首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A chronic catheter was inserted into the ventral caudal artery of male Sprague-Dawley rats to allow for sampling of blood and measurement of blood pressure and heart rate in conscious animals without handling. The day after surgery, one group of rats was transferred individually from the home cage to a shock chamber and after 5 min received 60 footshocks (2.5 mA, 0.4 sec in duration, at 5-sec intervals). This procedure was repeated two additional times during the same day. Control animals were handled in an identical manner but were not shocked. Previous experience with footshock had no effect on basal plasma levels of norepinephrine (NE) and epinephrine (EPI) or on resting blood pressure and heart rate as measured 2 days after surgery. When transferred to the shock chamber, previously shocked rats had greater increases in plasma NE and EPI and heart rate. In addition, previously shocked rats were less active and defecated more frequently than did control rats. However, there were no differences in the responses of previously shocked and control rats to 5 min of intermittent footshock. Results of this study demonstrate an activation of the sympatho-adrenal medullary system and attendant changes in the cardiovascular system and behavior of rats during the anticipation of footshocks. This suggests that the functioning of sympathetic nervous system and the adrenal medulla provides a sensitive measure of arousal and fear in rats.  相似文献   

2.
We have examined in two inbred rat strains basal and stress-induced increases in plasma levels of epinephrine (EPI) and norepinephrine (NE) and compared these with activities of the adrenal enzymes involved in the synthesis of catecholamines. There were no differences in basal levels of NE and EPI in plasma of adult male rats of the Wistar-Kyoto (WKY) and Brown-Norway (B-N) strains. However, following 5 min. of intermittent footshock, plasma levels of both catecholamines were twice as high in WKY rats as in B-N rats. In the adrenals of unstressed rats, activities of tyrosine hydroxylase and dopamine-beta-hydroxylase were significantly higher in B-N rats. In addition, the adrenal weights and the contents of NE but not EPI were greater in B-N rats. Thus, in these two rat strains, the capacity of the adrenal gland to synthesize and store catecholamines appeared to be inversely related to plasma levels of NE and EPI after stress. The differences between the strains appeared to be due to differences in the rates of removal of catecholamines from the peripheral circulation as well as to differences in the rate of release of catecholamines from the sympatho-adrenal medullary system. Thus biosynthetic enzyme activities need not be related directly to the capacity to release and elevate plasma levels of catecholamines following stressful stimulation.  相似文献   

3.
Under basal conditions, the levels of circulating norepinephrine (NE) and epinephrine (E) were higher in normotensive Wistar rats of different origins than in Sprague-Dawley rats. Since the decline of 3H-NE concentration in the plasma after i.v. injection was similar in Wistar and in Sprague-Dawley rats, the higher levels of endogenous NE in the former strain probably reflect greater NE release from sympathetic nerve terminals. In normotensive Sprague-Dawley and Wistar rats, plasma NE rose to various extents during cold exposure (4°C), depending on the basal plasma NE levels. Compared with normotensive Wistar Kyoto rats (WKY), spontaneously hypertensive rats (SHR) had similar basal plasma E and NE concentrations, similar rates of 3H-NE disappearance, but more rapid increases to higher values of plasma NE during cold exposure. It is concluded that the basal rate of peripheral catecholamine release does not seem to be the main determining factor for arterial blood pressure in the various rat strains and that the sympathetic neuronal system of SHR is more responsive to cold exposure than that of WKY rats.  相似文献   

4.
Plasma levels of norepinephrine (NE) and epinephrine (EPI) were measured in male Sprague-Dawley rats before and at several times after training injections of agents known to enhance or to impair later retention performance for a one-trial inhibitory (passive) avoidance task. Two days before testing, each animal was surgically prepared with a chronic tail artery catheter that allows for repeated blood sampling in unhandled rats. Exposure to a single, intense training footshock (3.0 mA, 2.0 sec duration) resulted in an immediate but transient increase in plasma levels of EPI and to a lesser extent NE. Plasma levels of both catecholamines did not differ between unshocked controls and animals that received a weak training footshock (0.6 mA, 0.5 sec duration). An injection of EPI at a dose that enhances retention performance (0.1 mg/kg, sc) resulted in increments in plasma EPI levels of 0.8-1.9 ng/ml from 5 to 40 min after injection. An injection of EPI (0.5 mg/kg, sc) at a dose that produces retrograde amnesia resulted in increments in plasma EPI ranging from 3.7 to 4.5 ng/ml during the 40 min after injection. Plasma NE levels were not significantly altered following an EPI injection. A single injection of adrenocorticotropin (ACTH, 0.3 or 3.0 IU per rat) did not alter the plasma catecholamine responses to training with a weak footshock. Similarly, the synthetic ACTH analog, Organon 2766 (125 or 250 mg/Kg) did not affect plasma catecholamines in untrained (unshocked) rats.These results demonstrate that significant increments in plasma levels of NE and EPI occur shortly after inhibitory avoidance training. Furthermore, an injection of EPI that enhances retention of an inhibitory avoidance task mimics the magnitude, though not the temporal characteristics, of the endogenous adrenal medullary response to a training footshock. Other hormonal treatments (ACTH and Organon 2766) which enhance memory storage do not affect plasma levels of NE and EPI.  相似文献   

5.
Spontaneously hypertensive (SHR) rats and normotensive Wistar-Kyoto (WKY) rats were subjected to 2 hr of cold-restraint stress at 2–6°C following a 24 hr fast. WKY rats had a significantly greater incidence and degree of ulceration of the gastric glandular mucosa than did SHR rats. Mean arterial pressure, obtained from a chronic arterial cannula, fell during 2 hr of cold-restraint stress in both SHR and WKY rats. Heart rate was unchanged in WKY but fell significantly in SHR. Plasma norepinephrine (NE) and epinephrine (E), determined by radioenzymatic assay, increased significantly following stress. Increased levels of NE remained similar for both SHR and WKY rats, while post-stress levels of E for the SHR rats greatly exceeded E levels for WKY rats. A greater degree of hypothermia was also noted in SHR rats. Decreased stress induced ulcerogenesis in the SHR may be due to the well-known altered hemodynamic and autonomic nervous system reactivity in this strain or other factors not yet discovered.  相似文献   

6.
The objective of this study was to compare strain and gender differences in kidney and heart norepinephrine (NE) content and turnover rate in normotensive Wistar-Kyoto rats (WKY) and spontaneously hypertensive rats (SHR, SHR/a, and SHR/y). Our laboratory has shown that the Y chromosome has a significant effect on blood pressure in the SHR model of hypertension through the use of two new rat stains, SHR/a and SHR/y, to study the Y chromosome. SHR/a have a SHR autosomal genetic background with a WKY Y chromosome, whereas the SHR/y rats have a WKY autosomal genetic background with a SHR Y chromosome. Tissues were homogenized after alpha-methyl-DL-p-tyrosine injection and analyzed for NE. The male kidney NE content was significantly lower in the WKY compared with the SHR, SHR/y, and SHR/a. Kidney and heart NE content was significantly higher in females compared with males in all strains except the SHR/y. The WKY and SHR/y females had significantly lower kidney NE turnover rates, and the SHR and SHR/a females had significantly higher kidney NE turnover rates than strain-matched males. This study suggests both a strain and gender difference in sympathetic nervous system activity through noradrenergic neurotransmission.  相似文献   

7.
There is continuing discussion on the effect of music (“Mozart effect”) on numerous functions in man and experimental animals. Radiotelemetry now allows one to monitor cardiovascular functions in freely‐moving unrestrained experimental animals. Radiotelemetry was used to monitor systolic and diastolic blood pressure (SBP, DBP), heart rate (HR), and motor activity (MA) in male normotensive WKY and hypertensive SHR animals. Rats were synchronized to a 12 h light (L): 12 h dark (D) regimen in an isolated, ventilated, light‐controlled, sound‐isolated animal container. Music (Mozart, Symphony # 40; Ligeti, String Quartet # 2) were played for 2 h at 75 dB in the animal cabin starting at the onset of L or D in a cross‐over design. Data were collected every 5 min for 24 h under control conditions and during and after music. In addition, plasma concentrations of norepinephrine (NE) were determined in unrestrained animals at 3 h intervals over 24 h. In both WKY and SHR, highly significant circadian rhythms were obtained in SBP, DBP, HR, and MA under control conditions; HR was lower and BP higher in SHR than in WKY. NE was circadian rhythmic in both strains with higher values in D; the increase in NE with immobilization was much more pronounced in SHR than in WKY. The music of Mozart had no effect on either parameter in WKY, neither in L nor in D. In contrast, in SHR, the music of Mozart presented in L significantly decreased HR and left BP unaffected, leading to a small decrease in cardiac output. The music of Ligeti significantly increased BP both in L and in D and reflexively reduced HR in L, the effects being long‐lasting over 24 h. Interestingly, white noise at 75 dB had no effect at all on either function in both strains. The effects of both Mozart and Ligeti cannot be attributed to a stress reaction, as stress due to cage switch increased HR and BP both in WKY and SHR. The study clearly demonstrates that music of different character (tempo, rhythm, pitch, tonality) can modify cardiovascular functions in freely‐moving rats, with SHR being more sensitive than normotensive animals. The relative contribution of the characteristics of the two pieces of music, however, needs further evaluation.  相似文献   

8.
The interrelationships among plasma renin activity (PRA, ng AI/ml plasma/hr), aldosterone concentration (ng%), and renal Na+-K+-ATPase activity (mumole PO4/mg protein/hr) were studied in 9 weanling normotensive spontaneously hypertensive rats (SHR), 9 adult hypertensive SHR, and 9 weanling and 9 adult normotensive Wistar-Kyoto rats (WKY). All groups were placed on a normal (0.4% sodium) diet. PRA and plasma aldosterone, measured in samples drawn from the ether-anesthetized rat, were higher in weanling SHR (15.2 +/- 2.0, 37 +/- 4.2) than in WKY. PRA measured in samples collected from a separate group of unanesthetized weanling SHR was also greater than in age-matched WKY. In adult SHR, PRA (6.1 +/- 0.9) and plasma aldosterone (20.0 +/- 2.7) were decreased. During the weanling period Na+-K+-ATPase activity in SHR was not only greater than in age-matched WKY but was also increased compared to adult normotensive and hypertensive rats (137 +/- 9 weanling SHR, 89 +/- 7 weanling WKY, 73 +/- 11 adult SHR, 84 +/- 17 adult WKY). Thus, during the weanling period the renin-angiotensin-aldosterone (R-A-A) system and renal Na+-K+-ATPase activity are activated in SHR. The elevation of Na+-K+-ATPase activity may be due to increased aldosterone levels. It was noted, however, that plasma aldosterone was similar in adult WKY and weanling SHR, while Na+-K+-ATPase activity was higher in SHR. These findings involving R-A-A and renal Na+-K+-ATPase activity prior to the elevation of blood pressure suggest that the kidneys may play a role in the initiation of hypertension in SHR.  相似文献   

9.
Renal norepinephrine (NE) concentration was measured in normotensive Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR) at 7, 9, 11, and 13 weeks of age. Although the weight of kidneys was similar in the two strains of rats, renal NE concentration was significantly lower in SHR at all ages (147 +/- 9 to 175 +/- 13 ng/g for SHR, and 216 +/- 8 to 262 +/- 17 ng/g for WKY rats). The difference in renal NE concentration during this time of rapidly increasing arterial pressure in the SHR suggests that renal NE may in some way be related to the development of hypertension.  相似文献   

10.
With the use of circulating norepinephrine (NE) and epinephrine (E) levels, the sympathoadrenal activity as well as its local modulation by adrenoceptors were studied in normotensive (NT) and DOCA-salt hypertensive (HT) rats. In anesthetized hypertensive rats, plasma NE levels were higher, whereas in conscious animals both NE and E levels were found to be increased, suggesting an increased basal sympathoadrenal tone in these animals. The finding of a close correlation between blood pressure levels and NE levels suggests that the elevation of blood pressure may be linked to sympathetic system activity in this experimental model of hypertension. The reactivity of the sympathoadrenal system was also found to be increased in DOCA HT rats. Following a bilateral carotid occlusion of 1 min, which specifically activates the adrenal medulla, the elevation of E levels was found to be potentiated in intact or vagotomized HT rats. Moreover, in response to prolonged or acute hypotension in anesthetized and conscious animals, the elevation in plasma NE and E levels was found to be markedly potentiated in DOCA HT rats. The local modulating adrenoceptor-mediated mechanisms of the sympathoadrenal system appeared to be altered in this model of hypertension. Although it was possible to demonstrate that the E response to carotid occlusion can be greatly potentiated by administration of an alpha2-antagonist (yohimbine) and completely abolished by an alpha2-agonist (clonidine) in NT rats, the E response was found to be unaffected by the same treatments in HT rats, suggesting a reduced sensitivity in the alpha2-mediated inhibitory modulation of the adrenal medulla. Moreover, the acute treatment with a beta-blocker (sotalol) lowered circulating NE levels and blood pressure only in HT rats, suggesting the possibility of a more sensitive beta-receptor-mediated presynaptic facilitatory mechanism on sympathetic fibers of these animals. Finally, it was observed that the functional balance which exists between the activities of sympathetic fibers and the adrenal medulla in normotensive animals appears to be impaired in DOCA HT rats. In conclusion, the present studies suggest that the increased sympathoadrenal tone and reactivity may be due, in part, to a variety of dysfunctions in local adrenoceptor modulatory mechanisms of the sympathoadrenal system in DOCA hypertensive rats.  相似文献   

11.
Spontaneously hypertensive rats (SHR) are widely used as model to investigate the pathophysiological mechanisms of essential hypertension. Catecholamine plasma levels are elevated in SHR, suggesting alterations of the sympathoadrenal axis. The residual hypertension in sympathectomized SHR is reduced after demedullation, suggesting a dysfunction of the adrenal medulla. Intact adrenal glands exposed to acetylcholine or high K+ release more catecholamine in SHR than in normotensive Wistar Kyoto (WKY) rats, and adrenal chromaffin cells (CCs) from SHR secrete more catecholamines than CCs from WKY rats. Since Ca2+ entry through voltage-gated Ca2+ channels (VGCC) triggers exocytosis, alterations in the functional properties of these channels might underlie the enhanced catecholamine release in SHR. This study compares the electrophysiological properties of VGCC from CCs in acute adrenal slices from WKY rats and SHR at an early stage of hypertension. No significant differences were found in the macroscopic Ca2+ currents (current density, IV curve, voltage dependence of activation and inactivation, kinetics) between CCs of SHR and WKY rats, suggesting that Ca2+ entry through VGCC is not significantly different between these strains, at least at early stages of hypertension. Ca2+ buffering, sequestration and extrusion mechanisms, as well as Ca2+ release from intracellular stores, must now be evaluated to determine if alterations in their function can explain the enhanced catecholamine secretion reported in CCs from SHR.  相似文献   

12.
In conscious animals, handling and immobilization increase plasma levels of the catecholamines norepinephrine (NE) and epinephrine (EPI). This study examined plasma concentrations of endogenous compounds related to catecholamine synthesis and metabolism during and after exposure to these stressors in conscious rats. Plasma levels of 3,4-dihydroxyphenylalanine (DOPA), NE, EPI, and dopamine (DA), the deaminated catechol metabolites 3,4-dihydroxyphenylglycol (DHPG), and 3,4-dihydroxyphenylacetic acid (DOPAC), and their O-methylated derivatives methoxyhydroxyphenylglycol (MHPG) and homovanillic acid (HVA) were measured using liquid chromatography with electrochemical detection at 1, 3, 5, 20, 60, and 120 min of immobilization. By 1 min of immobilization, plasma NE and EPI levels had already reached peak values, and plasma levels of DOPA, DHPG, DOPAC, and MHPG were increased significantly from baseline, whereas plasma DA and HVA levels were unchanged. During the remainder of the immobilization period, the increased levels of DOPA, NE, and EPI were maintained, whereas levels of the metabolites progressively increased. In animals immobilized briefly (5 min), elevated concentrations of the metabolites persisted after release from the restraint, whereas DOPA and catecholamine levels returned to baseline. Gentle handling for 1 min also significantly increased plasma levels of DOPA, NE, EPI, and the NE metabolites DHPG and MHPG, without increasing levels of DA or HVA. The results show that in conscious rats, immobilization or even gentle handling rapidly increases plasma levels of catecholamines, the catecholamine precursor DOPA, and metabolites of NE and DA, indicating rapid increases in the synthesis, release, reuptake, and metabolism of catecholamines.  相似文献   

13.
Neuropeptide Y (NPY) is a vasoconstrictor present in the sympatho-adrenomedullary system and may be co-released with norepinephrine (NE) and epinephrine (EPI) during sympathetic activation. We studied plasma NPY-immunoreactivity (-ir, radioimmunoassay) and catecholamine (radioenzymatic) responses during two acute stress paradigms that differ in character, intensity, and duration. The intermittent stress of footshock (0.75 and 1.5 mA, 0.5 sec duration, at 5-sec intervals, for 5 min) evoked intensity-dependent immediate increments in plasma NE and EPI, and a delayed NPY-ir response (+0.6 +/- 0.1 pmol/ml). Prolonged (60 min) immobilization caused greater increases in plasma NE and EPI levels and no changes in plasma NPY-ir until the end of the stress session (+0.3 +/- 0.1 pmol/ml). Plasma NPY-ir responses correlated with those of NE but not with EPI suggesting a sympathetic origin for the release of the peptide. Relatively greater NPY-ir responses to footshock than to immobilization may be consistent with a preferential release of the peptide by a bursting but not continuous mode of sympathetic activation. However, it may also be due to a differential activation of the sympathetic nerves and adrenal medulla by these two stress situations.  相似文献   

14.
Tipnis UR  Li S 《Cytobios》2001,106(Z1):85-98
Polyamines (putrescine, spermidine and spermine) play an important role in the development of hypertension and in the expression of atrial natriuretic peptide (ANP), a cardiac hormone involved in the regulation of blood pressure. Wistar Kyoto normotensive (WKY) and spontaneously hypertensive rats (SHR) were given spermine in drinking water (0.5%) for 15 days. The spermine intake elevated the blood pressures of both SHR and WKY rats and reduced the expression of ANP (Northern blotting) in the ventricles. ANP levels in the plasma determined by enzyme immunoassay (EIA) showed no changes in the levels of plasma ANP after spermine intake. An analysis of polyamines by high-pressure liquid chromatography showed that the levels of spermine and spermidine were elevated in SHR hearts. It was in SHR hearts alone that spermine intake was associated with increases in the levels of putrescine. The results suggest that spermine-induced increases in blood pressure may involve mechanisms other than ANP.  相似文献   

15.
Formation of nitric oxide, an endothelium-derived relaxing factor, can be inhibited by administration of N-nitro-L-arginine methylesther (L-NAME). In the present study, the activity of the sympathoadrenal system in rats with blood pressure (BP) elevation induced by L-NAME was investigated. L-NAME was administered in a dose of 50 mg/kg, i.p. every 12 h for 4 days. Blood samples were collected via chronically inserted arterial catheters in conscious, freely moving rats at rest and during immobilization stress. Plasma epinephrine (EPI), norepinephrine (NE), and dopamine (DA), as well as catecholamine metabolites dihydroxyphenylglycol (DHPG) and dihydroxyphenylacetic acid (DOPAC) were measured by HPLC method. In L-NAME treated animals, which showed a significant increase in BP, plasma EPI levels were markedly elevated both before and during stress. Plasma NE levels were not significantly increased, however, DHPG levels, which indicate NE turnover and reuptake, were highly elevated. Plasma DA levels were not changed after L-NAME administration but DA metabolite DOPAC showed a significant elevation both under basal conditions and during stress. Thus, the present results indicate that the prolonged blockade of nitric oxide synthesis that causes arterial hypertension is associated with an activation of the sympathoadrenal system.  相似文献   

16.
Prolactin (PRL) secretion after aromatic amino acid decarboxylase inhibition with NSD-1015 was significantly elevated in female spontaneously hypertensive rats (SHR) as compared to normotensive (WKY) controls. Although basal PRL levels tended to be elevated in SHR rats, the differences were not significant. In vitro PRL secretion was also significantly elevated in the SHR rats as compared to the WKY rats, but the SHR rats were more responsive to the inhibitory effects of dopamine (DA). Despite changes in pituitary PRL secretion and DA response, there was no apparent difference in tubero-infundibular DA activity between the two rat strains. Hypothalamic serotonin levels were elevated in SHR rats, but metabolism did not appear to be significantly changed based on measurements of 5-hydroxytryptophan accumulation after NSD-1015 treatment.  相似文献   

17.
To investigate the possible involvement of endothelin-1 (ET-1), an endothelium-derived potent vasoconstrictor peptide, in the pathophysiology of hypertension, plasma ET-1 levels in 15-week-old spontaneously hypertensive rats (SHR) and DOCA-salt hypertensive rats were measured with a sandwich-type enzyme immunoassay. The vasocontractile effect of ET-1 in aortic helical preparations was significantly more sensitive in DOCA-salt hypertensive rats than in control sham-operated rats, but plasma levels of ET-1 did not differ between them. Plasma ET-1 levels in genetically hypertensive rats (SHR and stroke-prone SHR) were significantly lower than those in age-matched normotensive Wistar-Kyoto (WKY) rats. The plasma concentrations of big ET-1, a precursor of ET-1, in both SHR and SHR-SP were significantly lower than those of WKY, suggesting that the production of ET-1 is decreased in rats of genetic hypertension. Although the vascular reactivity to ET-1 increased in both DOCA-salt hypertensive and genetically hypertensive rats, present findings of the plasma ET-1 levels suggest that the role of ET-1 in the vascular control system may be different in DOCA-salt hypertensive rats and genetically hypertensive rats.  相似文献   

18.
Kinins are vasoactive peptide hormones that can confer protection against the development of hypertension. Because their efficacy is greatly influenced by the rate of enzymatic degradation, the activities of various kininases in plasma and blood of spontaneously hypertensive rats (SHR) were compared with those in normotensive Wistar-Kyoto rats (WKY) to identify pathogenic alterations. Either plasma or whole blood was incubated with bradykinin (10 microM). Bradykinin and kinin metabolites were measured by high-performance liquid chromatography. Kininase activities were determined by cumulative inhibition of angiotensin I-converting enzyme (ACE), carboxypeptidase N (CPN), and aminopeptidase P (APP), using selective inhibitors. Plasma of WKY rats degraded bradykinin at a rate of 13.3 +/- 0.94 micromol x min(-1) x l(-1). The enzymes ACE, APP, and CPN represented 92% of this kininase activity, with relative contributions of 52, 25, and 16%, respectively. Inclusion of blood cells at physiological concentrations did not extend the activities of these plasma kininases further. No differences of kinin degradation were found between WKY and SHR. The identical conditions of kinin degradation in WKY and SHR suggest no pathogenic role of kininases in the SHR model of genetic hypertension.  相似文献   

19.
In spontaneously hypertensive (strain SHR) and normotensive (strain WKY) rats was studied the elaboration of conditioned reflex of active avoidance in shuttle box. In case when the shuttle box was divided by a partition the SHR rats learned worse than WKY rats. In shuttle chamber without partition the SHR rats, on the contrary, learned better that WKY ones. Such character of interlinear differences can be connected with properties of formation of the instrumental habit of deliverance from electropainful stimulus, because the presence of partition significantly hampered its fulfillment. The obtained results, compared with literature data, testify to the fact that differences of SHR and WKY rats in elaboration of conditioned reflexes are explained basically by the properties of their unconditioned activity and not of the associative processes.  相似文献   

20.
Cardiovascular and hormonal responses to swimming and running in the rat   总被引:1,自引:0,他引:1  
Hemodynamic and hormonal responses were studied during swimming (SW) and running (R) and in cage-confined (C) female Wistar rats at base line and 4 and 8 wk of training. Myocardial tissue levels of norepinephrine (NE) and epinephrine (EPI) were also measured at the end of 8 wk of training. Mean arterial blood pressure (BP), heart rate (HR), and blood samples for arterial lactate, plasma NE and EPI, and blood gases were obtained at rest and at 20, 40, and 60 min of exercise. After 4 wk of SW, a resting bradycardia was observed, and HR response for the remaining 4 wk was attenuated with SW compared with HR during R. BP and blood gases remained unchanged between the two groups. R resulted in increased arterial lactate concentrations compared with C and SW at base line but was not different from SW at 4 wk. SW elicited higher plasma levels of NE and EPI compared with C at base line and C and R at 4 wk. Myocardial tissue NE and EPI concentrations were markedly increased in both the left and right ventricle of the SW group compared with both R and C. These results indicate that BP and blood gases are not different between chronic R and SW and suggest a possible sympathoadrenal role in the differences observed in cardiac adaptations between R and SW.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号