of the midbrain-hindbrain boundary (MHB), noi(-/-) and ace(-/-), demonstrated that in the absence of Pax2.1 and FGF8 activity, the expression domains of FGFR3 expand into the MHB, tegmentum, cerebellum and optic tectum, which are the affected structures in these mutants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号