首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract An analysis has been developed to improve the quantitation of abnormal patterns of tritiated thymidine ([3H]TdR) labelling of colonic epithelial cells, in biopsy specimens removed from human subjects at varying degrees of risk for colon cancer. After pulse incubation of specimens of colonic mucosa with [3H]TdR, each subject's microautoradiographic epithelial cell labelling distribution was segregated into eleven compartments over entire colonic crypts. the findings of each subject were then analysed to determine their relative degree of similarity to the findings for two reference populations of interest, i.e. a high-risk and a low-risk population; the individual was then classified as being closer to one or the other of the reference populations. the analysis developed is based upon a comparison of multinomial probabilities for the distributions of the labelled cells within the crypts, and permits the routine categorization of uneven distributions of labelled cells. For each subject, certain linear scores, a prognostic index based on them, and a related presumptive risk, were calculated. the sensitivity with which individuals known to be symptomatic for polyposis, and the specificity with which individuals known to be at lower risk were determined, were 73 and 93% respectively. the results suggest that this method of distinguishing among integer distributions of [3H]TdR- labelled cells in biopsies of colonic mucosa, may provide a useful basis for identifying individuals with familial polyposis, by separating their labelling patterns from those of low-risk subjects.  相似文献   

2.
The ex vivo labelling of DNA-synthesizing epithelial cells in colonic and vaginal mucosa was compared with in vivo labelling. For this purpose, in vivo S-phase cells were labelled with [3H]thymidine (Tdr) and ex vivo labelling was continued by culturing tissue specimens in bromodeoxyuridine (BrdU). Various methods of tissue culture were employed in order to improve diffusion of medium (and BrdU) in the tissue. BrdU and 3H-TdR labelling were evaluated by immunohistochemistry and autoradiography respectively. Ex vivo labelling resulted in a patchy distribution of labelled cells, which did not correspond with the 3H-TdR labelling pattern obtained in vivo. Under the described conditions ex vivo labelling does not appear to be a reliable for estimation of the proliferative activities in vivo.  相似文献   

3.
Summary The ex vivo labelling of DNA-synthesizing epithelial cells in colonic and vaginal mucosa was compared with in vivo labelling. For this purpose, in vivo S-phase cells were labelled with [3H]thymidine (Tdr) and ex vivo labelling was continued by culturing tissue specimens in bromodeoxyuridine (BrdU). Various methods of tissue culture were employed in order to improve diffusion of medium (and BrdU) in the tissue. BrdU and 3H-TdR labelling were evaluated by immunohistochemistry and autoradiography respectively. Ex vivo labelling resulted in a patchy distribution of labelled cells, which did not correspond with the 3H-TdR labelling pattern obtained in vivo. Under the described conditions ex vivo labelling does not appear to be a reliable for estimation of the proliferative activities in vivo.  相似文献   

4.
Flow cytometry of cellular DNA content provides rapid estimates of DNA distributions, i.e. the proportions of cells in the different phases of the cell cycle. Measurements of DNA alone, however, yield no kinetic information and can make it difficult to resolve the cell cycle distributions of normal and transformed cells present in tumour biopsy specimens. The use of absorption cytophotometry of the Feulgen DNA content and [3H]TdR labelling of the same nuclei provides objective criteria to distinguish the ranges of DNA content for G0/G1, S, and G2/M cells. We now report on a study in which we combined flow and absorption cytometry to resolve the cell cycle distributions of host and tumour cells present in biopsy specimens of MCa-11 mouse mammary tumours labelled in vivo for 0.5 hr with [3H]TdR. A similar analysis of exponential monolayer cultures, labelled for 5 min with [3H]TdR under pulse-chase conditions, revealed a highly synchronous traversal of almost all cells through the different phases of the cell cycle. Combination of the flow and absorption methods also allowed us to detect G2 tumour cells in vivo and a minor tumour stem-line in vitro, to show that these two techniques are complementary and yield new information when they are combined.  相似文献   

5.
Autoradiographic labelling using tritiated thymidine ([3H]TdR) was used to examine the pattern of development of gastric parietal cells in newborn pigs. Specific objectives were to establish sites in the gland where cells with a characteristic parietal cell morphology first appear, the extent of their migration or displacement, and the kinetics of any development and migration that occurs. Five newly-born littermate piglets were given a virtually continuous label of [3H]TdR over 24 hr, sacrificed at 1, 3, 5, 7 and 10 days thereafter, and samples of the gastric mucosa taken. The percentage of labelled parietal cells as a function of position in the oxyntic gland was measured for each pig. A generalized log linear model was fitted to the data using the statistical package GLIM, confirming a significant trend for labelled cells to occupy higher sites in the oxyntic gland as the time since labelling of cells increased. Goodness of fit tests showed that the trend effect was highly unlikely to be due to the variability of cell distribution from animal to animal. The dynamics of the parietal cell population and the strengths of GLIM for analysing cell labelling data are discussed.  相似文献   

6.
Abstract. Flow cytometry of cellular DNA content provides rapid estimates of DNA distributions, i.e. the proportions of cells in the different phases of the cell cycle. Measurements of DNA alone, however, yield no kinetic information and can make it difficult to resolve the cell cycle distributions of normal and transformed cells present in tumour biopsy specimens. The use of absorption cytophotometry of the Feulgen DNA content and [3H]TdR labelling of the same nuclei provides objective criteria to distinguish the ranges of DNA content for G0/G1, S, and G2/M cells. We now report on a study in which we combined flow and absorption cytometry to resolve the cell cycle distributions of host and tumour cells present in biopsy specimens of MCa-11 mouse mammary tumours labelled in vivo for 0.5 hr with [3H]TdR. A similar analysis of exponential monolayer cultures, labelled for 5 min with [3H]TdR under pulse-chase conditions, revealed a highly synchronous traversal of almost all cells through the different phases of the cell cycle. Combination of the flow and absorption methods also allowed us to detect G2 tumour cells in vivo and a minor tumour stem-line in vitro, to show that these two techniques are complementary and yield new information when they are combined.  相似文献   

7.
Mouse tongue epithelium is characterized by a circadian variation in the number of DNA-synthesizing cells (labelling index, LI). Cells undergoing DNA synthesis were labelled with tritiated thymidine [( 3H]TdR) at 0300 (peak LI) or 1200 h (low LI). The fate of these cells was assessed by injecting animals with bromodeoxyuridine (BrdU) at intervals from 12-48 h after [3H]TdR, to follow them from one cell cycle to the next. Labelling was revealed by combining [3H]TdR autoradiography with immunoperoxidase detection of BrdU in the same sections. A single peak in the appearance of double-labelled cells was seen at 44 h, if [3H]TdR was given at 1200 h; following [3H]TdR at 0300 h, a peak of double labelling was seen at 48 h with the possibility of smaller peaks at 24 h and 36 h. These results show that the 24 h periodicity in LI in this tissue is associated with a predominant cell cycle duration of 44-48 h, but that a few cells cycle more quickly. Double labelling with [3H]TdR and BrdU provides a useful method for establishing cell cycle duration by labelling S-phase cells in successive cell cycles.  相似文献   

8.
Hairless mice were continuously labelled with 10 microCi of tritiated thymidine ([3H]TdR) every 4 h for 8 d, and the proportions of labelled basal and differentiating cells were recorded separately. The mitotic rate was measured by the stathmokinetic method and the cell cycle distributions were measured by flow cytometry of isolated basal cells at intervals during the labelling period. The mitotic rate of the [3H]TdR-injected animals did not deviate from control values during the first 5 d. Computer simulations of the data based on various mathematical models were made, and three main conclusions were obtained: (1) a large spread in transit times through the G1 phase was found, together with a very narrow distribution in maturation time of differentiating cells; (2) about 20% of the differentiating cells were estimated to leave the basal cell layer directly after mitosis. This is consistent with results obtained from different sets of data; and (3) during continuous labelling more than 90% of the cells are labelled during each passage through the S phase.  相似文献   

9.
In the Chinese hamster, 17 days, i.e. one cycle of the seminiferous epithelium, after two injections of [3H]TdR given 24 hr apart, labelled cells were found among all types of spermatogonia, including stem cells (As). These labelled As spermatogonia derive from one or more self-renewing divisions of the stem cells that originally incorporated [3H]TdR. In the steady state, half of the divisions of the As will be self-renewing and the other half will give rise to Apr spermatogonia that will ultimately become spermatozoa. Theoretically, the labelling index (LI) after 17 days will be similar to that after 1 hr, and in this study twice as high as for the 1-hr interval since only one injection was given. However, experimental values only half that of the theoretical LI were found after 17 days. The following causes for the loss of labelled stem cells are discussed: (1) dilution of label because of division; (2) influx of unlabelled components of false pairs (i.e. newborn stem cells that still have to migrate away, mostly during G1, from their sister cells and are scored as Apr spermatogonia) between 1 hr and 17 days; (3) the existence of long- and short-cycling stem cells, probably combined with preferential differentiation of the short-cycling elements; (4) selective segregation of DNA at stem cell mitosis; and (5) irradiation death of radiosensitive labelled stem cells. As it is not impossible that factors 1, 2, 4 and 5 together account for the total loss of labelled stem cells, LI results do not provide evidence for the existence of separate classes of short- and long-cycling stem cells. The distributions of the LIs of the As, Apr and Aal spermatogonia over the stages of the epithelial cycle at 17 days are similar to those at 1 hr after injection. Hence the regulatory mechanisms that govern the stimulation and inhibition of proliferation of As that give rise to new As for the next epithelial cycle are similar to those of the As that will divide into Apr spermatogonia during the same epithelial cycle. Grain counts revealed that more [3H]TdR is incorporated into As, Apr and Aal spermatogonia that are in S phase during epithelial stages X-IV than in stages V-IX.  相似文献   

10.
The central zone of the rat lens epithelium, extending half way from the centre to the periphery of a whole mount preparation, normally has less than 1% of the cells in the cell cycle at any given time. Mechanical wounding initiates a burst of proliferation in the central zone. DNA synthesis begins 14 hr after wounding followed by mitosis 10 hr later. When [3H]TdR was applied at 2 hr prior to S phase, some moderately heavy and some light labelling was observed after the onset of S phase. When [3H]TdR was applied 5 hr before S phase (9 hr after wounding), all the cells were lightly labelled. Only small amounts of the label were available to these cells 5 hr after application. It is significant that there was labelling in this group because it indicates the persistence of relatively small intracellular pools of [3H]TdR for several hours after the initial 'pulse' labelling of cells. Determinations of the duration of S phase were based on the assumption that pulse labelling may be affected by the persistence of the pools of [3H]TdR and consequent light labelling of the cells.  相似文献   

11.
Using radioautographic smear preparations of thymocytes and mesenteric lymph node (MLN) cells labelled with three different tritiated pyrimidine deoxyribonucleosides, the incorporation of DNA precursors was studied separately on large lymphocytes and small lymphocytes. Radioautographic reaction due to generally tritiated deoxycytidine ( [G-3H]CdR) labelling in vivo in large lymphocytes was more intense than that in small lymphocytes. When mice were sacrificed 6 hr after the administration of tritiated thymidine ( [3H]TdR), small lymphocytes were labelled more heavily than large lymphocytes. However, labelling intensity with [3H]TdR in large lymphocytes was greatly enhanced by the administration of 5-fluoro-deoxyuridine, whereas in small lymphocytes labelling intensity was only fairly enhanced by the same treatment. When cells were incubated in vitro with 5-tritium labelled deoxycytidine [( 5-3H]CdR) for 10 min, there was no significant difference in labelling intensities between large and small lymphocytes. In the case of [G-3H]CdR incorporation, the labelling intensity in large lymphocytes was found to be significantly stronger than that in small lymphocytes. Large as well as small lymphocytes incorporated [3H]TdR very well in vitro. However, addition of 5 X 0 X 10(-5) M of non-radioactive CdR to the medium greatly decreased the incorporation of [3H]TdR by large lymphocytes, whereas the effect of non-radioactive CdR in small lymphocytes was not so marked as that in large lymphocytes. Furthermore, the [3H]TdR-labelling percentages were decreased at the same rate by the addition of non-radioactive CdR in both large and small lymphocytes. These results indicate that large lymphocytes and a proportion of small lymphocytes have a strong tendency to convert CdR to thymidine mono-phosphate, which is utilized for DNA synthesis, whereas this ability is relatively weak in the rest of small lymphocytes. Thus, it is probably that this metabolic ability changes during the transition of the large lymphocyte to the small lymphocyte.  相似文献   

12.
The influence of pulse labelling with 50 microCi tritiated thymidine ( [3H]TdR) (2 microCi/g) on epidermal cell-cycle distribution in mice was investigated. Animals were injected intraperitoneally with the radioactive tracer or with saline at 08.00 hours, and groups of animals were sacrificed at intervals during the following 32 hr. Epidermal basal cells were isolated from the back skin of the animals and prepared for DNA flow cytometry, and the proportions of cells in the S and G2 phases of the cell cycle were estimated from the obtained DNA frequency distributions. The proportions of mitoses among basal cells were determined in histological sections from the same animals, as were the numbers of [3H]TdR-labelled cells per microscopic field by means of autoradiography. The results showed that the [3H]TdR activity did not affect the pattern of circadian rhythms in the proportions of cells in S, G2 and M phase during the first 32 hr after the injection. The number of labelled cells per vision field was approximately doubled between 8 and 12 hr after tracer injection, indicating an unperturbed cell-cycle progression of the labelled cohort. In agreement with previous reports, an increase in the mitotic index was seen during the first 2 hr. These data are in agreement with the assumption that 50 microCi [3H]TdR given as a pulse does not perturb cell-cycle progression in mouse epidermis in a way that invalidates percentage labelled mitosis (PLM) and double-labelling experiments.  相似文献   

13.
Abstract. Autoradiographic labelling using tritiated thymidine ([3H]TdR) was used to examine the pattern of development of gastric parietal cells in newborn pigs. Specific objectives were to establish sites in the gland where cells with a characteristic parietal cell morphology first appear, the extent of their migration or displacement, and the kinetics of any development and migration that occurs. Five newly-born littermate piglets were given a virtually continuous label of [3H]TdR over 24 hr, sacrificed at 1, 3, 5, 7 and 10 days thereafter, and samples of the gastric mucosa taken. the percentage of labelled parietal cells as a function of position in the oxyntic gland was measured for each pig. A generalized log linear model was fitted to the data using the statistical package GLIM, confirming a significant trend for labelled cells to occupy higher sites in the oxyntic gland as the time since labelling of cells increased. Goodness of fit tests showed that the trend effect was highly unlikely to be due to the variability of cell distribution from animal to animal. the dynamics of the parietal cell population and the strengths of GLIM for analysing cell labelling data are discussed.  相似文献   

14.
We describe a reproducible method for combining tritiated thymidine ([H]TdR) autoradiography with immunoperoxidase detection of bromodeoxyuridine (BrdU) in paraffin-embedded tissues. The technique has been used to examine, in mouse tongue epithelium, the inhibition of incorporation into DNA of [3H]TdR by a simultaneous injection of BrdU in the doses that both compounds are likely to be used in cell proliferation studies. The significance that this inhibition has on prolongation of autoradiograph exposure times, to ensure that all cells that incorporate [3H]TdR are scored as positive, in particular the most lightly labelled cells, has been quantified. The inhibition of uptake into DNA of [3H]TdR from 0.23 to 1.85 MBq (6.25 to 50 mu Ci) per animal, produced by a simultaneous injection of 2.5 mg BrdU shows a linear, dose-dependent relationship. Provided the injected dose (in mu Ci per animal) multiplied by the autoradiographic exposure time (in days) is greater than a value of 700, then all cells that are labelled after incorporation of [3H]TdR alone are also labelled after simultaneous double labelling, despite the latter producing a lower average grain count.  相似文献   

15.
The percentages of labelled lymphocytes in smear preparations of mouse thymus were higher than those in similar preparations of mesenteric lymph nodes with either generally labelled tritiated deoxycytidine, [3H]CdR, or tritiated thymidine, [3H]TdR. Lymphocytes in the thymus cortex and in germinal centres of mesenteric lymph nodes were intensely labelled with [3H]CdR, whereas with [3H]TdR lymphocytes in the peripheral region of thymus and medullary cords of mesenteric lymph nodes were heavily labelled. The majority of lymphocytes in thymic cortex and germinal centres of mesenteric lymph nodes were labelled weakly with [3H]TdR. Thus, labelling patterns with [3H]CdR differed from those with [3H]TdR in lymphoid tissues of the mouse. Mouse lymphocytes can utilize [3H]CdR as a precursor molecule for cytosine and thymine in DNA. The ratio of radioactivity of thymine to that of cytosine was measured biochemically in DNA extracted from lymphocytes labelled with [3H]CdR. This radioactivity ratio in thymus was higher than that in mesenteric lymph nodes. These results suggest that the metabolic activities of utilizing CdR for DNA synthesis differ within lymphocyte populations in various lymphoid tissues in the mouse.  相似文献   

16.
Abstract Mouse tongue epithelium is characterized by a circadian variation in the number of DNA-synthesizing cells (labelling index, LI). Cells undergoing DNA synthesis were labelled with tritiated thymidine ([3H]TdR) at 0300 (peak LI) or 1200 h (low LI). The fate of these cells was assessed by injecting animals with bromodeoxyuridine (BrdU) at intervals from 12–48 h after [3H]TdR, to follow them from one cell cycle to the next. Labelling was revealed by combining [3H]TdR autoradiography with immunoperoxidase detection of BrdU in the same sections.
A single peak in the appearance of double-labelled cells was seen at 44 h, if [3H]TdR was given at 1200 h; following [3H]TdR at 0300 h, a peak of double labelling was seen at 48 h with the possibility of smaller peaks at 24 h and 36 h.
These results show that the 24 h periodicity in LI in this tissue is associated with a predominant cell cycle duration of 44–48 h, but that a few cells cycle more quickly. Double labelling with [3H]TdR and BrdU provides a useful method for establishing cell cycle duration by labelling S-phase cells in successive cell cycles.  相似文献   

17.
BACKGROUND: Cap polyposis is a rarely encountered disease characterized by multiple distinctive inflammatory colonic polyps located from the rectum to the distal colon. The etiology of this disease is still unknown, and no specific treatment has been established. AIM: We report three cases of cap polyposis that were cured following eradication therapy for Helicobacter pylori infection. METHODS AND RESULTS: Three women were referred to Shinshu University Hospital because of mucoid and/or bloody diarrhea. Laboratory data showed hypoproteinemia in all cases; markers of inflammation such as C-reactive protein were negative. Colonoscopy revealed multiple sessile polyps with mucus adherent on the apices of the mucosal folds in the rectum and/or the sigmoid colon. The intervening mucosa was normal. Microscopic examinations of biopsy specimens taken from sessile polyps revealed inflamed mucosa with elongated tortuous crypts attenuated towards the mucosal surface. A granulation tissue 'cap' was observed on the surface of the mucosa. Various treatments were unsuccessful, including administration of metronidazole or prednisolone, avoidance of straining at defecation, and surgical or endoscopic resection. All were diagnosed with H. pylori infection in the stomach. Helicobacter pylori was not detected in the biopsy specimens from the colonic inflammatory polyps by immunohistochemical study using polyclonal anti-H. pylori antibody. After successful eradication therapy the clinical symptoms improved. Disappearance of cap polyposis was confirmed by colonoscopy in all three cases. CONCLUSION: We speculate that H. pylori infection might play a role in the pathogenesis of cap polyposis.  相似文献   

18.
The present experiments with [14C]-thymidine (TdR) and [3H]-bromodeoxyuridine (BrdU) using mouse jejunal crypt cells show that the upper limit of the tracer dose of TdR is about 0.5 microgram g body weight-1 and that of BrdU is about 5.0 micrograms g body weight-1. Applying these doses, the proportions of the endogenous DNA synthesis attributed to the exogenous DNA precursor are 2% and 9% respectively. For [3H]-TdR doses commonly used in cell kinetic studies this proportion is only 0.1-1.0%, a negligible quantity that does not influence the endogenous DNA synthesis. The maximum availability time of tracer doses of TdR as well as BrdU is 40 to 60 min, the majority of the precursors being incorporated after 20 min. The availability time is the same for TdR doses exceeding the tracer dose by a factor of 80, whereas it is prolonged in the case of BrdU doses exceeding the tracer dose by a factor of 50. BrdU is suitable to replace radioactively labelled TdR in short term cell kinetic studies, i.e. determination of the labelling index or of the S phase duration by double labelling. However, more studies are needed to elucidate how far BrdU can replace TdR in long term studies as shown by differences between the fraction of labelled mitoses (FLM) curves of a human renal cell carcinoma measured with BrdU and [3H]-TdR.  相似文献   

19.
The labelling index (TLI) of the digestive mucosa of some fish species was determined following a pulse labelling with tritiated thymidine ([3H]TdR) and light microscopic autoradiography. In the oesophageal epithelium, proliferation was observed to occur in non mucus-secreting cells. In the intestine, both undifferentiated and absorptive cells incorporated [3H)TdR within 1 h after injection. Statistically significant differences in [3H]TdR incorporation were observed between the upper intestine region and both the middle and lower parts on the one hand, and between the middle and lower parts on the other hand. Mucus-secreting cells seemed unable to proliferate. In the stomach, significantly fewer labelled nuclei were counted; they were located in the isthmus epithelium. No significant difference was observed between the TLI of these regions in the different species.  相似文献   

20.
The influence of pulse labelling with 50 °Ci tritiated thymidine ([3H]TdR) (2 μCi/g) on epidermal cell-cycle distribution in mice was investigated. Animals were injected intraperitoneally with the radioactive tracer or with saline at 08.00 hours, and groups of animals were sacrificed at intervals during the following 32 hr. Epidermal basal cells were isolated from the back skin of the animals and prepared for DNA flow cytometry, and the proportions of cells in the S and G2 phases of the cell cycle were estimated from the obtained DNA frequency distributions. the proportions of mitoses among basal cells were determined in histological sections from the same animals, as were the numbers of [3H]TdR-labelled cells per microscopic field by means of autoradiography. The results showed that the [3H]TdR activity did not affect the pattern of circadian rhythms in the proportions of cells in S, G2 and M phase during the first 32 hr after the injection. the number of labelled cells per vision field was approximately doubled between 8 and 12 hr after tracer injection, indicating an unperturbed cell-cycle progression of the labelled cohort. In agreement with previous reports, an increase in the mitotic index was seen during the first 2 hr. These data are in agreement with the assumption that 50 °Ci [3H]TdR given as a pulse does not perturb cell-cycle progression in mouse epidermis in a way that invalidates percentage labelled mitosis (PLM) and double-labelling experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号