首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adenosine 5-phosphosulfate (APS) kinase from Penicillium chrysogenum is irreversibly inactivated by trinitrobenzene sulfonate in a pseudo-first order process. Under standard assay conditions kapp was 1.9 X 10(-3) s-1. Saturating MgATP or MgADP decreased Kapp to a limit of 4.1 X 10(-4) s-1. There are several explanations for the partial protection, including the presence of two essential lysyl side chains, only one of which is at the active site. Analysis of the inactivation kinetics by means of linear plots derived for partial protection yielded dissociation constants for E X MgATP (Kia) and E X MgADP (Kiq) of 2.9 mM and 1.8 mM, respectively. Low concentrations of APS alone provided no protection against trinitrobenzene sulfonate inactivation, but in the presence of 1 mM MgADP, as little as 2 microM APS provided additional protection while 100 microM APS reduced kapp to the limit of 4.1 X 10(-4) s-1. The results confirm the formation of a dead end E X MgADP X APS proposed earlier as the cause of the potent substrate inhibition by APS. Linear plots of 1/delta k versus 1/[MgADP] at different fixed [APS] and of 1/delta k versus 1/[APS] at different fixed [MgADP] were characteristic of the ordered binding of MgADP before APS (or the highly synergistic random binding of the two ligands). The true APS dissociation constant of the dead end E X MgADP X APS complex (K'ib) was determined to be 1.9 microM. From the value of K'ib and the previously reported value of KIB (apparent inhibition constant of APS as a substrate inhibitor of the catalytic reaction at saturating MgATP), the ratio of the MgADP and PAPS release rate constants (k4/k3) was calculated to be 11. Inactivation kinetics was used to study the effects of Mg2+ and high salt on ADP and APS binding. The results indicated that free ADP binds to the enzyme more tightly than does MgADP at low ionic strength. High salt decreased free ADP binding, but had little effect on MgADP binding. APS binds more tightly to E X MgADP in the absence or presence of salt than to E X ADP.  相似文献   

2.
Addition of MgADP to skinned skeletal muscle fibers causes a rise in Ca(2+)-activated isometric tension. Mechanisms underlying this tension increase have been investigated by rapid photogeneration of ADP within skinned single fibers of rabbit psoas muscle. Photolysis of caged ADP (P2-1(2-nitrophenyl)ethyladenosine 5'-diphosphate) resulted in an exponential increase in isometric tension with an apparent rate constant, kADP, of 9.6 +/- 0.3 s-1 (mean +/- SE, n = 28) and an amplitude, PADP, of 4.9 +/- 0.3% Po under standard conditions (0.5 mM photoreleased MgADP, 4 mM MgATP, pH 7.0, pCa 4.5, 0.18 M ionic strength, 15 degrees C). PADP depended upon the concentration of photoreleased MgADP as well as the concentration of MgATP. A plot of 1/PADP vs. 1/[MgADP] at three MgATP concentrations was consistent with competition between MgADP and MgATP for the same site on the crossbridge. The rate of the transient, kADP, also depended upon the concentration of MgADP and MgATP. At both 4 and 1 mM MgATP, kADP was not significantly different after photorelease of 0.1-0.5 mM MgADP, but was reduced by 28-40% when 3.5 mM MgADP was added before photorelease of 0.5 mM MgADP. kADP was accelerated by about twofold when MgATP was varied from 0.5 to 8 mM MgATP. These effects of MgATP and MgADP were not readily accounted for by population of high force-producing states resulting from reversal of the ADP dissociation process. Rather, the results suggest that competition between MgADP and MgATP for crossbridges at the end of the cycle slows detachment leading to accumulation of force-generating crossbridges. Elevation of steady- state Pi concentration from 0.5 to 30 mM caused acceleration of kADP from 10.2 +/- 0.5 to 27.8 +/- 1.8 s-1, indicating that the tension rise involved crossbridge flux through the Pi dissociation step of the cycle.  相似文献   

3.
The kinetics of reduction of indigocarmine-dye-oxidized Fe protein of nitrogenase from Klebsiella pneumoniae (Kp2ox) by sodium dithionite in the presence and absence of MgADP were studied by stopped-flow spectrophotometry at 23 degrees C and at pH 7.4. Highly co-operative binding of 2MgADP (composite K greater than 4 X 10(10) M-2) to Kp2ox induced a rapid conformation change which caused the redox-active 4Fe-4S centre to be reduced by SO2-.(formed by the predissociation of dithionite ion) with k = 3 X 10(6) M-1.s-1. This rate constant is at least 30 times lower than that for the reduction of free Kp2ox (k greater than 10(8) M-1.s-1). Two mechanisms have been considered and limits obtained for the rate constants for MgADP binding/dissociation and a protein conformation change. Both mechanisms give rate constants (e.g. MgADP binding 3 X 10(5) less than k less than 3 X 10(6) M-1.s-1 and protein conformation change 6 X 10(2) less than k less than 6 X 10(3) s-1) that are similar to those reported for creatine kinase (EC 2.7.3.2). The kinetics also show that in the catalytic cycle of nitrogenase with sodium dithionite as reductant replacement of 2MgADP by 2MgATP occurs on reduced and not oxidized Kp2. Although the Kp2ox was reduced stoichiometrically by SO2-. and bound two equivalents of MgADP with complete conversion into the less-reactive conformation, it was only 45% active with respect to its ability to effect MgATP-dependent electron transfer to the MoFe protein.  相似文献   

4.
Xie L  Li WX  Rhodes T  White H  Schoenberg M 《Biochemistry》1999,38(18):5925-5931
Alkylation of myosin's Cys-707 (SH1) and Cys-697 (SH2) has profound consequences for myosin's ability to interact with actin and hydrolyze MgATP. Pre-steady-state measurements of myosin-S1 alkylated at SH1 and SH2 by N-phenylmaleimide (NPM) in the presence of ATP were taken to identify the steps of the reaction that are altered. It was found that the rate constant most affected by this modification is the apparent rate of the ATP hydrolysis step. This rate constant is reduced 20000-fold, an effect comparable in magnitude to the effect of the same modification on the binding of MgATP to S1 or acto-S1 [Xie, L., and Schoenberg, M. (1998) Biochemistry 37, 8048]. In contrast, the rate constants of phosphate release and dissociation of acto-S1 by ATP were reduced <20-fold. For unmodified S1, the enhancement of fluorescence seen after addition of ATP had the same rate constant as the ATP hydrolysis step (S1.ATP if S1.ADP.Pi) measured by single-turnover experiments in a quench-flow experiment. This is consistent with results previously observed [Johnson, K. A., and Taylor, E. W. (1978) Biochemistry 17, 3432]. However, NPM-modified S1 exhibited virtually no fluorescence enhancement upon ATP binding. This provides further evidence that M.ATP is the predominant intermediate of NPM-S1-catalyzed ATP hydrolysis.  相似文献   

5.
R Aguirre  F Gonsoulin  H C Cheung 《Biochemistry》1986,25(22):6827-6835
Isolated myosin heads (subfragment 1) were modified by covalent attachment of 5-(iodoacetamido)fluorescein or 5-(iodoacetamido)salicylic acid to the essential sulfhydryl group SH1. The extrinsic fluorescence of the modified proteins was sensitive to binding of nucleotides and F-actin. With the fluorescein derivative [subfragment 1 (S1) modified with 5-(iodoacetamido)fluorescein (IAF) at SH1 (S1-AF)], association with MgADP decreased the probe fluorescence by 30%, whereas binding to actin increased the emission by a factor of 2. In the ternary complex acto-S1-AF X MgADP, the effect of nucleotide on the intensity of the attached fluorescein canceled the effect of actin. The fluorescence state of this ternary complex was similar to that of S1-AF X MgADP. The emission of S1-AF was resolved into two components with lifetimes of 4.3 and 0.6 ns and relative contributions of 33% and 67%, respectively. Interaction of S1-AF with nucleotides and actin did not alter the lifetimes but significantly shifted their fractional contributions. Quenching studies showed that the short lifetime likely arose from the fluorescein moiety statically quenched by internal groups. Binding of MgADP to the salicylate derivative [S1 modified with 5-(iodoacetamido)salicylic acid at SH1 (S1-SAL)] induced a 25% enhancement of the probe fluorescence, whereas formation of acto-S1-SAL decreased the emission by 10% regardless of whether MgADP was bound to the protein. Both labeled S1 species bound MgADP with a similar affinity, comparable to that of unmodified S1 previously reported by other investigators.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The sliding speed of unregulated thin filaments in motility assays is only about half that of the unloaded shortening velocity of muscle fibers. The addition of regulatory proteins, troponin and tropomyosin, is known to increase the sliding speed of thin filaments in the in vitro motility assay. To learn if this effect is related to the rate of MgADP dissociation from the acto-S1 cross-bridge head, the effects of regulatory proteins on nucleotide binding and release in motility assays were measured in the presence and absence of regulatory proteins. The apparent affinity of acto-heavy meromyosin (acto-HMM) for MgATP was reduced by the presence of regulatory proteins. Similarly, the regulatory proteins increase the concentration of MgADP required to inhibit sliding. These results suggest that regulatory proteins either accelerate the rate of MgADP release from acto-HMM-MgADP or slow its binding to acto-HMM. The reduction of temperature also altered the relationship between thin filament sliding speed and the regulatory proteins. At lower temperatures, the regulatory proteins lost their ability to increase thin filament sliding speed above that of unregulated thin filaments. It is hypothesized that structural changes in the actin portion of the acto-myosin interface are induced by regulatory protein binding to actin.  相似文献   

7.
G Wang  M Kawai 《Biophysical journal》1996,71(3):1450-1461
The elementary steps surrounding the nucleotide binding step in the cross-bridge cycle were investigated with sinusoidal analysis in rabbit soleus slow-twitch muscle fibers. The single-fiber preparations were activated at pCa 4.40, ionic strength 180 mM, 20 degrees C, and the effects of MgATP (S) and MgADP (D) concentrations on three exponential processes B, C, and D were studied. Our results demonstrate that all apparent (measured) rate constants increased and saturated hyperbolically as the MgATP concentration was increased. These results are consistent with the following cross-bridge scheme: [cross-bridge scheme: see text] where A = actin, M = myosin, S = MgATP, and D = MgADP. AM+S is a collision complex, and AM*S is its isomerized form. From our studies, we obtained K0 = 18 +/- 4 mM-1 (MgADP association constant, N = 7, average +/- sem), K1a = 1.2 +/- 0.3 mM-1 (MgATP association constant, N = 8 hereafter), k1b = 90 +/- 20 s-1 (rate constant of ATP isomerization), k-1b = 100 +/- 9 s-1 (rate constant of reverse isomerization), K1b = 1.0 +/- 0.2 (equilibrium constant of isomerization), k2 = 21 +/- 3 s-1 (rate constant of cross-bridge detachment), k-2 = 14.1 +/- 1.0 s-1 (rate constant of reversal of detachment), and K2 = 1.6 +/- 0.3 (equilibrium constant of detachment). K0 is 8 times and K1a is 2.2 times those in rabbit psoas, indicating that nucleotides bind to cross-bridges more tightly in soleus slow-twitch muscle fibers than in psoas fast-twitch muscle fibers. These results indicate that cross-bridges of slow-twitch fibers are more resistant to ATP depletion than those of fast-twitch fibers. The rate constants of ATP isomerization and cross-bridge detachment steps are, in general, one-tenth to one-thirtieth of those in psoas.  相似文献   

8.
Binding of ADP and orthophosphate during the ATPase reaction of nitrogenase   总被引:1,自引:0,他引:1  
The pre-steady-state ATPase activity of nitrogenase from Azotobacter vinelandii was investigated. By using a rapid-quench technique, it has been demonstrated that with the oxidized nitrogenase complex the same burst reaction of MgATP hydrolysis occurs as observed with the reduced complex, namely 6-8 mol orthophosphate released/mol MoFe protein. It is concluded that the pre-steady-state ATPase activity is independent of electron transfer from Fe protein to MoFe protein. Results obtained from gel centrifugation experiments showed that during the steady state of reductant-independent ATP hydrolysis there is a slow dissociation of one molecule of MgADP from the nitrogenase proteins (koff less than or equal to 0.2 s-1); the second MgADP molecule dissociates much faster (koff greater than or equal to 0.6 s-1). Under the same conditions orthophosphate was found to be associated with the nitrogenase proteins. The rate of dissociation of orthophosphate from the nitrogenase complex, as estimated from the gel centrifugation experiments, is in the same order of magnitude as the steady-state turnover rate of the reductant-independent ATPase activity (0.6 mol Pi formed X s-1 X mol Av2(-1) at 22 degrees C). These data are consistent with dissociation of orthophosphate or MgADP being rate-limiting during nitrogenase-catalyzed reductant-independent ATP hydrolysis.  相似文献   

9.
The role of the substrate (MgATP) and product (MgADP) molecules in cross-bridge kinetics is investigated by small amplitude length oscillations (peak to peak: 3 nm/cross-bridge) and by following amplitude change and phase shift in tension time courses. The range of discrete frequencies used for this investigation is 0.25-250 Hz, which corresponds to 0.6-600 ms in time domain. This report investigates the identity of the high frequency exponential advance (process C), which is equivalent to "phase 2" of step analysis. The experiments are performed in maximally activated (pCa 4.5-5.0) single fibers from chemically skinned rabbit psoas fibers at 20 degrees C and at the ionic strength 195 mM. The rate constant 2 pi c deduced from process (C) increases and saturates hyperbolically with an increase in MgATP concentration, whereas the same rate constant decreases monotonically with an increase in MgADP concentration. The effects of MgATP and MgADP are opposite in all respects we have studied. These observations are consistent with a cross-bridge scheme in which MgATP and MgADP are in rapid equilibria with rigorlike cross-bridges, and they compete for the substrate site on myosin heads. From our measurements, the association constants are found to be 1.4 mM-1 for MgATP and 2.8 mM-1 for MgADP. We further deduced that the composite second order rate constant of MgATP binding to cross-bridges and subsequent isomerization/dissociation reaction to be 0.57 x 10(6)M-1s-1.  相似文献   

10.
MgATP binding to the actomyosin complex is followed by the dissociation of actin and myosin. The rate of this dissociation process was determined from the relationship between the maximum velocity of shortening and the MgATP concentration. It is shown here that the overall dissociation rate is rather similar in different types of muscle fibers. The relation between MgATP concentration and the maximum shortening velocity was investigated in fast and slow fibers and bundles of myofibrils of the iliofibularis muscle of Xenopus laevis at 4 degrees C from which the sarcolemma was either removed mechanically or made permeable by means of a detergent. A small segment of each fiber was used for a histochemical determination of fiber type. At 5 mM MgATP, the fast fibers had a maximum shortening velocity (Vmax) of 1.74 +/- 0.12 Lo/s (mean +/- SEM) (Lo: segment length at a sarcomere length of 2.2 microns). For the slow fibers Vmax was 0.41 +/- 0.15 Lo/s. In both cases, the relationship between Vmax and the ATP concentration followed the hyperbolic Michaelis-Menten relation. A Km of 0.56 +/- 0.06 mM (mean +/- SD) was found for the fast fibers and of 0.16 +/- 0.03 mM for the slow fibers. Assuming that Vmax is mainly determined by the crossbridge detachment rate, the apparent second order dissociation rate for the actomyosin complex in vivo would be 3.8.10(5) M-1s-1 for the fast fibers and 2.9.10(5) M-1 s-1 for the slow fibers. Maximum power output as a function of the MgATP concentration was derived from the force-velocity relationships.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
C Tesi  F Travers  T Barman 《Biochemistry》1990,29(7):1846-1852
The initial steps of actomyosin subfragment 1 (acto-S1) ATPase (dissociation and binding of ATP) were studied at -15 degrees C with 40% ethylene glycol as antifreeze. The dissociation kinetics were followed by light scattering in a stopped-flow apparatus, and the binding of ATP was followed by the ATP chase method in a rapid-flow quench apparatus. The data from the chase experiments were fitted to E + ATP in equilibrium (K1) E.ATP----(k2) E*ATP, where E is acto-S1 or S1. The kinetics of the binding of ATP to acto-S1 were sensitive to the degree of saturation of the actin with S1. There was a sharp transition with actin nearly saturated with S1: when the S1 to actin ratio was low, the kinetics were fast (K1 greater than 300 microM, k2 greater than 40 s-1); when it was high, they were slow (K1 = 14 microM, k2 = 2 s-1). With S1 alone K1 = 12 microM and k2 = 0.07 S-1. With acto heavy meromyosin (acto-HMM) the binding kinetics were the same as with saturated acto-S1, regardless of the HMM to actin ratio. The dissociation kinetics were independent of the S1 to actin ratio. Saturation kinetics were obtained with Kd = 460 microM and kd = 75 S-1. The data for the saturated acto-S1 could be fitted to a reaction scheme, but for lack of structural information the abrupt dependence of the ATP binding kinetics upon the S1 to actin ratio is difficult to explain.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The nitrogenase catalytic cycle involves binding of the iron (Fe) protein to the molybdenum-iron (MoFe) protein, transfer of a single electron from the Fe protein to the MoFe protein concomitant with the hydrolysis of at least two MgATP molecules, followed by dissociation of the two proteins. Earlier studies found that combining the Fe protein isolated from the bacterium Clostridium pasteurianum with the MoFe protein isolated from the bacterium Azotobacter vinelandii resulted in an inactive, nondissociating Fe protein-MoFe protein complex. In the present work, it is demonstrated that primary electron transfer occurs within this nitrogenase tight complex in the absence of MgATP (apparent first-order rate constant k = 0.007 s-1) and that MgATP accelerates this electron transfer reaction by more than 10,000-fold to rates comparable to those observed within homologous nitrogenase complexes (k = 100 s-1). Electron transfer reactions were confirmed by EPR spectroscopy. Finally, the midpoint potentials (Em) for the Fe protein [4Fe-4S]2+/+ cluster and the MoFe protein P2+/N cluster were determined for both the uncomplexed and complexed proteins and with or without MgADP. Calculations from electron transfer theory indicate that the measured changes in Em are not likely to be sufficient to account for the observed nucleotide-dependent rate accelerations for electron transfer.  相似文献   

13.
Adenosine-5'-phosphosulfate (APS) kinase from Penicillium chrysogenum, loses catalytic activity at temperatures greater than approximately 40 degrees C. When the heat-inactivated enzyme is cooled to 30 degrees C or lower, activity is regained in a time-dependent process. At an intermediary temperature (e.g. 36 degrees C) an equilibrium between active and inactive forms can be demonstrated. APS kinase from P. chrysogenum is a dimer (Mr = 57,000-60,000) composed of two apparently identical subunits. Three lines of evidence suggest that the reversible inactivation is a result of subunit dissociation and reassociation. (a) Inactivation is a first-order process. The half-time for inactivation at a given temperature is independent of the original enzyme concentration. Reactivation follows second-order kinetics. The half-time for reactivation is inversely proportional to the original enzyme concentration. (b) The equilibrium active/inactive ratio at 36 degrees C increases as the total initial enzyme concentration is increased. However, Keq,app at 5 mM MgATP and 36 degrees C calculated as [inactive sites]2/0.5 [active sites] is near-constant at about 1.7 X 10(-8) M over a 10-fold concentration range of enzyme. (c) At 46 degrees C, the inactive P. chrysogenum enzyme (assayed after reactivation) elutes from a calibrated gel filtration column at a position corresponding to Mr = 33,000. Substrates and products of the APS kinase reaction had no detectable effect on the rate of inactivation. However, MgATP and MgADP markedly stimulated the reactivation process (kapp = 3 X 10(5) M-1 X s-1 at 30 degrees C and 10 mM MgATP). The kapp for reactivation was a nearly linear function of MgATP up to about 20 mM suggesting that the monomer has a very low affinity for the nucleotide compared to that of the native dimer. Keq,app at 36 degrees C increases as the MgATP concentration is increased. The inactivation rate constant increased as the pH was decreased but no pK alpha could be determined. The reactivation rate constant increased as the pH was increased. An apparent pK alpha of 6.4 was estimated.  相似文献   

14.
Flow dialysis was used to study the binding of MgATP and MgADP to the nitrogenase proteins of Azotobacter vinelandii. Both reduced and oxidized Av2 bind two molecules of MgADP, with the following dissociation constants: reduced Av2, K1 = 0.091 +/- 0.021 mM and K2 = 0.044 +/- 0.009 mM; oxidized Av2, K1 = 0.024 +/- 0.015 mM and K2 = 0.039 +/- 0.022 mM. Binding of MgADP to reduced Av2 shows positive co-operativity. Oxidized Av2 binds two molecules of MgATP with dissociation constants K1 = 0.049 +/- 0.016 mM and K2 = 0.18 +/- 0.05 mM. Binding data of MgATP to reduced Av2 can be fitted by assuming one binding site, but a better fit was obtained by assuming two binding sites on the protein with negative co-operativity and with dissociation constants K1 = 0.22 +/- 0.03 mM and K2 = 1.71 +/- 0.50 mM. It was found that results concerning the number of binding sites and the dissociation constants of MgATP-Av2 and MgADP-Av2 complexes depend to a great extent on the specific activity of the Av2 preparation used, and that it is difficult to correct binding data for inactive protein. No binding of MgADP to Av1 could be demonstrated. Binding studies of MgADP to a mixture of Av1 and Av2 showed that Av1 did not affect the binding of MgADP to either oxidized or reduced Av2. Inhibition studies were performed to investigate the interaction of MgATP and MgADP binding to oxidized and reduced Av2. All the experimental data can be explained by the minimum hypothesis, i.e. the presence of two adenine nucleotide binding sites on Av2. MgATP and MgADP compete for these two binding sites on the Fe protein.  相似文献   

15.
The adenosine 5'-O-(3-thiotriphosphate) (ATP gamma S) induced dissociation of actomyosin subfragment 1 (S1) has been investigated by monitoring the light scattering changes that occur on dissociation. We have shown that ATP gamma S dissociates acto-S1 by a mechanism similar to that of ATP but at a rate 10 times slower. The maximum rate of dissociation is limited by an isomerization of the ternary actin-S1-nucleotide complex, which has a rate of 500 s-1 for ATP gamma S and an estimated rate of 5000 s-1 for ATP (20 degrees C, 0.1 M KCl, pH 7.0). The activation energy for the isomerization is the same for ATP and ATP gamma S, and both show a break in the Arrhenius plot at 5 degrees C. The reaction between acto-S1 and ATP was also followed by the fluorescence of a pyrene group covalently attached to Cys-374. We show that the fluorescence of the pyrene group reports the isomerization step and not actin dissociation. The characterization of this isomerization is discussed in relation to force-generating models of the actomyosin cross-bridge cycle.  相似文献   

16.
The kinetics of electron-transfer reactions involving flavodoxins from Klebsiella pneumoniae (KpFld), Azotobacter chroococcum (AcFld), Anacystis nidulans (AnFld) and Megasphaera elsdenii (MeFld), the free, MgADP-bound and MgATP-bound forms of the Fe protein component of nitrogenase from K. pneumoniae [Kp2, Kp2(MgADP)2 and Kp2(MgATP)2] and Na2S2O4 were studied by stopped-flow spectrophotometry. Kinetic evidence was obtained for the formation of binary protein complexes involving KpFldSQ (semiquinone) with either Kp2(MgADP)2 (KD = 49 microM) or Kp2(MgATP)2 (KD = 13 microM) but not with Kp2 (KD greater than 730 microM). The binding of 2MgATP or 2MgADP to Kp2 therefore not only shifts the midpoint potential (Em) of the [4Fe-4S] centre from -200 mV to -320 mV or -350 mV respectively but also changes the affinity of Kp2 for KpFldSQ. Thermodynamically unfavourable electron from Kp2(MgADP)2 and Kp2(MgATP)2 to KpFldSQ occurs within the protein complexes with k = 1.2 s-1 (delta E = -72 mV) and 0.5 s-1 (delta E = -120 mV) respectively. Although AcFldSQ is reduced by Kp2, Kp2(MgADP)2 and Kp2(MgATP)2 (k = 8 x 10(3), 2.4 x 10(3) and 9 x 10(2) M-1.s-1 respectively), protein-complex formation is weak in each case (KD greater than 700 microM). Electron transfer in the physiologically important and thermodynamically favourable direction from Kp2FldHQ (hydroquinone) and AcFldHQ to Kp2ox.(MgADP)2 (the state of Kp2 that accepts electrons from FldHQ in the catalytic cycle of nitrogenase) is rapid (k greater than 10(6) M-1.s-1). The second-order rate constants for the reduction of KpFldSQ, AcFldSQ, AnFldSQ and MeFldSQ by SO2.- (active reductant formed by the predissociation of S2O4(2-) ion) exhibited the linear free-energy relationship predicted by the Marcus theory of electron transfer.  相似文献   

17.
The effects of MgADP and MgATP on the kinetics of a pre-steady-state electron-transfer reaction and on the steady-state kinetics of H2 evulution for nitrogenase proteins of K. pneumoniae were studied. MgADP was a competitive inhibitor of MgATP in the MgATP-induced electron transfer from the Fe-protein to the Mo-Fe-protein. A dissociation constant K'i = 20 micron was determined for MgADP. The release of MgADP or a coupled conformation change in the Fe-protein of K.pneumoniae occurred with a rate comparable with that of electron transfer, k approximately 2 X 10(2)S-1. Neither homotropic nor heterotropic interactions involving MgATP and MgADP were observed for this reaction. Steady-state kinetic data for H2 evolution exhibited heterotropic effects between MgADP and MgATP. The data have been fitted to symmetry and sequential-type models involving conformation changes in two identical subunits. The data suggest that the enzyme can bind up to molecules of either MgATP or MgADP, but is unable to bind both nucleotides simultaneously. The control of H2 evolution by the MgATP/MgADP ratio is not at the level of electron transfer between the Fe- and Mo-Fe-proteins.  相似文献   

18.
The ionic strength dependence of the binding of rabbit skeletal muscle myosin subfragment 1, S1, to F-actin in the presence of saturating concentrations of MgATP or MgADP was analyzed in order to determine the association constants at zero ionic strength [K(0)] and the products of the net effective electric charges (magnitude of zMzA) at the binding interfaces. K(0) and magnitude of zM A were 1 x 10(6) M-1 and 17 esu2 for S1-MgADP,P, and 5 x 10(7) M-1 and 7 esu2 for S1-MgADP, respectively, for binding to F-actin at 25 degrees C. At ionic strengths near physiological, the increase in affinity is close to 10(4)-fold for this transition that may correspond to force generation in muscle fibers. The large, from 17 to 7 esu2, decrease in the electrostatic contribution to binding appears to be correlated with a much larger increase in nonelectrostatic interactions, unlike the simpler transition of actin-bound S1-MgADP to S1, which appears to be due entirely to electrostatic changes [Highsmith, S. (1990) Biochemistry 29, 10690-10694]. These results for acto-S1-MgADP,P to acto-S1-MgADP suggest that a substantial transformation of the actin binding site on S1 occurs even if there is a translocation to a new interface.  相似文献   

19.
Hemerythrin from Siphonosoma cumanense has a trimeric structure consisting of identical subunits, which have no cooperativity nor Bohr effect on oxygen-binding. The trimer was dissociated into its monomers by the modification of the SH group of its cysteines with p-chloromercuriphenylsulfonic acid (PCMPS), which was monitored by stopped-flow of both spectrophotomeric and small angle X-ray scattering methods. The results showed that the process involved sequential modification of the SH groups, dissociation into monomers, and auto-oxidation of ferrous iron in the active center. The modification of the SH groups with PCMPS followed second-order kinetics with a rate constant of 1.8 M-1.s-1. The dissociation and auto-oxidation followed first-order kinetics with rate constants of 4 X 10(-3) s-1 and 5 X 10(-4) s-1, respectively. The obtained rate of auto-oxidation was much faster than that in the native state. These findings lead to the conclusion that the trimeric state of S. cumanense hemerythrin is necessary to prevent auto-oxidation.  相似文献   

20.
The nitrendipine receptor associated with the voltage-dependent calcium channel from rabbit skeletal muscle transverse tubule membranes has been solubilized by detergent extraction. A highly stable solubilized receptor preparation was obtained using 3-[(3-cholamidopropyl)dimethyl-ammonio]-1-propanesulfonate as detergent with phospholipids or glycerol present as stabilizing agents. Binding of [3H]nitrendipine to the solubilized receptor was reversible and saturable. At 4 degrees C the equilibrium dissociation constant of the [3H]nitrendipine X receptor complex was 7 +/- 3 nM and was close to that determined from the rate constants of association (k1 = 1.3 10(5) M-1 s-1) and dissociation (k-1 = 1.10 X 10(-3) s-1) of 8.4nM. The nitrendipine concentration that gave a half-maximal inhibition of [3H]nitrendipine binding to the solubilized receptor was 10 nM, which was similar to the values for the dissociation constant determined for the radiolabelled ligand. [3H]Nitrendipine binding to its solubilized receptor was also inhibited by other antiarrythmic drugs, such as bepridil and verapamil, and enhanced by d-cis-diltiazem. Since these drugs are apparent non-competitive inhibitors of [3H]nitrendipine binding it was concluded that these different binding sites are tightly coupled. Sucrose density sedimentation of solubilized nitrendipine receptor resulted in the separation of three [3H]nitrendipine binding activities with apparent sedimentation coefficients of 11.4 S, 14.4 S and 21 S.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号